1
|
Li T, Sun J, Wang G, Wang Y, Zhang C. RN7SL1 overexpression promotes cell proliferation in cutaneous T-cell lymphoma via miR-34a-5p/MYCN axis. J Dermatol Sci 2025; 118:18-28. [PMID: 40157805 DOI: 10.1016/j.jdermsci.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Cutaneous T-cell lymphoma (CTCL) is a type of lymphoma that presents in skin tissue without evidence of extracutaneous disease. Emerging evidence indicates that long noncoding RNA-RN7SL1 serves as crucial effectors in modulating progression of different malignancies, including breast cancer, liver cancer, and other neoplasms. OBJECTIVE To figure out the role of RN7SL1 in the pathogenesis of CTCL. METHODS We detected RN7SL1 expression of CTCL patients by quantitative real-time polymerase chain reaction and fluorescent in situ hybridization. CTCL cell lines were transfected with lentiviral-based RN7SL1 gene knockdown vectors. Whole transcriptome sequencing was conducted to investigate differentially expressed miRNA and mRNA in CTCL, and we used qRT-PCR, RNA immunoprecipitation, dual-luciferase assay, RNA pull down and Western Blotting to further detect the relation of miRNA and mRNA. Also, we have verified above results in mice and clinical samples. RESULTS LncRNA-RN7SL1 was overexpressed in CTCL compared with benign inflammatory dermatosis and was related to the TNMB stage of mycosis fungoides and Sézary syndrome (higher expression in IIB-IVB stage than IA-IIA stage). Additionally, the proliferation of CTCL cell lines HH and Hut78 was weakened, but apoptosis was facilitated by RN7SL1 downregulation, resulting in a reduced tumorigenic capacity in vivo. Subsequently, Whole transcriptome sequencing and target validation indicated that the RN7SL1/miR-34a-5p/MYCN axis may promoted malignant behavior in CTCL. CONCLUSION Our study suggested that RN7SL1 promoted malignant behavior by targeting miR-34a-5p/MYCN signaling. This finding might facilitate the discovery of novel biomarkers for CTCL diagnosis and treatment.
Collapse
Affiliation(s)
- Tingting Li
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Sun J, Li T, Cui J, Zhang L, Wang G, Ma C, Zhang C, Wang Y. sEV-mediated intercellular transformation from MGAT4A High to MGAT4A Low tumor cells via the HOTAIRM1/miR-196b-5p axis promotes apoptosis resistance in CTCL. Oncogene 2025:10.1038/s41388-025-03356-6. [PMID: 40155530 DOI: 10.1038/s41388-025-03356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
ncRNAs encapsulated in small extracellular vesicles (sEVs) facilitate intercellular communication and are associated with tumor progression. lncRNA-HOTAIRM1 is aberrantly expressed in various cancers. However, HOTAIRM1 expression and its downstream ceRNA network in CTCL remains unclear. In this study, we found that HOTAIRM1 was reduced in CTCL. Elevated HOTAIRM1 inhibited proliferation and induced apoptosis in vitro, resulting in reduced in vivo tumorigenic capacity. Whole-transcriptome sequencing and scRNA-Seq confirmed that differential expression of HOTAIRM1/miR-196b-5p/MGAT4A axis induces apoptosis resistance in CTCL. Mechanistically, reduced MGAT4A expression in CTCL leads to decreased N-glycosylation modification of membrane proteins and reduced Galectin-1 affinity, thereby inducing partial resistance to Galectin-1-induced apoptosis. Meanwhile, benign CD4 + T cells show sensitivity to Galectin-1-induced apoptosis due to their relatively higher MGAT4A expression. Furthermore, MGAT4ALow CTCL tumor cells transformed MGAT4AHigh CD4+ benign cells into MGAT4ALow cells by secreting sEVs containing miR-196b-5p, thereby reducing Galectin-1 binding and inducing apoptosis resistance. Engineered sEVs from HOTAIRM1-overexpressing cells contain elevated HOTAIRM1, which can specifically target malignant T cells, with reduced miR-196b-5p and increased MGAT4A, demonstrating apoptosis-inducing and tumor-suppressive effects in CTCL. This study identified changes in HOTAIRM1/miR-196b-5p/MGAT4A axis and N-glycosylation modifications in CTCL. Engineered HOTAIRM1-loaded sEVs demonstrated promising targeting and therapeutic effects in CTCL.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Tingting Li
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jing Cui
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
| | - Lihua Zhang
- Department of Pathology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
- Tianjin Union Medical Center, Tianjin, China
| | - Chuan Ma
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Roky AH, Islam MM, Ahasan AMF, Mostaq MS, Mahmud MZ, Amin MN, Mahmud MA. Overview of skin cancer types and prevalence rates across continents. CANCER PATHOGENESIS AND THERAPY 2025; 3:89-100. [PMID: 40182119 PMCID: PMC11963195 DOI: 10.1016/j.cpt.2024.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 04/05/2025]
Abstract
Skin cancer is one of the most prevalent cancers in the world, and its incidence and mortality rates are increasing continuously, mostly in regions with white-skinned inhabitants. The types of skin cancer vary in their origin and clinical appearances and also differ in their extensiveness. The continents of the world have different scenarios of skin cancer prevalence. This review aims to explore the different types of skin cancer, their clinical features, and their worldwide prevalence based on the literature. Literature from different electronic databases, including Google Scholar, ResearchGate, PubMed, Scopus, Web of Science, Embase, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Elsevier, and Springer, were collected through a literature search using specific keywords such as "skin cancer", "skin cancer types", "melanoma", "non-melanoma", "skin cancer continental prevalence" or similar keywords. The search included English publications from 2000 to 2024. Melanoma skin cancer (MSC) ranks 17th in global prevalence, with the highest incidence and deaths occurring in Europe, However, Australia and New Zealand record the highest incidence and mortality rates. Asia has a lower incidence rate of melanoma, but a higher mortality rate. Superficial spreading melanoma (SSM) is the most common type of MSC. Non-melanoma skin cancers (NMSCs) have the highest incidence in North America, with the highest number of deaths occurring in Asia, Australia and New Zealand have the highest incidence rates for basal cell carcinoma (BCC). BCC is the most commonly diagnosed skin cancer worldwide and the most prevalent form of NMSCs; however, squamous cell carcinoma is the most aggressive form of NMSCs, causing more deaths. NMSCs are the most prevalent cancers worldwide, causing most skin cancer-related deaths. The prevalence of skin cancer rising globally, with several continents experiencing higher incidence and mortality rates. The types and subtypes of skin cancer are becoming more common among clinically diagnosed cancers. This review comprehensively describes skin cancer types and their prevalence worldwide. However, the actual prevalence of skin cancer in these countries should be investigated. Further research on the prevalence of skin cancer across different continents is required to develop more effective cancer management strategies and control the spread of the disease.
Collapse
Affiliation(s)
- Amdad Hossain Roky
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Mohammed Murshedul Islam
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, Daffodil International University, Dhaka 1216, Bangladesh
| | - Abu Mohammed Fuad Ahasan
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Md Saqline Mostaq
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Md Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| |
Collapse
|
4
|
Assaf C, Booken N, Dippel E, Dobos G, Eich H, Klemke C, Mitteldorf C, Nicolay JP, Theurich S, Wobser M, Stadler R. Practical recommendations for therapy and monitoring of mogamulizumab patients in Germany. J Dtsch Dermatol Ges 2025; 23:341-354. [PMID: 39723687 PMCID: PMC11887012 DOI: 10.1111/ddg.15639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common subtypes of the heterogeneous group of cutaneous T-cell lymphomas (CTCL). With the expansion of the biologic treatment landscape, new treatment options have become available in recent years, most notably the C-C chemokine receptor 4 (CCR4)-directed monoclonal antibody mogamulizumab. Based on the phase III pivotal trial, mogamulizumab is recommended by the German S2k guidelines for the second-line treatment of stage IB and above SS and MF, after at least one prior systemic therapy. Since then, new insights on safety and efficacy of mogamulizumab were generated by post hoc analyses and real-world evidence. A panel of CTCL-experts discussed available literature and own experiences and developed relevant recommendations on the use of mogamulizumab in clinical practice in Germany. The recommendations cover patient criteria, prior therapies, use of mogamulizumab as monotherapy or combination therapy, management of side effects, duration of therapy, and monitoring schedules. The aim of these clinical recommendations is to support healthcare professionals in their decision-making and use of mogamulizumab in daily practice.
Collapse
Affiliation(s)
- Chalid Assaf
- Department of Dermatology and VenereologyHelios Klinikum KrefeldKrefeldGermany
- Institute for Molecular MedicineMSH Medical School HamburgHamburgGermany
| | - Nina Booken
- Department of Dermatology and VenereologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Edgar Dippel
- Department of Dermatology and VenereologyKlinikum LudwigshafenLudwigshafenGermany
| | - Gabor Dobos
- Department of Dermatology, Venereology and AllergologyCharité – Universitätsmedizin BerlinBerlinGermany
| | - Hans‐Theodor Eich
- Department of Radiation OncologyMünster University HospitalMünsterGermany
| | - Claus‐Detlev Klemke
- Department of Dermatology and Skin Tumor CenterMunicipal Hospital KarlsruheAcademic Teaching Hospital of the University of FreiburgFreiburgGermany
| | - Christina Mitteldorf
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan P. Nicolay
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center MannheimMannheimGermany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital LMULudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Marion Wobser
- Department of Dermatology, Venereology and AllergologyUniversity Hospital WürzburgWürzburgGermany
| | - Rudolf Stadler
- Department of Dermatology, Venereology, Allergology and PhlebologyJohannes Wesling ClinicUniversity Hospital of the Ruhr University BochumBochumGermany
| |
Collapse
|
5
|
Banchi M, Cox MC, Bandini A, Orlandi P, Tacchi C, Stefanelli F, Chericoni S, Bocci G. Linifanib alone and in combination with metronomic chemotherapy is active on cutaneous T-cell lymphoma cells by targeting the AKT/mTOR signaling pathway. Invest New Drugs 2025; 43:135-146. [PMID: 39821757 DOI: 10.1007/s10637-024-01501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a rare and heterogeneous subset of skin-localized, non-Hodgkin lymphomas. Our aim was to evaluate the in vitro antitumor activity of the multi-kinase inhibitor linifanib, either alone or in combination with metronomic vinorelbine (mVNR) or etoposide (mETO), on CTCL cells. In vitro proliferation assay and Luminex analysis showed that long-term, daily exposure of linifanib significantly inhibited the proliferation of the human CTCL cell line HH, in a concentration-dependent manner (IC50 = 48.4 ± 20.4 nM) and the phosphorylation of AKT/mTOR signaling pathway. The concomitant exposure of linifanib plus mVNR or mETO resulted in a strong synergism, with combination index values < 1. Linifanib significantly increased the VNR and ETO intracellular concentrations in HH cells, evaluated by UPLC-HRMS technology, and strongly reduced the ABCB1 and ABCG2 gene expression in HH. In conclusion, we reported a striking antitumor activity of daily, long-term linifanib and a clear synergistic effect when administered in combination with mCHEMO on CTCL cells, as a promising base for future clinical approaches in T-cell lymphomas.
Collapse
Affiliation(s)
- Marta Banchi
- Dipartimento Di Ricerca Traslazionale E Delle Nuove Tecnologie in Medicina E Chirurgia, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy.
| | - Maria Christina Cox
- Unità Di Ematologia, Fondazione Policlinico Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Arianna Bandini
- Dipartimento Di Ricerca Traslazionale E Delle Nuove Tecnologie in Medicina E Chirurgia, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
- Dipartimento Di Medicina Clinica E Sperimentale, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Paola Orlandi
- Dipartimento Di Medicina Clinica E Sperimentale, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Costanza Tacchi
- Dipartimento Di Ricerca Traslazionale E Delle Nuove Tecnologie in Medicina E Chirurgia, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
- Dipartimento Di Medicina Clinica E Sperimentale, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Fabio Stefanelli
- Dipartimento Di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Silvio Chericoni
- Dipartimento Di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Guido Bocci
- Dipartimento Di Ricerca Traslazionale E Delle Nuove Tecnologie in Medicina E Chirurgia, Università Di Pisa, Via Savi 10, 56126, Pisa, Italy
| |
Collapse
|
6
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2025; 155:461-478. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
7
|
Ikawa T, Yamazaki E, Amagai R, Kambayashi Y, Sekine M, Takahashi T, Asano Y, Fujimura T. Impact of Hyaluronic Acid on the Cutaneous T-Cell Lymphoma Microenvironment: A Novel Anti-Tumor Mechanism of Bexarotene. Cancers (Basel) 2025; 17:324. [PMID: 39858106 PMCID: PMC11764198 DOI: 10.3390/cancers17020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cutaneous T-cell lymphoma (CTCL) is a type of non-Hodgkin's lymphoma that primarily affects the skin, rich in hyaluronic acid (HA). HA is a component of the extracellular matrix in the dermis and likely affects the development of CTCL, but the mechanism is poorly understood. Here we show that low-molecular-weight HA (LMWHA) possibly exacerbates CTCL, and bexarotene, already used in CTCL treatment, decreases HA production. METHODS We conducted immunohistochemistry, qRT-PCR, immunoblotting, and HA quantification using both mouse and human specimens to evaluate the impact of HA on CTCL. Additionally, we assessed the effect of bexarotene, which is already used for CTCL treatment, on HA metabolism. RESULTS HA expression was higher in patients' serum and skin sections than in healthy controls. HA extracted from the skin of mice inoculated with tumors showed an increase in LMWHA. LMWHA increased lymphoma cell proliferation in vitro and accelerated tumor formation in mice in vivo. LMWHA also created a favorable environment for tumor cells by affecting fibroblasts, vascular endothelial cells, and tumor-associated macrophages. Thus, increased levels of HA, mainly LMWHA, exacerbate CTCL progression by affecting tumor cells and their microenvironment. Bexarotene treatment reduced the amount of total HA in murine tumor-inoculated skin, as well as the supernatant of cultured normal human dermal fibroblasts (NHDFs) and HuT78 cells. Detailed in vitro analyses showed that bexarotene treatment decreased HA synthase (HAS)1 and HAS2 expression in NHDFs and HAS1 and HAS3, and CEMIP expression in HuT78 cells. Chromatin immunoprecipitation assays revealed that bexarotene reduced retinoid X receptor-α binding to the HAS1 and HAS2 promoters in NHDFs. CONCLUSIONS Bexarotene potentially exerts its anti-tumor effect by reducing HA levels through decreased expression of HAS. These findings provide new insights into the process of CTCL development and additional insights regarding bexarotene treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (T.I.); (E.Y.); (R.A.); (Y.K.); (M.S.); (T.T.); (Y.A.)
| |
Collapse
|
8
|
Wen P, Zhuo X, Wang L. Skin barrier dysfunction in cutaneous T-cell lymphoma: From pathogenic mechanism of barrier damage to treatment. Crit Rev Oncol Hematol 2025; 205:104559. [PMID: 39549893 DOI: 10.1016/j.critrevonc.2024.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a group of non-Hodgkin lymphomas characterized by multiple erythematous patches, plaques, or even nodules on the skin. As the disease progresses, patients develop widespread pruritic skin lesions, leading to skin barrier dysfunction, which significantly impacts their quality of life, appearance, and social adaptation. The pathogenesis of CTCL is not fully understood. Recent studies have recognized the important role of skin barrier dysfunction in the development and progression of CTCL, yet a comprehensive review on this topic is lacking. This review summarizes recent findings on skin barrier dysfunction in CTCL, focusing on physical barrier dysfunction, chronic inflammation, and immune dysregulation. We also discuss current and potential therapies aimed at restoring barrier function in CTCL. By emphasizing the integration of barrier-centric approaches into CTCL management, this review provides valuable insights for improving treatment outcomes.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China.
| | - Xiaoxue Zhuo
- Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China.
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Bontoux C, Badrignans M, Afach S, Sbidian E, Mboumba DL, Ingen-Housz-Oro S, Claudel A, Aubriot-Lorton MH, Chong-Si-Tsaon A, Le Masson G, Attencourt C, Dubois R, Beltzung F, Koubaa W, Beltraminelli H, Cardot-Leccia N, Balme B, Nguyen AT, Bagny K, Legoupil D, Moustaghfir I, Denamps J, Mortier L, Hammami-Ghorbel H, Skrek S, Rafaa M, Fougerousse AC, Deschamps T, Dalle S, D'incan M, Chaby G, Beylot-Barry M, Dalac S, Ortonne N. Pustular mycosis fungoides has a poor outcome: a multicentric clinicopathological and molecular case series. Br J Dermatol 2024; 192:125-134. [PMID: 39133548 DOI: 10.1093/bjd/ljae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Mycosis fungoides (MF) usually has an indolent course. However, some patients develop more aggressive disease and few prognostic parameters have been identified. Isolated cases of pustular MF (pMF) suggest an unfavourable prognosis. OBJECTIVES To describe the clinicopathological characteristics and prognostic value of pMF. METHODS We retrospectively collected data from all patients with MF with histological pustules diagnosed from 2009 to 2020. The outcomes and clinicopathological characteristics of pMF at diagnosis (pMFD) were compared with those of a cohort of patients with nonpustular MF (NpMF). RESULTS Thirty-three patients with pMF (including 22 with pMFD) and 86 with NpMF were included. Median age at diagnosis of pMF was 61 years [interquartile range (IQR) 50-75]. The median duration of follow-up for patients with pMFD was 32 months (IQR 14-49). Clinically, 33% of patients with pMF had pustules. Large cell transformation (LCT) occurred in 17 patients. Patients with pMFD had significantly more advanced-stage disease and showed more LCT at diagnosis than those with NpMF [50% vs. 7% (P < 0.001) and 23% vs. 0% (P < 0.001), respectively]. On multivariate Cox analysis, the presence of histological pustules at diagnosis was associated with shorter overall survival (OS) in all patients [hazard ratio (HR) 13.90, 95% confidence interval (CI) 2.40-79.00); P = 0.003] and in patients with early-stage disease (HR 11.09, 95% CI 1.56-78.82; P = 0.02). In multivariate Fine and Gray model analysis, pMFD was associated with a higher cumulative incidence of LCT (subdistribution HR 13.90, 95% CI 2.43-79.00; P = 0.003) in all patients. Median OS after the occurrence of histological pustules during follow-up in all patients with pMF was 37 months, with a 5-year OS rate of 25% (95% CI 0.06-0.50). CONCLUSIONS pMF often follows an aggressive course, with a high risk of LCT and shorter survival, even for patients with early-stage disease. Histological pustules at diagnosis of MF might represent an independent poor prognostic factor, to be confirmed by further studies. As pustules are not always identified clinically, pustules found on histology should be mentioned in MF pathology reports and should prompt discussion of closer follow-up.
Collapse
Affiliation(s)
- Christophe Bontoux
- Department of Pathology, Cancer University Institute of Toulouse-Oncopole, Toulouse University Hospital, Toulouse, France
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse, Toulouse, France
- Laboratory of Clinical and Experimental Pathology, Côte d'Azur University, Pasteur Hospital, Nice University Hospital, Biobank BB-0033-00025, Nice, France
- IRCAN Team 4, Inserm U1081/CNRS 7284, Centre de Lutte Contre le Cancer Antoine Lacassagne, Nice, France
| | - Marine Badrignans
- Department of Pathology, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | | | - Diana-Laure Mboumba
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicolas Ortonne
- Department of Pathology, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, Créteil, France
| |
Collapse
|
10
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2024; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Luo CH, Hu LH, Liu JY, Xia L, Zhou L, Sun RH, Lin CC, Qiu X, Jiang B, Yang MY, Zhang XH, Yang XB, Chen GQ, Lu Y. CDK9 recruits HUWE1 to degrade RARα and offers therapeutic opportunities for cutaneous T-cell lymphoma. Nat Commun 2024; 15:10594. [PMID: 39632829 PMCID: PMC11618697 DOI: 10.1038/s41467-024-54354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous non-Hodgkin lymphoma originating in the skin and invading the systemic hematopoietic system. Current treatments, including chemotherapy and monoclonal antibodies yielded limited responses with high incidence of side effects, highlighting the need for targeted therapy. Screening with small inhibitors library, herein we identify cyclin dependent kinase 9 (CDK9) as a driver of CTCL growth. Single-cell RNA-seq analysis reveals a CDK9high malignant T cell cluster with a unique actively proliferating feature. Inhibition, depletion or proteolysis targeting chimera (PROTAC)-mediated degradation of CDK9 significantly reduces CTCL cell growth in vitro and in murine models. CDK9 also promotes degradation of retinoic acid receptor α (RARα) via recruiting the E3 ligase HUWE1. Co-administration of CDK9-PROTAC (GT-02897) with all-trans retinoic acid (ATRA) leads to synergistic attenuation of tumor growth in vitro and in xenograft models, providing a potential translational treatment for complete eradication of CTCL.
Collapse
MESH Headings
- Humans
- Animals
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Mice
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Line, Tumor
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/genetics
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Proteolysis/drug effects
- Female
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Chen-Hui Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Hong Hu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Yang Liu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Hong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chen-Cen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xing Qiu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xiao-Bao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
B cells infiltrate cutaneous T cell lymphomas. Nat Immunol 2024; 25:2180-2181. [PMID: 39562743 DOI: 10.1038/s41590-024-02022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
|
13
|
Li R, Strobl J, Poyner EFM, Balbaa A, Torabi F, Mazin PV, Chipampe NJ, Stephenson E, Ramírez-Suástegi C, Shanmugiah VBM, Gardner L, Olabi B, Coulthard R, Botting RA, Zila N, Prigmore E, Gopee NH, Chroscik MA, Kritikaki E, Engelbert J, Goh I, Chan HM, Johnson HF, Ellis J, Rowe V, Tun W, Reynolds G, Yang D, Foster AR, Gambardella L, Winheim E, Admane C, Rumney B, Steele L, Jardine L, Nenonen J, Pickard K, Lumley J, Hampton P, Hu S, Liu F, Liu X, Horsfall D, Basurto-Lozada D, Grimble L, Bacon CM, Weatherhead SC, Brauner H, Wang Y, Bai F, Reynolds NJ, Allen JE, Jonak C, Brunner PM, Teichmann SA, Haniffa M. Cutaneous T cell lymphoma atlas reveals malignant T H2 cells supported by a B cell-rich tumor microenvironment. Nat Immunol 2024; 25:2320-2330. [PMID: 39558094 PMCID: PMC11588665 DOI: 10.1038/s41590-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a potentially fatal clonal malignancy of T cells primarily affecting the skin. The most common form of CTCL, mycosis fungoides, can be difficult to diagnose, resulting in treatment delay. We performed single-cell and spatial transcriptomics analysis of skin from patients with mycosis fungoides-type CTCL and an integrated comparative analysis with human skin cell atlas datasets from healthy and inflamed skin. We revealed the co-optation of T helper 2 (TH2) cell-immune gene programs by malignant CTCL cells and modeling of the tumor microenvironment to support their survival. We identified MHC-II+ fibroblasts and dendritic cells that can maintain TH2 cell-like tumor cells. CTCL tumor cells are spatially associated with B cells, forming tertiary lymphoid structure-like aggregates. Finally, we validated the enrichment of B cells in CTCL and its association with disease progression across three independent patient cohorts. Our findings provide diagnostic aids, potential biomarkers for disease staging and therapeutic strategies for CTCL.
Collapse
Affiliation(s)
- Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Johanna Strobl
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Elizabeth F M Poyner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aya Balbaa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Pavel V Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Cellular Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nusayhah H Gopee
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta A Chroscik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Efpraxia Kritikaki
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Hon Man Chan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jasmine Ellis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Victoria Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Win Tun
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle, UK
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dexin Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | | | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Benjamin Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Julia Nenonen
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jennifer Lumley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hampton
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simeng Hu
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Louise Grimble
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chris M Bacon
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sophie C Weatherhead
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanna Brauner
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Nick J Reynolds
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
Koning ASC, Ottevanger R, Vermeer MH, Meijer OC, Giltay EJ. Dynamic time warp of emotions in patients with cutaneous T-cell lymphoma treated with corticosteroids. JAAD Int 2024; 17:111-121. [PMID: 39399336 PMCID: PMC11471236 DOI: 10.1016/j.jdin.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 10/15/2024] Open
Abstract
Background A substantial number of patients treated systemically with synthetic glucocorticoids undergo emotional disturbances during treatment. Patients with cutaneous T-cell lymphoma frequently experience skin inflammation and itching and often require glucocorticoid treatment. Objective This case-series study aimed to examine how emotional and skin-related symptoms interact throughout glucocorticoid treatment. Methods Five cutaneous T-cell lymphoma patients undergoing systemic glucocorticoid treatment completed daily ecological momentary assessments for on average 30 assessments. Fluctuations in their emotions and symptoms were analyzed using undirected and directed dynamic time warp analyses, and were visualized in symptom networks. Results Toward the end of the glucocorticoid treatment, a decline was found in positive psychological symptoms. Idiographic dynamic time warp analyses revealed highly variable symptom networks. Directed time-lag group-level analyses revealed irritability, enthusiastic, and excited as variables with highest outstrength, in which mainly decreasing levels of positive emotions were associated with a higher likelihood of experiencing increases in itchy skin and skin problems the next day. Conclusion The end of glucocorticoid treatment, potentially via the induction of hypocortisolism, seems to coincide with decreased energy, motivation, and enthusiasm. Itch and skin problems could be a consequence of low-positive emotions the day before.
Collapse
Affiliation(s)
- Anne-Sophie C.A.M. Koning
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosanne Ottevanger
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik J. Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Health Campus the Hague, Leiden University Medical Center, the Hague, the Netherlands
| |
Collapse
|
15
|
Ristuccia R, Zhao Y, Chang C, Zhou H, Takahashi T, Nomura T, Dennis E, Akilov O. A Retrospective Cohort Study to Determine Real-World Treatment Patterns in Patients with Sézary Syndrome in the United States. Oncol Ther 2024; 12:775-786. [PMID: 39305456 PMCID: PMC11573936 DOI: 10.1007/s40487-024-00306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 11/19/2024] Open
Abstract
INTRODUCTION Sézary syndrome (SS) is a rare leukemic cutaneous T cell lymphoma. This study was conducted to examine the real-world treatment patterns among patients with SS in the USA from 2018 to 2020. METHODS This was a retrospective cohort study using the Symphony Health Solutions claims database. Adult patients with ≥ 1 diagnosis code for SS were classified into three non-mutually exclusive cohorts: 2018, 2019, and 2020. Patient characteristics and treatment patterns were examined across the 3 years of study and reported descriptively for each year. Annual treatment patterns were also described for the five states with the highest proportions of SS patients in 2020. RESULTS Overall, 869, 882, and 853 SS patients were identified in 2018, 2019, and 2020, respectively (median age: 70 years for each year; male: 54.4%, 54.8%, and 55.6%, respectively). The use of any systemic and parenteral systemic treatments increased over time. While utilization rates for many specific systemic therapies decreased over the study period, mogamulizumab use increased, making it the most commonly used systemic treatment in 2020 (29.2%) among patients with any systemic treatment. The five states with the highest proportions of SS patients in 2020 were Florida, New York, California, Texas, and Pennsylvania. Systemic treatment patterns varied considerably by state. CONCLUSION Some systemic therapies showed decreased usage over time while a few showed increased utilization, with mogamulizumab showing the largest increase. Treatment patterns for SS varied by region. Further research is needed to examine the factors that drive treatment selection for patients with SS.
Collapse
Affiliation(s)
- Robert Ristuccia
- Kyowa Kirin, Inc., Princeton, NJ, USA.
- Medical Affairs, 510 Carnegie Center, Suite 600, Princeton, NJ, 08540, USA.
| | - Yang Zhao
- Axsome Therapeutics, Inc., New York, NY, USA
| | | | | | | | | | | | - Oleg Akilov
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Licht P, Mailänder V. Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides. Cancers (Basel) 2024; 16:3947. [PMID: 39682136 DOI: 10.3390/cancers16233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB. METHODS To explore the role of the skin microbiome in MF aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling, and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. RESULTS We observed that inter-patient transcriptional heterogeneity may be largely attributed to differential activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical NF-κB and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin lesions and the blood were significantly more likely to recognize EBV peptides involved in latent infection. CONCLUSIONS First, our findings suggest that S. aureus with its virulence factor spa fuels MF progression through non-canonical NF-κB and IL-1B signalling. Second, our data provide insights into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes activation and maturation into effector memory T cells, resulting in aggressive disease. Further studies are warranted to verify and extend our data, which are based on computational analyses.
Collapse
Affiliation(s)
- Philipp Licht
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
17
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
18
|
Oymanns M, Daum-Marzian M, Assaf C. Mogamulizumab and Concomitant Hypofractionated Low-Dose Total Skin Electron Beam Therapy (2 × 4 Gy) in Cutaneous T-Cell Lymphoma: Proof of Principle, Report of Two Cases. Curr Oncol 2024; 31:5412-5421. [PMID: 39330028 PMCID: PMC11430877 DOI: 10.3390/curroncol31090400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Patients with advanced-stage mycosis fungoides (MF IIB-IVB) and Sézary syndrome (SS) have poor prognoses, with survival ranging from 4.7 to 1.4 years depending on the disease stage. There is a need for therapeutic approaches that lead to long-lasting responses and improved quality of life and survival. Mogamulizumab, a humanized antibody against the CCR4 molecule, and low-dose total skin electron beam therapy (TSEBT) are two known established treatments for MF and SS as a monotherapy. However, little is known about the potential additive effect on the combination of both treatments. We report here for the first time the concurrent use of low-dose hypofractionated TSEBT (2 × 4 Gy) with mogamulizumab. Based on two relapsed/refractory and advanced-stage CTCL patients, we show that this combination may be well tolerated in advanced-stage MF or SS and may potentially lead to an additive treatment effect on response times, particularly in the skin and blood within two weeks. We propose that this combination may be a treatment option for patients with SS. Further research is needed to understand the efficacy and tolerability profile of this therapeutic combination and to determine if there is an additive effect of the combination on the response rates when compared with the monotherapy.
Collapse
Affiliation(s)
- Mathias Oymanns
- Department of Dermatology, Helios Hospital Krefeld, 47805 Krefeld, Germany
| | - Michael Daum-Marzian
- Department of Radiation Oncology, Helios Hospital Krefeld, 47805 Krefeld, Germany;
| | - Chalid Assaf
- Department of Dermatology, Helios Hospital Krefeld, 47805 Krefeld, Germany
- Institute for Molecular Medicine, Medical School Hamburg, 20457 Hamburg, Germany
| |
Collapse
|
19
|
Melchers S, Albrecht JD, Kempf W, Nicolay JP. The fifth edition of the WHO-Classification - what is new for cutaneous lymphomas? J Dtsch Dermatol Ges 2024; 22:1254-1265. [PMID: 39087385 DOI: 10.1111/ddg.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/06/2024] [Indexed: 08/02/2024]
Abstract
The recently published 5th edition of the "World Health Organization classification of hematolymphoid tumors: lymphoid neoplasms" provides a hierarchical reorganization. In general, new (definitive) entities as well as tumor-like lesions were included. Primary cutaneous B-cell lymphomas (CBCL) received a thorough review. A new class/family of cutaneous follicle center lymphomas was defined. Primary cutaneous marginal zone lymphoma is now presented as a separate entity independent from extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. In primary cutaneous T-cell lymphoma, former provisional entities were upgraded to definite entities. Sézary Syndrome was sorted into the class/family of mature T-cell and NK-cell leukemias. Additionally, a newly formed entity of primary cutaneous peripheral T-cell lymphoma, NOS was created for CTCL entities that do not fit into the already described CTCL entities. The increasing importance of genomic and molecular data has already been recognized in classifying leukemias and systemic lymphomas. However, in PCL the genomic landscape has not yet been fully described and validated. Therefore, future research is necessary to describe the genomic and molecular mechanisms underlying the disease entities more clearly. This would both meet a diagnostic need and valuably contribute to future classification schemes.
Collapse
Affiliation(s)
- Susanne Melchers
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana D Albrecht
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Werner Kempf
- Kempf und Pfaltz Histologische Diagnostik Zurich, and Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Jan P Nicolay
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
Goel RR, Rook AH. Immunobiology and treatment of cutaneous T-cell lymphoma. Expert Rev Clin Immunol 2024; 20:985-996. [PMID: 38450476 DOI: 10.1080/1744666x.2024.2326035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Primary cutaneous T cell lymphomas (CTCL) are a heterogenous group of non-Hodgkin lymphomas derived from skin-homing T cells. These include mycosis fungoides and its leukemic variant Sezary syndrome, as well as the CD30+ lymphoproliferative disorders. AREAS COVERED In this review, we provide a summary of the current literature on CTCL, with a focus on the immunopathogenesis and treatment of mycosis fungoides and Sezary syndrome. EXPERT OPINION Recent advances in immunology have provided new insights into the biology of malignant T cells. This in turn has led to the development of new therapies that modulate the immune system to facilitate tumor clearance or target specific aspects of tumor biology.
Collapse
Affiliation(s)
- Rishi R Goel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Zheng R, Zhu X, Xiao Y. Advances in CAR-T-cell therapy in T-cell malignancies. J Hematol Oncol 2024; 17:49. [PMID: 38915099 PMCID: PMC11197302 DOI: 10.1186/s13045-024-01568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Significant advances have been made in chimeric antigen receptor T (CAR-T)-cell therapy for the treatment of recurrent or refractory B-cell hematologic malignancies. However, CAR-T-cell therapy has not yet achieved comparable success in the management of aggressive T-cell malignancies. This article reviews the challenges of CAR-T-cell therapy in treating T-cell malignancies and summarizes the progress of preclinical and clinical studies in this area. We present an analysis of clinical trials of CAR-T-cell therapies for the treatment of T-cell malignancies grouped by target antigen classification. Moreover, this review focuses on the major challenges encountered by CAR-T-cell therapies, including the nonspecific killing due to T-cell target antigen sharing and contamination with cell products during preparation. This review discusses strategies to overcome these challenges, presenting novel therapeutic approaches that could enhance the efficacy and applicability of CAR-T-cell therapy in the treatment of T-cell malignancies. These ideas and strategies provide important information for future studies to promote the further development and application of CAR-T-cell therapy in this field.
Collapse
Affiliation(s)
- Rubing Zheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojian Zhu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Xiao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Dorando HK, Mutic EC, Tomaszewski KL, Tian L, Stefanov MK, Quinn CC, Veis DJ, Wardenburg JB, Musiek AC, Mehta-Shah N, Payton JE. LAIR1 prevents excess inflammatory tissue damage in S. aureus skin infection and Cutaneous T-cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598864. [PMID: 38915487 PMCID: PMC11195265 DOI: 10.1101/2024.06.13.598864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Patients with cutaneous T cell lymphoma (CTCL) experience high morbidity and mortality due to S. aureus skin infections and sepsis, but the causative immune defect is unclear. We previously identified high levels of LAIR2, a decoy protein for the inhibitory receptor LAIR1, in advanced CTCL. Mice do not have a LAIR2 homolog, so we used Lair1 knock-out (KO) mice to model LAIR2 overexpression. In a model of subcutaneous S. aureus skin infection, Lair1 KO mice had significantly larger abscesses and areas of dermonecrosis compared to WT. Lair1 KO exhibited a pattern of increased inflammatory responses in infection and sterile immune stimulation, including increased production of proinflammatory cytokines and myeloid chemokines, neutrophil ROS, and collagen/ECM remodeling pathways. Notably, Lair1 KO infected skin had a similar bacterial burden and neutrophils and monocytes had equivalent S. aureus phagocytosis compared to WT. These findings support a model in which lack of LAIR1 signaling causes an excessive inflammatory response that does not improve infection control. CTCL skin lesions harbored similar patterns of increased expression in cytokine and collagen/ECM remodeling pathways, suggesting that high levels of LAIR2 in CTCL recapitulates Lair1 KO, causing inflammatory tissue damage and compromising host defense against S. aureus infection.
Collapse
Affiliation(s)
- Hannah K. Dorando
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Evan C. Mutic
- Washington University School of Medicine, Department of Pathology and Immunology
| | | | - Ling Tian
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Mellisa K. Stefanov
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Chaz C. Quinn
- Washington University School of Medicine, Department of Pathology and Immunology
| | - Deborah J. Veis
- Washington University School of Medicine, Department of Medicine
| | | | - Amy C. Musiek
- Washington University School of Medicine, Department of Medicine
| | - Neha Mehta-Shah
- Washington University School of Medicine, Department of Medicine
| | - Jacqueline E. Payton
- Washington University School of Medicine, Department of Pathology and Immunology
| |
Collapse
|
23
|
Chen JJ, Tokumori FC, Del Guzzo C, Kim J, Ruan J. Update on T-Cell Lymphoma Epidemiology. Curr Hematol Malig Rep 2024; 19:93-103. [PMID: 38451372 DOI: 10.1007/s11899-024-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW T-cell lymphomas (TCLs) are a group of rare subtypes of non-Hodgkin lymphoma derived from mature T-lymphocytes. Recent updates in lymphoma classification based on the cell-of-origin pathogenesis have shed new light on TCL epidemiology and outcomes. Contemporary regional consortia and international studies, including those conducted recently in Asia and South America, have provided an updated delineation of the major subtypes across various global regions. RECENT FINDINGS Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), remains the most common subtype globally except in Asia, where extra-nodal NK-T cell lymphoma (ENKTL) has emerged as the most prevalent. Angioimmunoblastic T-cell lymphoma (AITL) is the second most common subtype globally except in South America where its incidence falls behind adult T-cell leukemia/lymphoma (ATLL) and ENKTL. ALK-negative anaplastic large cell lymphoma (ALCL) has been recognized as the second most common subtype in some parts of South America. Studies on the newly classified breast implant-associated ALCL (BIA-ALCL) are beginning to reveal its distribution and risk factors. Deciphering the epidemiology of TCLs is a challenging endeavor due to the rarity of these entities and ongoing refinement in classification. Collaborative efforts on prospective registries based on the most current WHO classifications will help capture the true epidemiology of TCL subtypes to better focus resources for diagnostic, prognostic, and therapeutic efforts.
Collapse
MESH Headings
- Humans
- Lymphoma, T-Cell/epidemiology
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/therapy
- Lymphoma, T-Cell/pathology
- Incidence
- Lymphoma, T-Cell, Peripheral/epidemiology
- Lymphoma, T-Cell, Peripheral/therapy
- Lymphoma, T-Cell, Peripheral/diagnosis
Collapse
Affiliation(s)
- Jane J Chen
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Franco Castillo Tokumori
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10065, USA
| | | | - Jeanyoung Kim
- Division of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Qin Y, Lin Y, Chen Z, Zhang Q, Li Y, Wen Y, Tu P, Gao P, Wang Y. Effectiveness of narrowband ultraviolet B monotherapy versus combination therapy with systemic agents in patients with early-stage mycosis fungoides and the association with plaque lesions. J Evid Based Med 2024; 17:390-398. [PMID: 38898743 DOI: 10.1111/jebm.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Narrowband ultraviolet B (NB-UVB) has been recommended as first-line therapy for early-stage mycosis fungoides (MF) in international guidelines. NB-UVB can be used as monotherapy or part of a multimodality treatment regimen. There is limited evidence on the effectiveness and optimal patients of NB-UVB in combination with systemic therapies in MF. We aimed to assess the effectiveness of the combination versus NB-UVB monotherapy in early-stage MF and if plaque lesion status was related to these effects. METHODS This observational cohort study included 247 early-stage MF patients who had received NB-UVB combined with systemic therapies vs. NB-UVB monotherapy from 2009 to 2021. The primary outcome was partial or complete response. Overall response rate and median time to response were calculated. Hazard ratios (HRs) were estimated using the Cox model. RESULTS In 139 plaque-stage patients, the response rate for combination therapy group was higher than that of monotherapy group (79.0% vs. 54.3%, p = 0.006). The adjusted HR for combination therapy compared with NB-UVB monotherapy was 3.11 (95% CI 1.72-5.63). The combination therapy group also showed shorter time to response (4 vs. 6 months, p = 0.002). In 108 patch-stage patients, the response rate and time to response in two treatment groups showed no significant difference. There was therefore an observed interaction with patients' plaque lesion status for the effect size of NB-UVB combination therapy. No serious adverse events were observed. CONCLUSIONS Adding systemic treatments to NB-UVB did not improve the treatment outcome of patch-stage patients, but it surpassed NB-UVB monotherapy for early-stage patients with plaques.
Collapse
Affiliation(s)
- Yao Qin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yuwei Lin
- Clinical Research Institute, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Zhuojing Chen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Qiuli Zhang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingyi Li
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yujie Wen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Pei Gao
- Clinical Research Institute, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
25
|
Zeng Z, Vadivel CK, Gluud M, Namini MRJ, Yan L, Ahmad S, Hansen MB, Coquet J, Mustelin T, Koralov SB, Bonefeld CM, Woetmann A, Geisler C, Guenova E, Kamstrup MR, Litman T, Gjerdrum LMR, Buus TB, Ødum N. Keratinocytes Present Staphylococcus aureus Enterotoxins and Promote Malignant and Nonmalignant T Cell Proliferation in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00377-4. [PMID: 38762064 DOI: 10.1016/j.jid.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
Cutaneous T-cell lymphoma is characterized by malignant T cells proliferating in a unique tumor microenvironment dominated by keratinocytes (KCs). Skin colonization and infection by Staphylococcus aureus are a common cause of morbidity and are suspected of fueling disease activity. In this study, we show that expression of HLA-DRs, high-affinity receptors for staphylococcal enterotoxins (SEs), by KCs correlates with IFN-γ expression in the tumor microenvironment. Importantly, IFN-γ induces HLA-DR, SE binding, and SE presentation by KCs to malignant T cells from patients with Sézary syndrome and malignant and nonmalignant T-cell lines derived from patients with Sézary syndrome and mycosis fungoides. Likewise, preincubation of KCs with supernatant from patient-derived SE-producing S aureus triggers proliferation in malignant T cells and cytokine release (including IL-2), when cultured with nonmalignant T cells. This is inhibited by pretreatment with engineered bacteriophage S aureus-specific endolysins. Furthermore, alteration in the HLA-DR-binding sites of SE type A and small interfering RNA-mediated knockdown of Jak3 and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that upon exposure to patient-derived S aureus and SE, KCs stimulate IL-2Rγ/Jak3-dependent proliferation of malignant and nonmalignant T cells in an environment with nonmalignant T cells. These findings suggest that KCs in the tumor microenvironment play a key role in S aureus-mediated disease activity in cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Ziao Zeng
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lang Yan
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ahmad
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Blood Bank, Department of Clinical Immunology, State University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Coquet
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Mustelin
- Department of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuella Guenova
- University Hospital Lausanne (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise-Mette R Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Roskilde, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Chakravarti N, Boles A, Burzinski R, Sindaco P, Isabelle C, McConnell K, Mishra A, Porcu P. XPO1 blockade with KPT-330 promotes apoptosis in cutaneous T-cell lymphoma by activating the p53-p21 and p27 pathways. Sci Rep 2024; 14:9305. [PMID: 38653804 PMCID: PMC11039474 DOI: 10.1038/s41598-024-59994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.
Collapse
MESH Headings
- Humans
- Exportin 1 Protein
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/genetics
- Apoptosis/drug effects
- Animals
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Karyopherins/metabolism
- Karyopherins/antagonists & inhibitors
- Mice
- Cell Line, Tumor
- Triazoles/pharmacology
- Cell Proliferation/drug effects
- Hydrazines/pharmacology
- Hydrazines/therapeutic use
- Xenograft Model Antitumor Assays
- Signal Transduction/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Nitin Chakravarti
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 328, Philadelphia, PA, 19107, USA.
| | - Amy Boles
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachel Burzinski
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Paola Sindaco
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Colleen Isabelle
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kathleen McConnell
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Anjali Mishra
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Pierluigi Porcu
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 320, Philadelphia, PA, 19107, USA.
| |
Collapse
|
27
|
Vadivel CK, Willerslev-Olsen A, Namini MRJ, Zeng Z, Yan L, Danielsen M, Gluud M, Pallesen EMH, Wojewoda K, Osmancevic A, Hedebo S, Chang YT, Lindahl LM, Koralov SB, Geskin LJ, Bates SE, Iversen L, Litman T, Bech R, Wobser M, Guenova E, Kamstrup MR, Ødum N, Buus TB. Staphylococcus aureus induces drug resistance in cancer T cells in Sézary syndrome. Blood 2024; 143:1496-1512. [PMID: 38170178 PMCID: PMC11033614 DOI: 10.1182/blood.2023021671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.
Collapse
Affiliation(s)
- Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R. J. Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ziao Zeng
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lang Yan
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Danielsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emil M. H. Pallesen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Wojewoda
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amra Osmancevic
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Signe Hedebo
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Yun-Tsan Chang
- Department of Dermatology and Venereology, University Hospital Centre (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Larisa J. Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY
| | - Susan E. Bates
- Division of Hematology/Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Marion Wobser
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Emmanuella Guenova
- Department of Dermatology and Venereology, University Hospital Centre (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Maria R. Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Luo Y, de Gruijl FR, Vermeer MH, Tensen CP. "Next top" mouse models advancing CTCL research. Front Cell Dev Biol 2024; 12:1372881. [PMID: 38665428 PMCID: PMC11044687 DOI: 10.3389/fcell.2024.1372881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review systematically describes the application of in vivo mouse models in studying cutaneous T-cell lymphoma (CTCL), a complex hematological neoplasm. It highlights the diverse research approaches essential for understanding CTCL's intricate pathogenesis and evaluating potential treatments. The review categorizes various mouse models, including xenograft, syngeneic transplantation, and genetically engineered mouse models (GEMMs), emphasizing their contributions to understanding tumor-host interactions, gene functions, and studies on drug efficacy in CTCL. It acknowledges the limitations of these models, particularly in fully replicating human immune responses and early stages of CTCL. The review also highlights novel developments focusing on the potential of skin-targeted GEMMs in studying natural skin lymphoma progression and interactions with the immune system from onset. In conclusion, a balanced understanding of these models' strengths and weaknesses are essential for accelerating the deciphering of CTCL pathogenesis and developing treatment methods. The GEMMs engineered to target specifically skin-homing CD4+ T cells can be the next top mouse models that pave the way for exploring the effects of CTCL-related genes.
Collapse
Affiliation(s)
| | | | | | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Belfrage E, Ek S, Johansson Å, Brauner H, Sonesson A, Drott K. Predictive and Prognostic Biomarkers in Patients With Mycosis Fungoides and Sézary Syndrome (BIO-MUSE): Protocol for a Translational Study. JMIR Res Protoc 2024; 13:e55723. [PMID: 38436589 PMCID: PMC11027051 DOI: 10.2196/55723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Cutaneous T-cell lymphoma (CTCL) is a rare group of lymphomas that primarily affects the skin. Mycosis fungoides (MF) is the most common form of CTCL and Sézary syndrome (SS) is more infrequent. Early stages (IA-IIA) have a favorable prognosis, while advanced stages (IIB-IVB) have a worse prognosis. Around 25% of patients with early stages of the disease will progress to advanced stages. Malignant skin-infiltrating T-cells in CTCL are accompanied by infiltrates of nonmalignant T-cells and other immune cells that produce cytokines that modulate the inflammation. Skin infection, often with Staphylococcus aureus, is frequent in advanced stages and can lead to sepsis and death. S. aureus has also been reported to contribute to the progression of the disease. Previous reports indicate a shift from Th1 to Th2 cytokine production and dysfunction of the skin barrier in CTCL. Treatment response is highly variable and often unpredictable, and there is a need for new predictive and prognostic biomarkers. OBJECTIVE This prospective translational study aims to identify prognostic biomarkers in the blood and skin of patients with MF and SS. METHODS The Predictive and Prognostic Biomarkers in Patients With MF and SS (BIO-MUSE) study aims to recruit 120 adult patients with MF or SS and a control group of 20 healthy volunteers. The treatments will be given according to clinical routine. The sampling of each patient will be performed every 3 months for 3 years. The blood samples will be analyzed for lactate dehydrogenase, immunoglobulin E, interleukins, thymus and activation-regulated chemokine, and lymphocyte subpopulations. The lymphoma microenvironment will be investigated through digital spatial profiling and single-cell RNA sequencing. Microbiological sampling and analysis of skin barrier function will be performed. The life quality parameters will be evaluated. The results will be evaluated by the stage of the disease. RESULTS Patient inclusion started in 2021 and is still ongoing in 2023, with 18 patients and 20 healthy controls enrolled. The publication of selected translational findings before the publication of the main results of the trial is accepted. CONCLUSIONS This study aims to investigate blood and skin with a focus on immune cells and the microbiological environment to identify potential new prognostic biomarkers in MF and SS. TRIAL REGISTRATION ClinicalTrials.gov NCT04904146; https://www.clinicaltrials.gov/study/NCT04904146. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/55723.
Collapse
Affiliation(s)
- Emma Belfrage
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Faculty of Engineering, Lund University, Lund, Sweden
| | - Åsa Johansson
- Clinical Genetics and Pathology, Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Hanna Brauner
- Division of Dermatology and Venereology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Sonesson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kristina Drott
- Department of Hematology and Transfusion Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
30
|
Gunter SJ, Kim EJ. Changes to Registered and Pivotal Clinical Trials after the 2011 Tri-Societies Guidelines for Clinical Endpoints and Response Criteria in Mycosis Fungoides and Sézary Syndrome. J Invest Dermatol 2024; 144:855-861.e1. [PMID: 37925066 DOI: 10.1016/j.jid.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Guidelines for mycosis fungoides and Sézary syndrome clinical trials were published in 2011 to standardize endpoint criteria and trial design. Our retrospective cohort study of mycosis fungoides/Sézary syndrome clinical trials registered on ClinicalTrials.gov and pivotal trials supporting drug approvals and label extensions evaluates adherence to these guidelines. Sixty-three trials met our inclusion criteria. In a subpopulation of trials, mean adherence to the guidelines was approximately 60%. When comparing trials that began in the first 6 years after their publication with those that started after, we found no difference in mean adherence (4.12 vs 3.41) (P = .15). Among the 8 pivotal trials supporting new mycosis fungoides or Sézary syndrome systemic therapies from 1990 to 2020, systemic trials published after 2011 were more likely to randomize patients (100 vs 0%, P = .036), perform superiority testing (100 vs 0%, P = .036), and use an intention-to-treat analysis (100 vs 0%, P = .036). The design of trials registered on Clinicaltrials.gov did not change significantly between the first 6 years after the publication of the guidelines and after. This demonstrates that the guidelines are still not consistently implemented across all trials. However, registrational trials were more likely to implement the recommendations.
Collapse
Affiliation(s)
| | - Ellen J Kim
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Vašků V, Fialová P, Vašků A. New Genetic Markers of Skin T-Cell Lymphoma Treatment. Genes (Basel) 2024; 15:358. [PMID: 38540417 PMCID: PMC10970540 DOI: 10.3390/genes15030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
AIM Cutaneous T-cell lymphomas (CTCL) can be described as chronic skin inflammation lesions with the content of malignant T cells and they are considered to be T-cell-mediated skin diseases. CD147 is recognized as a 58-kDa cell surface glycoprotein of the immunoglobulin superfamily; it can induce the synthesis of MMPs (matrix metalloproteinases) on the surface of tumor cells where it was originally identified. It can also function in adjacent tumor fibroblasts using CD147-CD147 interactions. The polymorphism rs8259 T/A is situated in the untranslated region (3'UTR) of the CD147 gene. HLA DRB1*1501 takes part in the process of presentation and recognition of different antigens to T cells. It can be expressed by antigen-presenting cells-macrophages, dendritic cells, and B cells. The aim of the study is to test genotype-phenotype associations of both polymorphisms including therapy in a large cohort of CTCL patients. MATERIALS AND METHODS A final total of 104 CTCL patients were enrolled in the study. For the first remission at the clinic department, they were treated by means of local skin-directed therapy, phototherapy, and systemic therapy. Genomic DNA was isolated from peripheral blood leukocytes. A standard technique using proteinase K was applied. The polymorphisms rs8259 T/A (CD147 gene) and rs3135388 (HLA DRB1*1501) were detected through standard PCR-restriction fragment length polymorphism methods. RESULTS The severity of the disease (patients with parapsoriasis, stages IA and IB, vs patients with stages IIB, IIIA, and IIIB) was associated with the CD147 genotype: the AA variant was 3.38 times more frequent in more severe cases, which reflects the decision on systemic therapy (p = 0.02, specificity 0.965). The AA genotype in the CD147 polymorphism was 12 times more frequent in patients who underwent systemic therapy of CTCL compared to those not treated with this therapy (p = 0.009, specificity 0.976). The same genotype was also associated with radiotherapy-it was observed 14 times more frequently in patients treated with radiotherapy (p = 0.009, specificity 0.959). In patients treated with interferon α therapy, the AA genotype was observed to be 5.85 times more frequent compared to the patients not treated with interferon therapy (p = 0.03, specificity 0.963). The HLA DRB1*1501 polymorphism was associated with local skin-directed therapy of CTCL. The CC genotype of the polymorphism was observed to be 3.57 times more frequent in patients treated with local therapy (p = 0.008, specificity 0.948). When both polymorphisms had been calculated together, even better results were obtained: the AACC double genotype was 11 times more frequent in patients with severe CTCL (p = 0.009, specificity 0.977). The TACT double genotype was associated with local skin-directed therapy (0.09 times lower frequency, p = 0.007, sensitivity 0.982). The AACC genotype was 8.9 times more frequent in patients treated by means of systemic therapy (p = 0.02, specificity 0.976) and as many as 18.8 times more frequent in patients treated with radiotherapy (p = 0.005, specificity 0.969). Thus, the AACC double genotype of CD147 and DRB1*1501 polymorphisms seems to be a clinically highly specific marker of severity, systemic therapy and radiotherapy of patients with T-cell lymphoma. CONCLUSION Although genotyping results were not known during the treatment decision and could not modify it, the clinical decision on severity and therapy reflected some aspects of the genetic background of this complicated T-cell-associated disease very well.
Collapse
Affiliation(s)
- Vladimír Vašků
- 1st Department of Dermatovenerology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, 60200 Brno, Czech Republic; (V.V.); (P.F.)
| | - Petra Fialová
- 1st Department of Dermatovenerology, St. Anne’s University Hospital, Faculty of Medicine, Masaryk University, 60200 Brno, Czech Republic; (V.V.); (P.F.)
| | - Anna Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
32
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 PMCID: PMC10969440 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Goel RR, Rook AH. Psoralen Plus UVA Induces Local IFN Production and Antitumor Responses in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024; 144:449-450. [PMID: 37921716 DOI: 10.1016/j.jid.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Rishi R Goel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
34
|
Bordeaux ZA, Reddy SV, Choi J, Braun G, McKeel J, Lu W, Yossef SM, Ma EZ, West CE, Kwatra SG, Kwatra MM. Transcriptomic and proteomic analysis of tumor suppressive effects of GZ17-6.02 against mycosis fungoides. Sci Rep 2024; 14:1955. [PMID: 38263212 PMCID: PMC10805783 DOI: 10.1038/s41598-024-52544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Jaimie McKeel
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Selina M Yossef
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Cameron E West
- Genzada Pharmaceuticals, Hutchinson, USA
- US Dermatology Partners, Wichita, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
35
|
Ren Z, Chrisman LP, Pang Y, Nguyen M, Hooper MJ, LeWitt TM, Veon FL, Guitart J, Zhou XA. Chemical exposures and demographic associations in cutaneous T-cell lymphoma: a large single institution physician validated cohort study. Arch Dermatol Res 2024; 316:74. [PMID: 38236413 PMCID: PMC11493369 DOI: 10.1007/s00403-023-02799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a rare group of T-cell neoplasms which infiltrate the skin and can result in substantial morbidity and mortality. Risk factors for CTCL are still poorly understood though recent studies suggest chemical exposures may play a role in its development. To further characterize patient-centered risk factors for CTCL, especially compared with matched controls, we performed one of the largest prospective cohort survey studies to date to examine patient-reported exposures and health-related quality of life (HRQoL) in association with concurrent clinical disease characteristics. Patient demographics, lifestyle factors, and chemical exposures were collected via clinical data and surveys. Descriptive statistics, ANOVA, Chi-square tests and t tests were utilized to compare patient-reported exposures and HRQoL in patients with CTCL versus matched healthy controls (HC). Statistically significant differences were identified between patients and HC in terms of race (non-white race 22.4% in CTCL patients vs. 18.8% in HC, P = 0.01), and education level (high school or less 41.6% in CTCL patients vs. 14.3% in HC, P = 0.001), but not with Fitzpatrick skin type (P = 0.11) or smoking status (P = 0.28). Notably, 36.0% of the CTCL patients reported exposures to chemicals, a near threefold increased percentage when compared to HC (12.9%). Among various chemical exposures, 27.0% of the CTCL patients specifically reported industrial chemical exposure, a more than two-fold increased percentage when compared to HC (12.9%). Itch and pain were significantly associated with skin disease severity (as evaluated by CTCL-specific mSWAT score) in advanced stage disease (stages IIB-IVB) (r = 0.48 and 0.57, P < 0.05). Itch and body mass index (BMI) were weakly associated with skin disease severity in early-stage disease (stages IA-IIA) (r = 0.27 and 0.20, P < 0.05).
Collapse
Affiliation(s)
- Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren P Chrisman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yanzhen Pang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Morgan Nguyen
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline J Hooper
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tessa M LeWitt
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francesca L Veon
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaolong A Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
36
|
Biazus Soares G, Guitart J, Yosipovitch G. What's New in Cutaneous T-Cell Lymphoma-Associated Pruritus. Am J Clin Dermatol 2024; 25:67-77. [PMID: 37971624 DOI: 10.1007/s40257-023-00823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Cutaneous T-cell lymphomas are a heterogenous group of lymphomas that cause various skin manifestations. Severe pruritus occurs frequently in cutaneous T-cell lymphoma and negatively impacts patients' quality of life. The pathophysiology of cutaneous T-cell lymphoma-associated itch is complex and involves various immune cells, inflammatory cytokines, and neuroimmune interactions. Treating cutaneous T-cell lymphoma pruritus can be challenging, and there have been few randomized controlled studies evaluating the use of antipruritic treatments in these patients. Systemic therapies targeting the disease have also been shown to have some antipruritic effects. Furthermore, although biologic therapy has revolutionized the treatment of other pruritic skin conditions, the use of biologics in cutaneous T-cell lymphoma remains controversial.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA.
- , 5555 Ponce de Leon, Coral Gables, FL, 33146, USA.
| |
Collapse
|
37
|
Cao M, Lai P, Liu X, Liu F, Qin Y, Tu P, Wang Y. ATF5 promotes malignant T cell survival through the PI3K/AKT/mTOR pathway in cutaneous T cell lymphoma. Front Immunol 2023; 14:1282996. [PMID: 38223508 PMCID: PMC10786347 DOI: 10.3389/fimmu.2023.1282996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024] Open
Abstract
Backgrounds Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma characterized by skin infiltration of malignant T cells. The biological overlap between malignant T cells and their normal counterparts has brought obstacles in identifying tumor-specific features and mechanisms, limiting current knowledge of CTCL pathogenesis. Transcriptional dysregulation leading to abnormal gene expression profiles contributes to the initiation, progression and drug resistance of cancer. Therefore, we aimed to identify tumor-specific transcription factor underlying CTCL pathology. Methods We analyzed and validated the differentially expressed genes (DEGs) in malignant T cells based on single-cell sequencing data. Clinical relevance was evaluated based on progression-free survival and time to next treatment. To determine the functional importance, lentivirus-mediated gene knockdown was conducted in two CTCL cell lines Myla and H9. Cell survival was assessed by examining cell viability, colony-forming ability, in-vivo tumor growth in xenograft models, apoptosis rate and cell-cycle distribution. RNA sequencing was employed to investigate the underlying mechanisms. Results Activating transcription factor 5 (ATF5) was overexpressed in malignant T cells and positively correlated with poor treatment responses in CTCL patients. Mechanistically, ATF5 promoted the survival of malignant T cells partially through the PI3K/AKT/mTOR pathway, and imparted resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Conclusions These findings revealed the tumor-specific overexpression of the transcription factor ATF5 with its underlying mechanisms in promoting tumor survival in CTCL, providing new insight into the understanding of CTCL's pathology.
Collapse
Affiliation(s)
- Mengzhou Cao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yao Qin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
38
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
39
|
Reynolds G, Anderson MA, Thursky K, Teh BW, Slavin MA. Recommendations on prevention of infections in patients with T-cell lymphomas: a narrative review and synthesis. Leuk Lymphoma 2023; 64:2057-2070. [PMID: 37688482 DOI: 10.1080/10428194.2023.2252945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
T/Natural killer (NK) cell lymphomas (TCL) represent a heterogenous subgroup of non-Hodgkin lymphoma, associated with poorer prognosis and higher treatment toxicity. A cohesive synthesis of infection outcomes among TCL patients is lacking. International guidelines offer no specific recommendations regarding prophylaxis or supportive infection care for TCL patients. This systematic narrative review highlights infection outcomes in TCL patients treated with conventional, and novel therapies. Recommendations for infection screening, antimicrobial prophylaxis and vaccination strategies are outined.
Collapse
Affiliation(s)
- Gemma Reynolds
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karin Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Preston JD, Jansen CS, Kosaraju S, Niyogusaba T, Zhuang TZ, Iwamoto SW, Hutto SK, Lechowicz MJ, Allen PB. Cutaneous T-cell lymphoma with CNS involvement: a case series and review of the literature. CNS Oncol 2023; 12:CNS105. [PMID: 37877303 PMCID: PMC10701703 DOI: 10.2217/cns-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare hematologic malignancy that traditionally presents with cutaneous lesions, though metastases are not uncommon in progressive disease. We describe four cases of CTCL with central nervous system (CNS) involvement, detailing the history, pathological characteristics, treatment response, and progression. Median time from initial diagnosis to CNS metastasis was ∼5.4 years (range 3.4-15.5 years) and survival after metastasis was ∼160 days (range 19 days-4.4 years). No patients achieved long-term (>5 years) survival, though some displayed varying degrees of remission following CNS-directed therapy. We conclude that clinicians must be attentive to the development of CNS metastases in patients with CTCL. The growing body of literature on such cases will inform evolving therapeutic guidelines on this rare CTCL complication.
Collapse
Affiliation(s)
- Joshua D Preston
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
- Nutrition & Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siddhartha Kosaraju
- Division of Neuroradiology, Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tim Niyogusaba
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tony Z Zhuang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sally W Iwamoto
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Spencer K Hutto
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary Jo Lechowicz
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Pamela B Allen
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
41
|
Latzka J, Assaf C, Bagot M, Cozzio A, Dummer R, Guenova E, Gniadecki R, Hodak E, Jonak C, Klemke CD, Knobler R, Morrris S, Nicolay JP, Ortiz-Romero PL, Papadavid E, Pimpinelli N, Quaglino P, Ranki A, Scarisbrick J, Stadler R, Väkevä L, Vermeer MH, Wehkamp U, Whittaker S, Willemze R, Trautinger F. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2023. Eur J Cancer 2023; 195:113343. [PMID: 37890355 DOI: 10.1016/j.ejca.2023.113343] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 10/29/2023]
Abstract
On behalf of the EORTC Cutaneous Lymphoma Tumours Group (EORTC-CLTG) and following up on earlier versions published in 2006 and 2017 this document provides an updated standard for the treatment of mycosis fungoides and Sézary syndrome (MF/SS). It considers recent relevant publications and treatment options introduced into clinical practice after 2017. Consensus was established among the authors through a series of consecutive consultations in writing and a round of discussion. Treatment options are assigned to each disease stage and, whenever possible and clinically useful, separated into first- and second line options annotated with levels of evidence. Major changes to the previous version include the incorporation of chlormethine, brentuximab vedotin, and mogamulizumab, recommendations on the use of pegylated interferon α (after withdrawal of recombinant unpegylated interferons), and the addition of paragraphs on supportive therapy and on the care of older patients. Still, skin-directed therapies are the most appropriate option for early-stage MF and most patients have a normal life expectancy but may suffer morbidity and impaired quality of life. In advanced disease treatment options have expanded recently. Most patients receive multiple consecutive therapies with treatments often having a relatively short duration of response. For those patients prognosis is still poor and only for a highly selected subset long term remission can be achieved with allogeneic stem cell transplantation. Understanding of the disease, its epidemiology and clinical course, and its most appropriate management are gradually advancing, and there is well-founded hope that this will lead to further improvements in the care of patients with MF/SS.
Collapse
Affiliation(s)
- Johanna Latzka
- Department of Dermatology and Venereology, University Hospital of St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria; Karl Landsteiner Institute of Dermatological Research, Department of Dermatology and Venereology, University Hospital of St. Pölten, St. Pölten, Austria.
| | - Chalid Assaf
- Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld, Germany; Institute for Molecular Medicine, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany; Department of Dermatology, HELIOS Klinikum Schwerin, University Campus of The Medical School Hamburg, Schwerin, Germany
| | - Martine Bagot
- Department of Dermatology, Hopital Saint Louis, Université Paris Cité, INSERM U976, Paris, France
| | - Antonio Cozzio
- Department of Dermatology and Allergology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Robert Gniadecki
- Department of Dermatology, University of Copenhagen, Copenhagen, Denmark; Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Emmilia Hodak
- Cutaneous Lymphoma Unit, Davidoff Cancer Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Robert Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Stephen Morrris
- Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London, UK
| | - Jan P Nicolay
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Mannheim, Germany
| | - Pablo L Ortiz-Romero
- Department of Dermatology, Hospital Universitario 12 de Octubre, Institute i+12, CIBERONC, Medical School, University Complutense, Madrid, Spain
| | - Evangelia Papadavid
- National and Kapodistrian University of Athens, 2nd Department of Dermatology and Venereology, Attikon General Hospital, University of Athens, Chaidari, Greece
| | - Nicola Pimpinelli
- Department of Health Sciences, Division of Dermatology, University of Florence, Florence, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Annamari Ranki
- Department of Dermatology and Allergology, Inflammation Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Julia Scarisbrick
- Department of Dermatology, University Hospital Birmingham, Birmingham, UK
| | - Rudolf Stadler
- University Department of Dermatology, Venereology, Allergology and Phlebology, Skin Cancer Center, Johannes Wesling Medical Centre Minden, Ruhr University Bochum, Bochum, Germany
| | - Liisa Väkevä
- Department of Dermatology and Allergology, Inflammation Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ulrike Wehkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Medical Department, Medical School of Hamburg, Hamburg, Germany
| | - Sean Whittaker
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Franz Trautinger
- Department of Dermatology and Venereology, University Hospital of St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria; Karl Landsteiner Institute of Dermatological Research, Department of Dermatology and Venereology, University Hospital of St. Pölten, St. Pölten, Austria
| |
Collapse
|
42
|
Schreidah CM, Fahmy LM, Lapolla BA, Gordon ER, Kwinta BD, Geskin LJ. Accessibility and readability of online patient education on cutaneous lymphomas. JAAD Int 2023; 13:83-90. [PMID: 37727629 PMCID: PMC10505972 DOI: 10.1016/j.jdin.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background Patients facing a cutaneous lymphoma diagnosis frequently turn to the internet for information but finding patient-accessible education may be a challenge. Objective To investigate accessibility and readability of patient-oriented online education on cutaneous lymphomas, including cutaneous T-cell and B-cell lymphoma subtypes. Methods This study queried a search engine for 11 cutaneous lymphoma terms, resulting in 1083 webpages. Webpages were screened using defined inclusion/exclusion criteria; literature directed to physicians and scientists was excluded. Webpages were stratified by academic/nonacademic and dermatology/nondermatology hosts and assessed by order of appearance. Readability, including text complexity, was analyzed for grade level understanding using 5 established calculators. Overall readability was assessed by Flesch-Kincaid Reading Ease. Results Academic webpages had earlier order of appearance. There was a dearth in dermatology-hosted webpages. Rarer cutaneous lymphomas yielded fewer patient-accessible results. Search term readability significantly exceeded the American Medical Association-recommended sixth grade level (P < .001∗), with higher grade levels for cutaneous T-cell lymphoma subtype webpages than cutaneous B-cell lymphoma subtypes. Limitations Webpage quality, accuracy, and language were not assessed. Conclusion Current online education for cutaneous lymphomas exceeds the American Medical Association's maximum readability recommendation. There is a need for more patient-accessible education amidst predominance of scientific literature, greater dermatology host websites, and enhanced readability of existing online education.
Collapse
Affiliation(s)
- Celine M. Schreidah
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Lauren M. Fahmy
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Brigit A. Lapolla
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| | - Emily R. Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Bradley D. Kwinta
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Larisa J. Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
43
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Cho A, Paulitschke V, Knobler R. Mode of action, indications and recommendations on extracorporeal photopheresis (ECP). J Dtsch Dermatol Ges 2023; 21:1369-1380. [PMID: 37723908 DOI: 10.1111/ddg.15167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 09/20/2023]
Abstract
Extracorporeal photopheresis (ECP) has gained importance in the treatment of several diseases. Initially introduced as a new therapeutic modality for the treatment of patients with cutaneous T-cell lymphoma, the indications for the use of ECP have expanded to include hematology and transplantation immunology. Extracorporeal photopheresis has found its place in the treatment plan of cutaneous T-cell lymphoma, systemic sclerosis, graft-versus-host disease, organ transplantation such as heart and lung, sometimes as first-line therapy and very often in combination with various systemic immunosuppressive therapies. The procedure basically consists of three steps: leukapheresis, photoactivation and reinfusion. The following article presents possible theories about the mechanism of action, which is not yet fully understood, and discusses the five most common indications for ECP treatment with corresponding therapy recommendations.
Collapse
Affiliation(s)
- Ara Cho
- University Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Verena Paulitschke
- University Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Robert Knobler
- University Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Yu Y, Liang C, Wang X, Shi Y, Shen L. The potential role of RNA modification in skin diseases, as well as the recent advances in its detection methods and therapeutic agents. Biomed Pharmacother 2023; 167:115524. [PMID: 37722194 DOI: 10.1016/j.biopha.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
RNA modification is considered as an epigenetic modification that plays an indispensable role in biological processes such as gene expression and genome editing without altering nucleotide sequence, but the molecular mechanism of RNA modification has not been discussed systematically in the development of skin diseases. This article mainly presents the whole picture of theoretical achievements on the potential role of RNA modification in dermatology. Furthermore, this article summarizes the latest advances in clinical practice related with RNA modification, including its detection methods and drug development. Based on this comprehensive review, we aim to illustrate the current blind spots and future directions of RNA modification, which may provide new insights for researchers in this field.
Collapse
Affiliation(s)
- Yue Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chen Liang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.
| | - Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Johnson CM, Talluru SM, Bubic B, Colbert M, Kumar P, Tsai HL, Varadhan R, Rozati S. Association of Cardiovascular Disease in Patients with Mycosis Fungoides and Sézary Syndrome Compared to a Matched Control Cohort. JID INNOVATIONS 2023; 3:100219. [PMID: 38116332 PMCID: PMC10730311 DOI: 10.1016/j.xjidi.2023.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 12/21/2023] Open
Abstract
Mycosis fungoides/Sézary syndrome (MF/SS) produces a low-grade chronic inflammatory state that may be associated with an increased risk of cardiovascular (CV) events, as seen in other chronic, systemic dermatologic diseases. To assess this association, a retrospective, cross-sectional study was designed in which 421 patients with a biopsy-proven diagnosis of MF/SS were compared with a control cohort of 4,210 age-, gender-, and race-matched patients randomly selected from the National Health and Nutritional Evaluation Survey database. The MF/SS cohort had a 14% prevalence of CV events, which was not statistically different from the control population's prevalence of 13%. In the MF/SS cohort, a multivariable logistic regression model showed that older patients (OR = 1.05 for each year of age, 95% confidence interval = 1.02-1.07) and those diagnosed with hypertension (OR = 3.40, 95% confidence interval = 1.71-6.75) had a higher risk of a CV event (P < 0.001). Risk factors such as gender, race, smoking, diabetes, and obesity were not significantly associated with CV events. Findings suggest that in the MF/SS population, advancing age and hypertension are risk factors for CV events, requiring clinical recognition and management. In addition, further research is needed to understand the complex interplay of how chronic inflammation in MF/SS impacts the immune development of CV disease.
Collapse
Affiliation(s)
- Courtney M Johnson
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sai M Talluru
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bianka Bubic
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michelle Colbert
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Priyanka Kumar
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hua-Ling Tsai
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ravi Varadhan
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Cho A, Paulitschke V, Knobler R. Wirkweise, Indikationen und Therapieempfehlungen der extrakorporalen Photopherese (ECP). J Dtsch Dermatol Ges 2023; 21:1369-1381. [PMID: 37946642 DOI: 10.1111/ddg.15167_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 11/12/2023]
Abstract
ZusammenfassungDie extrakorporale Photopherese (ECP) hat in jüngster Zeit bei der Behandlung verschiedener Krankheiten an Bedeutung gewonnen. Ursprünglich als neue Therapie zur Behandlung von Patienten mit kutanem T‐Zell‐Lymphom vorgestellt, hat sich der Indikationsbereich für die ECP auf Hämatologie und Transplantationsimmunologie erweitert. Die ECP hat ihren festen Platz im Therapieplan bei kutanen T‐Zell‐Lymphomen, systemischer Sklerose, Graft‐versus‐Host‐Erkrankung, Organtransplantationen wie Herz und Lunge, teilweise als Erstlinientherapie und sehr häufig in Kombination mit verschiedenen systemischen immunsuppressiven Therapien. Das Verfahren besteht im Wesentlichen aus drei Schritten: Leukapherese, Photoaktivierung und Reinfusion. Im folgenden Artikel werden die noch nicht vollständig verstandenen Wirkmechanismen dargestellt, die fünf häufigsten Indikationen für die Behandlung mit ECP diskutiert und Therapieempfehlungen für die jeweilige Indikation gegeben.
Collapse
Affiliation(s)
- Ara Cho
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Verena Paulitschke
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Robert Knobler
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
48
|
Gao J, Ren S, Choonoo G, Chen G, Frleta D, Zhong J, Gupta N, Sharma P, Oyejide A, Atwal GS, Macdonald L, Murphy A, Kuhnert F. Microenvironment-dependent growth of Sezary cells in humanized IL-15 mice. Dis Model Mech 2023; 16:dmm050190. [PMID: 37718909 PMCID: PMC10581384 DOI: 10.1242/dmm.050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Sezary syndrome (SS) is a rare, aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL) that lacks adequate therapeutic options and representative small-animal models. Here, we demonstrate that IL-15 is a critical CTCL growth factor. Importantly, an immunodeficient knock-in mouse model genetically engineered to express human IL-15 uniquely supported the growth of SS patient samples relative to conventional immunodeficient mouse strains. SS patient-derived xenograft (PDX) models recapacitated key pathological features of the human disease, including skin infiltration and spread of leukemic cells to the periphery, and maintained the dependence on human IL-15 upon serial in vivo passaging. Detailed molecular characterization of the engrafted cells by single-cell transcriptomic analysis revealed congruent neoplastic gene expression signatures but distinct clonal engraftment patterns. Overall, we document an important dependence of Sezary cell survival and proliferation on IL-15 signaling and the utility of immunodeficient humanized IL-15 mice as hosts for SS - and potentially other T and NK cell-derived hematologic malignancies - PDX model generation. Furthermore, these studies advocate the thorough molecular understanding of the resultant PDX models to maximize their translational impact.
Collapse
Affiliation(s)
- Jie Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shumei Ren
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Davor Frleta
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jun Zhong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Namita Gupta
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Prachi Sharma
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
49
|
Lai P, Liu F, Liu X, Sun J, Wang Y. Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front Immunol 2023; 14:1270365. [PMID: 37790936 PMCID: PMC10544577 DOI: 10.3389/fimmu.2023.1270365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Discriminating between cutaneous anaplastic large cell lymphoma (cALCL) and CD30-positive transformed mycosis fungoides (CD30+ TMF) is challenging, particularly when they arise in the context of pre-existing mycosis fungoides. The development of molecular diagnostic tools was hampered by the rarity of both diseases and the limited understanding of their pathogenesis. Methods In this study, we established a cohort comprising 25 cALCL cases and 25 CD30+ TMF cases, with transcriptomic data obtained from 31 samples. We compared the clinicopathological information and investigated the gene expression profiling between these two entities. Furthermore, we developed an immunohistochemistry (IHC) algorithm to differentiate these two entities clinically. Results Our investigation revealed distinct clinicopathological features and unique gene expression programs associated with cALCL and CD30+ TMF. cALCL and CD30+ TMF displayed marked differences in gene expression patterns. Notably, CD30+ TMF demonstrated enrichment of T cell receptor signaling pathways and an exhausted T cell phenotype, accompanied by infiltration of B cells, dendritic cells, and neurons. In contrast, cALCL cells expressed high levels of HLA class II genes, polarized towards a Th17 phenotype, and exhibited neutrophil infiltration. An IHC algorithm with BATF3 and TCF7 staining emerged as potential diagnostic markers for identifying these two entities. Conclusions Our findings provide valuable insights into the differential molecular signatures associated with cALCL and CD30+ TMF, which contribute to their distinct clinicopathological behaviors. An appropriate IHC algorithm could be used as a potential diagnostic tool.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangjun Liu
- Department of Dermatology, Shandong University Qilu Hospital, Jinan, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
50
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|