1
|
Knudsen L, Guo F, Sharoh D, Huang J, Blicher JU, Lund TE, Zhou Y, Zhang P, Yang Y. The laminar pattern of proprioceptive activation in human primary motor cortex. Cereb Cortex 2025; 35:bhaf076. [PMID: 40233153 PMCID: PMC11998912 DOI: 10.1093/cercor/bhaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/17/2025] Open
Abstract
The primary motor cortex (M1) is increasingly being recognized for its vital role in proprioceptive somatosensation. However, our current understanding of proprioceptive processing at the laminar scale is limited. Empirical findings in primates and rodents suggest a pronounced role of superficial cortical layers, but the involvement of deep layers has yet to be examined in humans. Submillimeter resolution functional magnetic resonance imaging (fMRI) has emerged in recent years, paving the way for studying layer-dependent activity in humans (laminar fMRI). In the present study, laminar fMRI was employed to investigate the influence of proprioceptive somatosensation on M1 deep layer activation using passive finger movements. Significant M1 deep layer activation was observed in response to proprioceptive stimulation across 10 healthy subjects using a vascular space occupancy (VASO)-sequence at 7 T. For further validation, two additional datasets were included which were obtained using a balanced steady-state free precession sequence with ultrahigh (0.3 mm) in-plane resolution, yielding converging results. These results were interpreted in the light of previous laminar fMRI studies and the active inference account of motor control. We propose that a considerable proportion of M1 deep layer activation is due to proprioceptive influence and that deep layers of M1 constitute a key component in proprioceptive circuits.
Collapse
Affiliation(s)
- Lasse Knudsen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Fanhua Guo
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Daniel Sharoh
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Trigon 204, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
| | - Jiepin Huang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Jakob U Blicher
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
- Department of Neurology, Aalborg University Hospital, Reberbansgade 15, Aalborg, 9000, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, PLA, 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Peng Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| | - Yan Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| |
Collapse
|
2
|
Johansen NJ, Kempynck N, Zemke NR, Somasundaram S, De Winter S, Hooper M, Dwivedi D, Lohia R, Wehbe F, Li B, Abaffyová D, Armand EJ, De Man J, Eksi EC, Hecker N, Hulselmans G, Konstantakos V, Mauduit D, Mich JK, Partel G, Daigle TL, Levi BP, Zhang K, Tanaka Y, Gillis J, Ting JT, Ben-Simon Y, Miller J, Ecker JR, Ren B, Aerts S, Lein ES, Tasic B, Bakken TE. Evaluating Methods for the Prediction of Cell Type-Specific Enhancers in the Mammalian Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.21.609075. [PMID: 39229027 PMCID: PMC11370467 DOI: 10.1101/2024.08.21.609075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on in vivo validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for in vivo testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of in silico enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell types.
Collapse
Affiliation(s)
- Nelson J Johansen
- Allen Institute for Brain Science, Seattle, WA 98109
- These authors contributed equally
| | - Niklas Kempynck
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
- These authors contributed equally
| | - Nathan R Zemke
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | - Seppe De Winter
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Marcus Hooper
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Ruchi Lohia
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Fabien Wehbe
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Bocheng Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Darina Abaffyová
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Ethan J Armand
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093
| | - Julie De Man
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Eren Can Eksi
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Nikolai Hecker
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Vasilis Konstantakos
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - David Mauduit
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Gabriele Partel
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | | | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Kai Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yoshiaki Tanaka
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Jesse Gillis
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | | | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Joseph R Ecker
- Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Stein Aerts
- VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Trygve E Bakken
- Allen Institute for Brain Science, Seattle, WA 98109
- Lead contact
| |
Collapse
|
3
|
Liu Z, Zhao Z, Du H, Zhou Q, Li M, Gui Z, Wu J, Gao Y, Zheng N, Zhang Y, Du A, Wang H, Wang J. Intermittent Fasting Enhances Motor Coordination Through Myelin Preservation in Aged Mice. Aging Cell 2025:e14476. [PMID: 39780365 DOI: 10.1111/acel.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study. The variations of cerebral functions were analyzed employing a comprehensive experimental design that includes behavioral tests, neuroimaging, and ultrastructural analysis, such as resting-state functional MRI (rsfMRI), EEG/EMG recordings, transmission electron microscopy, and immunohistochemistry. Over a 10-week regimen, IMF significantly improved locomotor activity, motor coordination, and muscle strength compared to controls (p < 0.01). Resting-state fMRI (rsfMRI) demonstrated that IMF modulates brain-wide functional connectivity, enhancing communication between key brain regions. Advanced imaging techniques revealed increased expression of myelin-related proteins, including myelin basic protein (MBP), and myelin-associated glycoprotein (MAG), indicating enhanced myelin integrity and repair, particularly in axons with diameters < 400 nm (p < 0.01). These findings suggest that IMF may mitigate age-related declines by promoting better neuronal signaling. This study highlights the potential function of IMF as a non-pharmacological intervention to promote brain health and mitigate cognitive decline in aging populations.
Collapse
Affiliation(s)
- Zhuang Liu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Zhao
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Qingqing Zhou
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Mei Li
- Department of Anesthesiology, First People Hospital of Foshan, Foshan, China
| | - Zhu Gui
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Wu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunling Gao
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ning Zheng
- Clinical & Technical Support, Philips Healthcare, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailian Du
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
4
|
Atudorei M, Del Agua Villa C, Gether U, Cenci MA, Siebner HR, Rickhag M. Bilateral chemogenetic activation of intratelencephalic neurons in motor cortex reduces spontaneous locomotor activity in mice. Neurobiol Dis 2025; 204:106755. [PMID: 39608470 DOI: 10.1016/j.nbd.2024.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Intratelencephalic neurons are a crucial class of cortical principal neurons that heavily innervate the striatum and cortical areas bilaterally. Their extensive cortico-cortical and cortico-striatal connectivity enables sensorimotor integration within the telencephalon, but their role in motor control remains poorly understood. Here, we used a chemogenetic approach to explore the role of intratelencephalic neurons in spontaneous locomotor activity. Bilateral chemogenetic activation of intratelencephalic Tlx3+ neurons in the mouse motor cortex reduced spontaneous locomotor activity in the open field, increasing states of freezing and immobility. This anti-motor effect was achieved in separate experiments with either administration of two chemogenetic actuators, clozapine N-oxide and deschloroclozapine. A systemic administration of the dopamine D1 receptor agonist SKF82958 reversed the chemogenetic effect on locomotor activity. Selective chemogenetic stimulation of intratelencephalic neurons was confirmed through post-mortem c-Fos quantification in cortical layer 5 Tlx3+ neurons. The results establish a causal link between the activity level of intratelencephalic neurons in the motor cortex, spontaneous locomotor activity in the open field, and the dopamine system. The findings are compatible with the hypothesis that intratelencephalic neurons regulate spontaneous motor behavior via its bilateral cortico-striatal projections.
Collapse
Affiliation(s)
- Mihai Atudorei
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Christian Del Agua Villa
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark.
| | - Mattias Rickhag
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Jalalvandi M, Sharini H, Shafaghi L, Alam NR. Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states. Exp Brain Res 2024; 243:36. [PMID: 39739121 DOI: 10.1007/s00221-024-06977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p < 0.05 and a minimum cluster size of 10 voxels for group analysis. Super-threshold voxels were identified with FWE thresholding in SPM12. For activation map extraction we focused on the primary motor cortex, primary somatosensory cortex, somatosensory association cortex, premotor cortex, and supplementary motor cortex. Both fMRI and fNIRS detected activation in the primary motor cortex (M1). The primary somatosensory cortex was found to influence movement direction coding, with smaller activation sizes for upward movements. Combining fNIRS with fMRI provided clearer differentiation of brain activation patterns for wrist movements in various directions and conditions (p < 0.05). This study highlights variations in left motor cortex activity across different movement states. fNIRS proved effective in detecting brain function and showed strong correlation with fMRI results, suggesting it as a viable alternative for those unable to undergo fMRI.
Collapse
Affiliation(s)
- Maziar Jalalvandi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sharini
- Department of Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Riyahi Alam
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Concordia University, PERFORM Preventive Medicine and Personal Health Care Center, Montreal, Quebec, Canada.
- PERFORM Center, Concordia University, 3 Rue Harbridge, Dollard Des Ormeaux (D.D.O.), Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Heimhofer C, Bächinger M, Lehner R, Frässle S, Henk Balsters J, Wenderoth N. Dynamic causal modelling highlights the importance of decreased self-inhibition of the sensorimotor cortex in motor fatigability. Brain Struct Funct 2024; 229:2419-2429. [PMID: 39196311 PMCID: PMC11611979 DOI: 10.1007/s00429-024-02840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
Motor fatigability emerges when challenging motor tasks must be maintained over an extended period of time. It is frequently observed in everyday life and affects patients as well as healthy individuals. Motor fatigability can be measured using simple tasks like finger tapping at maximum speed for 30 s. This typically results in a rapid decrease of tapping frequency, a phenomenon called motor slowing. In a previous study (Bächinger et al, eLife, 8 (September), https://doi.org/10.7554/eLife.46750 , 2019), we showed that motor slowing goes hand in hand with a gradual increase in blood oxygen level dependent signal in the primary sensorimotor cortex (SM1), supplementary motor area (SMA), and dorsal premotor cortex (PMd). It is unclear what drives the activity increase in SM1 caused by motor slowing and whether motor fatigability affects the dynamic interactions between SM1, SMA, and PMd. Here, we performed dynamic causal modelling (DCM) on data of 24 healthy young participants collected during functional magnetic resonance imaging to answer this question. The regions of interest (ROI) were defined based on the peak activation within SM1, SMA, and PMd. The model space consisted of bilateral connections between all ROI, with intrinsic self-modulation as inhibitory, and driving inputs set to premotor areas. Our findings revealed that motor slowing was associated with a significant reduction in SM1 self-inhibition, as uncovered by testing the maximum à posteriori against 0 (t(23)=-4.51, p < 0.001). Additionally, the model revealed a significant decrease in the driving input to premotor areas (t(23) > 2.71, p < 0.05) suggesting that structures other than cortical motor areas may contribute to motor fatigability.
Collapse
Affiliation(s)
- Caroline Heimhofer
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland.
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Rea Lehner
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Stefan Frässle
- Translational Neuromodeling Unit, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Joshua Henk Balsters
- Department of Psychology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
7
|
Mazurie Z, Branchereau P, Cattaert D, Henkous N, Savona-Baron C, Vouimba RM. Acute stress differently modulates interneurons excitability and synaptic plasticity in the primary motor cortex of wild-type and SOD1 G93A mouse model of ALS. J Physiol 2024; 602:4987-5015. [PMID: 39216080 DOI: 10.1113/jp285210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Primary motor cortex (M1) network stability depends on activity of inhibitory interneurons, for which susceptibility to stress was previously demonstrated in limbic regions. Hyperexcitability in M1 following changes in the excitatory/inhibitory balance is a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Using electrophysiological approaches, we assessed the impact of acute restraint stress on inhibitory interneurons excitability and global synaptic plasticity in M1 of the SOD1G93A ALS mouse model at a late pre-symptomatic stage (10-12.5 weeks). Based on their firing type (continuous, discontinuous, with accommodation or not) and electrophysiological characteristics (resting potential, rheobase, firing frequency), interneurons from M1 slices were separated into four clusters, labelled from 1 to 4. Among them, only interneurons from the first cluster, presenting continuous firing with few accommodations, tended to show increased excitability in wild-type (WT) and decreased excitability in SOD1G93A animals following stress. In vivo analyses of evoked field potentials showed that stress suppressed the theta burst-induced plasticity of an excitatory component (N1) recorded in the superficial layers of M1 in WT, with no impact on an inhibitory complex (N2-P1) from the deeper layers. In SOD1G93A mice, stress did not affect N1 but suppressed the N2-P1 plasticity. These data suggest that stress can alter M1 network functioning in a different manner in WT and SOD1G93A mice, possibly through changes of inhibitory interneurons excitability and synaptic plasticity. This suggests that stress-induced activity changes in M1 may therefore influence ALS outcomes. KEY POINTS: Disruption of the excitatory/inhibitory balance in the primary motor cortex (M1) has been linked to cortical hyperexcitability development, a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Psychological stress was reported to influence excitatory/inhibitory balance in limbic regions, but very little is known about its influence on the M1 functioning under physiological or pathological conditions. Our study revealed that acute stress influences the excitatory/inhibitory balance within the M1, through changes in interneurons excitability along with network plasticity. Such changes were different in pathological (SOD1G93A ALS mouse model) vs. physiological (wild-type) conditions. The results of our study help us to better understand how stress modulates the M1 and highlight the need to further characterize stress-induced motor cortex changes because it may be of importance when evaluating ALS outcomes.
Collapse
Affiliation(s)
- Zoé Mazurie
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nadia Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Catherine Savona-Baron
- Present address: BoRdeaux Institute of onCology (BRIC), INSERM U1312, University of Bordeaux, Bordeaux, France
| | - Rose-Marie Vouimba
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
9
|
Xie M, Miller AS, Pallegar PN, Umpierre A, Liang Y, Wang N, Zhang S, Nagaraj NK, Fogarty ZC, Ghayal NB, Oskarsson B, Zhao S, Zheng J, Qi F, Nguyen A, Dickson DW, Wu LJ. Rod-shaped microglia interact with neuronal dendrites to regulate cortical excitability in TDP-43 related neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601396. [PMID: 39005475 PMCID: PMC11244918 DOI: 10.1101/2024.06.30.601396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.
Collapse
|
10
|
Guo Y, Bao H, Wei Z, Fang S, Jiang T, Wang Y. Structural changes in eloquent cortex secondary to glioma in sensorimotor area. Hum Brain Mapp 2024; 45:e26723. [PMID: 38864296 PMCID: PMC11167403 DOI: 10.1002/hbm.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
This study aims to investigate the structural reorganization in the sensorimotor area of the brain in patients with gliomas, distinguishing between those with impaired and unimpaired strength. Using voxel-based morphometry (VBM) and region of interest (ROI) analysis, gray matter volumes (GMV) were compared in the contralesional primary motor gyrus, primary sensory gyrus, premotor area, bilateral supplementary motor area, and medial Brodmann area 8 (BA8). The results revealed that in patients with right hemisphere gliomas, the right medial BA8 volume was significantly larger in the impaired group than in the unimpaired group, with both groups exceeding the volume in 16 healthy controls (HCs). In patients with left hemisphere gliomas, the right supplementary motor area (SMA) was more pronounced in the impaired group compared to the unimpaired group, and both groups were greater than HCs. Additionally, the volumes of the right medial BA8 in both the impaired group were greater than HCs. Contralateral expansions in the gray matter of hand- and trunk-related cortices of the premotor area, precentral gyrus, and postcentral gyrus were observed compared to HCs. Furthermore, a negative correlation was found between hand Medical Research Council (MRC) score and volumes of the contralateral SMA and bilateral medial BA8. Notably, our findings reveal consistent results across both analytical approaches in identifying significant structural reorganizations within the sensorimotor cortex. These consistent findings underscore the adaptive neuroplastic responses to glioma presence, highlighting potential areas of interest for further neurosurgical planning and rehabilitation strategies.
Collapse
Affiliation(s)
- Yuhao Guo
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hongbo Bao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhishuo Wei
- Department of Neurological SurgeryUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Shengyu Fang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical SciencesBeijingChina
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
12
|
Pressl C, Mätlik K, Kus L, Darnell P, Luo JD, Paul MR, Weiss AR, Liguore W, Carroll TS, Davis DA, McBride J, Heintz N. Selective vulnerability of layer 5a corticostriatal neurons in Huntington's disease. Neuron 2024; 112:924-941.e10. [PMID: 38237588 DOI: 10.1016/j.neuron.2023.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.
Collapse
Affiliation(s)
- Christina Pressl
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kert Mätlik
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Laura Kus
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Paul Darnell
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alison R Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - William Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - David A Davis
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jodi McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Broce IJ, Sirkis DW, Nillo RM, Bonham LW, Lee SE, Miller BL, Castruita PA, Sturm VE, Sugrue LS, Desikan RS, Yokoyama JS. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front Neurosci 2024; 18:1258996. [PMID: 38469573 PMCID: PMC10925697 DOI: 10.3389/fnins.2024.1258996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Ryan M. Nillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| | - Leo S. Sugrue
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Fernandes SR, Callejón-Leblic MA, Ferreira HA. How does the electric field induced by tDCS influence motor-related connectivity? Model-guided perspectives. Phys Med Biol 2024; 69:055007. [PMID: 38266295 DOI: 10.1088/1361-6560/ad222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Over the last decade, transcranial direct current stimulation (tDCS) has been applied not only to modulate local cortical activation, but also to address communication between functionally-related brain areas. Stimulation protocols based on simple two-electrode placements are being replaced by multi-electrode montages to target intra- and inter-hemispheric neural networks using multichannel/high definition paradigms.Objective. This study aims to investigate the characteristics of electric field (EF) patterns originated by tDCS experiments addressing changes in functional brain connectivity.Methods. A previous selection of tDCS experimental studies aiming to modulate motor-related connectivity in health and disease was conducted. Simulations of the EF induced in the cortex were then performed for each protocol selected. The EF magnitude and orientation are determined and analysed in motor-related cortical regions for five different head models to account for inter-subject variability. Functional connectivity outcomes obtained are qualitatively analysed at the light of the simulated EF and protocol characteristics, such as electrode position, number and stimulation dosing.Main findings. The EF magnitude and orientation predicted by computational models can be related with the ability of tDCS to modulate brain functional connectivity. Regional differences in EF distributions across subjects can inform electrode placements more susceptible to inter-subject variability in terms of brain connectivity-related outcomes.Significance. Neuronal facilitation/inhibition induced by tDCS fields may indirectly influence intra and inter-hemispheric connectivity by modulating neural components of motor-related networks. Optimization of tDCS using computational models is essential for adequate dosing delivery in specific networks related to clinically relevant connectivity outcomes.
Collapse
Affiliation(s)
- Sofia Rita Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - M Amparo Callejón-Leblic
- Oticon Medical, Madrid, Spain
- Grupo de Ingeniería Biomédica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
- Servicio de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
15
|
Guidali G, Zazio A, Lucarelli D, Marcantoni E, Stango A, Barchiesi G, Bortoletto M. Effects of transcranial magnetic stimulation (TMS) current direction and pulse waveform on cortico-cortical connectivity: A registered report TMS-EEG study. Eur J Neurosci 2023; 58:3785-3809. [PMID: 37649453 DOI: 10.1111/ejn.16127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) are a promising proxy for measuring effective connectivity, that is, the directed transmission of physiological signals along cortico-cortical tracts, and for developing connectivity-based biomarkers. A crucial point is how stimulation parameters may affect TEPs, as they may contribute to the general variability of findings across studies. Here, we manipulated two TMS parameters (i.e. current direction and pulse waveform) while measuring (a) an early TEP component reflecting contralateral inhibition of motor areas, namely, M1-P15, as an operative model of interhemispheric cortico-cortical connectivity, and (b) motor-evoked potentials (MEP) for the corticospinal pathway. Our results showed that these two TMS parameters are crucial to evoke the M1-P15, influencing its amplitude, latency, and replicability. Specifically, (a) M1-P15 amplitude was strongly affected by current direction in monophasic stimulation; (b) M1-P15 latency was significantly modulated by current direction for monophasic and biphasic pulses. The replicability of M1-P15 was substantial for the same stimulation condition. At the same time, it was poor when stimulation parameters were changed, suggesting that these factors must be controlled to obtain stable single-subject measures. Finally, MEP latency was modulated by current direction, whereas non-statistically significant changes were evident for amplitude. Overall, our study highlights the importance of TMS parameters for early TEP responses recording and suggests controlling their impact in developing connectivity biomarkers from TEPs. Moreover, these results point out that the excitability of the corticospinal tract, which is commonly used as a reference to set TMS intensity, may not correspond to the excitability of cortico-cortical pathways.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Delia Lucarelli
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Eleonora Marcantoni
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonietta Stango
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Guido Barchiesi
- Department of Philosophy, University of Milano, Milan, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
16
|
Broce IJ, Sirkis DW, Nillo RM, Bonham LW, Lee SE, Miller B, Castruita P, Sturm VE, Sugrue LS, Desikan RS, Yokoyama JS. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549377. [PMID: 37503230 PMCID: PMC10370095 DOI: 10.1101/2023.07.17.549377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, cerebellum) with average gene expression values for 15,633 protein-coding genes, including 50 genes known to be associated with ALS, FTD, or ALS-FTD. We then evaluated whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n=19). Lastly, we explored whether genes with significant C9orf72 radiogenomic correlations (i.e., 'C9orf72 gene network') were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results A total of 1,748 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 gene network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic motor neurons in the spinal cord, and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with multiple neurotransmitter systems, protein ubiquitination, autophagy, and MAPK signaling, among others. Conclusions Considered together, we identified a network of C9orf72-associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan M. Nillo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Patricia Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, and Trinity College Dublin, Dublin, Ireland
| | - Leo S. Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Jafarian A, Hughes LE, Adams NE, Lanskey JH, Naessens M, Rouse MA, Murley AG, Friston KJ, Rowe JB. Neurochemistry-enriched dynamic causal models of magnetoencephalography, using magnetic resonance spectroscopy. Neuroimage 2023; 276:120193. [PMID: 37244323 DOI: 10.1016/j.neuroimage.2023.120193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
We present a hierarchical empirical Bayesian framework for testing hypotheses about neurotransmitters' concertation as empirical prior for synaptic physiology using ultra-high field magnetic resonance spectroscopy (7T-MRS) and magnetoencephalography data (MEG). A first level dynamic causal modelling of cortical microcircuits is used to infer the connectivity parameters of a generative model of individuals' neurophysiological observations. At the second level, individuals' 7T-MRS estimates of regional neurotransmitter concentration supply empirical priors on synaptic connectivity. We compare the group-wise evidence for alternative empirical priors, defined by monotonic functions of spectroscopic estimates, on subsets of synaptic connections. For efficiency and reproducibility, we used Bayesian model reduction (BMR), parametric empirical Bayes and variational Bayesian inversion. In particular, we used Bayesian model reduction to compare alternative model evidence of how spectroscopic neurotransmitter measures inform estimates of synaptic connectivity. This identifies the subset of synaptic connections that are influenced by individual differences in neurotransmitter levels, as measured by 7T-MRS. We demonstrate the method using resting-state MEG (i.e., task-free recording) and 7T-MRS data from healthy adults. Our results confirm the hypotheses that GABA concentration influences local recurrent inhibitory intrinsic connectivity in deep and superficial cortical layers, while glutamate influences the excitatory connections between superficial and deep layers and connections from superficial to inhibitory interneurons. Using within-subject split-sampling of the MEG dataset (i.e., validation by means of a held-out dataset), we show that model comparison for hypothesis testing can be highly reliable. The method is suitable for applications with magnetoencephalography or electroencephalography, and is well-suited to reveal the mechanisms of neurological and psychiatric disorders, including responses to psychopharmacological interventions.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Laura E Hughes
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Natalie E Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
| | - Juliette H Lanskey
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Michelle Naessens
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Matthew A Rouse
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
| | - Karl J Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, United Kingdom.
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Tan S, Mo X, Qin H, Dong B, Zhou J, Long C, Yang L. Biocytin-Labeling in Whole-Cell Recording: Electrophysiological and Morphological Properties of Pyramidal Neurons in CYLD-Deficient Mice. Molecules 2023; 28:molecules28104092. [PMID: 37241833 DOI: 10.3390/molecules28104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Biocytin, a chemical compound that is an amide formed from the vitamin biotin and the amino acid L-lysine, has been used as a histological dye to stain nerve cells. Electrophysiological activity and morphology are two key characteristics of neurons, but revealing both the electrophysiological and morphological properties of the same neuron is challenging. This article introduces a detailed and easy-to-operate procedure for single-cell labeling in combination with whole-cell patch-clamp recording. Using a recording electrode filled with a biocytin-containing internal solution, we demonstrate the electrophysiological and morphological characteristics of pyramidal (PNs), medial spiny (MSNs) and parvalbumin neurons (PVs) in brain slices, where the electrophysiological and morphological properties of the same individual cell are elucidated. We first introduce a protocol for whole-cell patch-clamp recording in various neurons, coupled with the intracellular diffusion of biocytin delivered by the glass capillary of the recording electrode, followed by a post hoc procedure to reveal the architecture and morphology of biocytin-labeled neurons. An analysis of action potentials (APs) and neuronal morphology, including the dendritic length, number of intersections, and spine density of biocytin-labeled neurons, were performed using ClampFit and Fiji Image (ImageJ), respectively. Next, to take advantage of the techniques introduced above, we uncovered defects in the APs and the dendritic spines of PNs in the primary motor cortex (M1) of deubiquitinase cylindromatosis (CYLD) knock-out (Cyld-/-) mice. In summary, this article provides a detailed methodology for revealing the morphology as well as the electrophysiological activity of a single neuron that will have many applications in neurobiology.
Collapse
Affiliation(s)
- Shuyi Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiuping Mo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huihui Qin
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Binbin Dong
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiankui Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
19
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Northall A, Doehler J, Weber M, Vielhaber S, Schreiber S, Kuehn E. Layer-specific vulnerability is a mechanism of topographic map aging. Neurobiol Aging 2023; 128:17-32. [PMID: 37141729 DOI: 10.1016/j.neurobiolaging.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Topographic maps form a critical feature of cortical organization, yet are poorly described with respect to their microstructure in the living aging brain. We acquired quantitative structural and functional 7T-MRI data from younger and older adults to characterize layer-wise topographic maps of the primary motor cortex (M1). Using parcellation-inspired techniques, we show that quantitative T1 and Quantitative Susceptibility Maps values of the hand, face, and foot areas differ significantly, revealing microstructurally distinct cortical fields in M1. We show that these fields are distinct in older adults and that myelin borders between them do not degenerate. We further show that the output layer 5 of M1 shows a particular vulnerability to age-related increased iron, while layer 5 and the superficial layer show increased diamagnetic substance, likely reflecting calcifications. Taken together, we provide a novel 3D model of M1 microstructure, where body parts form distinct structural units, but layers show specific vulnerability toward increased iron and calcium in older adults. Our findings have implications for understanding sensorimotor organization and aging, in addition to topographic disease spread.
Collapse
Affiliation(s)
- Alicia Northall
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany.
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany
| | - Miriam Weber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Saxony-Anhalt, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Saxony-Anhalt, Germany; Hertie Institute for Clinical Brain Research, Tübingen, Germany
| |
Collapse
|
21
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Bo T, Li J, Hu G, Zhang G, Wang W, Lv Q, Zhao S, Ma J, Qin M, Yao X, Wang M, Wang GZ, Wang Z. Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys. Nat Commun 2023; 14:1499. [PMID: 36932104 PMCID: PMC10023667 DOI: 10.1038/s41467-023-37246-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Integrative analyses of transcriptomic and neuroimaging data have generated a wealth of information about biological pathways underlying regional variability in imaging-derived brain phenotypes in humans, but rarely in nonhuman primates due to the lack of a comprehensive anatomically-defined atlas of brain transcriptomics. Here we generate complementary bulk RNA-sequencing dataset of 819 samples from 110 brain regions and single-nucleus RNA-sequencing dataset, and neuroimaging data from 162 cynomolgus macaques, to examine the link between brain-wide gene expression and regional variation in morphometry. We not only observe global/regional expression profiles of macaque brain comparable to human but unravel a dorsolateral-ventromedial gradient of gene assemblies within the primate frontal lobe. Furthermore, we identify a set of 971 protein-coding and 34 non-coding genes consistently associated with cortical thickness, specially enriched for neurons and oligodendrocytes. These data provide a unique resource to investigate nonhuman primate models of human diseases and probe cross-species evolutionary mechanisms.
Collapse
Affiliation(s)
- Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shaoling Zhao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China.
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zheng Wang
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
23
|
Knudsen L, Bailey CJ, Blicher JU, Yang Y, Zhang P, Lund TE. Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression. Neuroimage 2023; 271:120011. [PMID: 36914107 DOI: 10.1016/j.neuroimage.2023.120011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
INTRODUCTION Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. METHODS 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. RESULTS AND CONCLUSION NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Collapse
Affiliation(s)
- Lasse Knudsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China.
| | - Christopher J Bailey
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China
| | - Jakob U Blicher
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | - Yan Yang
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Peng Zhang
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Torben E Lund
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
| |
Collapse
|
24
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Huber L, Kassavetis P, Gulban OF, Hallett M, Horovitz SG. Laminar VASO fMRI in focal hand dystonia patients. DYSTONIA 2023; 2. [PMID: 37035517 PMCID: PMC10081516 DOI: 10.3389/dyst.2023.10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Focal Hand Dystonia (FHD) is a disabling movement disorder characterized by involuntary movements, cramps and spasms. It is associated with pathological neural microcircuits in the cortical somatosensory system. While invasive preclinical modalities allow researchers to probe specific neural microcircuits of cortical layers and columns, conventional functional magnetic resonance imaging (fMRI) cannot resolve such small neural computational units. In this study, we take advantage of recent developments in ultra-high-field MRI hardware and MR-sequences to capture altered digit representations and laminar processing in FHD patients. We aim to characterize the capability and challenges of layer-specific imaging and analysis tools in resolving laminar and columnar structures in clinical research setups. We scanned N = 4 affected and N = 5 unaffected hemispheres at 7T and found consistent results of altered neural microcircuitry in FHD patients: 1) In affected hemispheres of FHD patients, we found a breakdown of ordered finger representation in the primary somatosensory cortex, as suggested from previous low-resolution fMRI. 2) In affected primary motor cortices of FHD patients, we furthermore found increased fMRI activity in superficial cortico-cortical neural input layers (II/III), compared to relatively weaker activity in the cortico-spinal output layers (Vb/VI). Overall, we show that layer-fMRI acquisition and analysis tools have the potential to address clinically-driven neuroscience research questions about altered computational mechanisms at the spatial scales that were previously only accessible in animal models. We believe that this study paves the way for easier translation of preclinical work into clinical research in focal hand dystonia and beyond.
Collapse
Affiliation(s)
- Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Panagiotis Kassavetis
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, United States
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain Innovation, Maastricht, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, United States
| | - Silvina G. Horovitz
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, United States
- CORRESPONDENCE Silvina G. Horovitz,
| |
Collapse
|
26
|
de Carvalho M, Swash M. Upper and lower motor neuron neurophysiology and motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:17-29. [PMID: 37562869 DOI: 10.1016/b978-0-323-98818-6.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This chapter considers the principles that underlie neurophysiological studies of upper motor neuron or lower motor neuron lesions, based on an understanding of the normal structure and function of the motor system. Human motor neurophysiology consists of an evaluation of the active components of the motor system that are relevant to volitional movements. Relatively primitive motor skills include locomotion, much dependent on the spinal cord central pattern generator, reaching, involving proximal and distal muscles activation, and grasping. Humans are well prepared to perform complex movements like writing. The role of motor cortex is critical for the motor activity, very dependent on the continuous sensory feedback, and this is essential for adapting the force and speed control, which contributes to motor learning. Most corticospinal neurons in the brain project to brainstem and spinal cord, many with polysynaptic inhibitory rather than excitatory connections. The monosynaptic connections observed in humans and primates constitute a specialized pathway implicated in fractional finger movements. Spinal cord has a complex physiology, and local reflexes and sensory feedback are essential to control adapted muscular contraction during movement. The cerebellum has a major role in motor coordination, but also consistent roles in sensory activities, speech, and language, in motor and spatial memory, and in psychological activity. The motor unit is the final effector of the motor drive. The complex interplay between the lower motor neuron, its axon, motor end-plates, and muscle fibers allows a relevant plasticity in the movement output.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.
| | - Michael Swash
- Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Barts and London School of Medicine, Queen Mary University of London and Royal London Hospital, London, United Kingdom
| |
Collapse
|
27
|
Fu X, He Y, Xie Y, Lu Z. A conjoint analysis of bulk RNA-seq and single-nucleus RNA-seq for revealing the role of ferroptosis and iron metabolism in ALS. Front Neurosci 2023; 17:1113216. [PMID: 36937665 PMCID: PMC10017473 DOI: 10.3389/fnins.2023.1113216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive and selective degeneration of motor neurons in the motor cortex of brain and spinal cord. Ferroptosis is a newly discovered form of cell death and reported to mediate selective motor neuron death in the mouse model of ALS. The growing awareness of ferroptosis and iron metabolism dysfunction in ALS prompted us to investigate the expression pattern of ferroptosis and iron metabolism-related genes (FIRGs) in ALS. Here, we performed a conjoint analysis of bulk-RNA sequence and single-nucleus RNA sequence data using the datasets from Gene Expression Omnibus (GEO) to reveal the role of FIRGs in ALS, especially in selective motor neuron death of ALS. We first investigated the differentially expressed genes (DEGs) between ALS and non-neurological controls. Weighted gene co-expression network analysis constructed the gene co-expression network and identified three modules closely associated with ALS. Fifteen FIRGs was identified as target genes based on least absolute shrinkage and selection operator regression analysis as follows: ACSL4, ANO6, ATP6V0E1, B2M, CD44, CHMP5, CYBB, CYBRD1, HIF1A, MOSPD1, NCF2, SDCBP, STEAP2, TMEM14C, ULK1. These genes could differentiate ALS patients from non-neurological controls (p < 2.2e-16) and had a valid value in predicting and diagnosing ALS (AUC = 0.881 in primary dataset and AUC = 0.768 in validation dataset). Then we performed the functional enrichment analysis of DEGs between ALS cases, the most significantly influenced by target genes, and non-neurological controls. The result indicated that the most significantly influenced functions in ALS pathogenesis by these identified FIRGs are synapse pathways, calcium signaling pathway, cAMP signaling pathway, and phagosome and several immune pathways. At last, the analysis of single- nuclear seq found that CHMP5, one of the 15 FIRGs identified by bulk single-nucleus RNA-seq data, was expressed significantly higher in ALS than pathologically normal (PN), specifically in excitatory neuron populations with layer 2 and layer 3 markers (Ex L2_L3), layer 3 and layer 5 markers (Ex L3_L5). Taken together, our study indicates the positive correlation between FIRGs and ALS, presents potential markers for ALS diagnosis and provides new research directions of CHMP5 function in selective motor neuron death in ALS.
Collapse
Affiliation(s)
- Xiujuan Fu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yizi He
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongzhi Xie,
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Zuneng Lu,
| |
Collapse
|
28
|
Chiou KL, DeCasien AR, Rees KP, Testard C, Spurrell CH, Gogate AA, Pliner HA, Tremblay S, Mercer A, Whalen CJ, Negrón-Del Valle JE, Janiak MC, Bauman Surratt SE, González O, Compo NR, Stock MK, Ruiz-Lambides AV, Martínez MI, Wilson MA, Melin AD, Antón SC, Walker CS, Sallet J, Newbern JM, Starita LM, Shendure J, Higham JP, Brent LJN, Montague MJ, Platt ML, Snyder-Mackler N. Multiregion transcriptomic profiling of the primate brain reveals signatures of aging and the social environment. Nat Neurosci 2022; 25:1714-1723. [PMID: 36424430 PMCID: PMC10055353 DOI: 10.1038/s41593-022-01197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
Aging is accompanied by a host of social and biological changes that correlate with behavior, cognitive health and susceptibility to neurodegenerative disease. To understand trajectories of brain aging in a primate, we generated a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression occur in genes associated with neural functions and neurological diseases, including Alzheimer's disease. Further, we show that higher social status in females is associated with younger relative transcriptional ages, providing a link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging in a nonhuman primate model of human behavior, cognition and health.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Psychology, University of Washington, Seattle, WA, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
| | - Alex R DeCasien
- Department of Anthropology, New York University, New York, NY, USA.
- New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Connor J Whalen
- Department of Anthropology, New York University, New York, NY, USA
| | | | - Mareike C Janiak
- School of Science, Engineering, & Environment, University of Salford, Salford, UK
| | | | - Olga González
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicole R Compo
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | | | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Susan C Antón
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, Université Lyon, Lyon, France
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Psychology, University of Washington, Seattle, WA, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
- Center for Studies in Demography & Ecology, University of Washington, Seattle, WA, USA.
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
29
|
Motolese F, Rossi M, Capone F, Cruciani A, Musumeci G, Manzo M, Pilato F, Di Pino G, Di Lazzaro V. High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain. Clin Neurophysiol 2022; 144:135-141. [PMID: 36210268 DOI: 10.1016/j.clinph.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. METHODS The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. RESULTS Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. CONCLUSIONS Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response. SIGNIFICANCE Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Mariagrazia Rossi
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Cruciani
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gabriella Musumeci
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco Manzo
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
30
|
Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex. Nat Commun 2022; 13:6747. [PMID: 36347848 PMCID: PMC9643508 DOI: 10.1038/s41467-022-34413-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.
Collapse
|
31
|
Fu Y, Zhou L, Li H, Hsiao JHT, Li B, Tanglay O, Auwyang AD, Wang E, Feng J, Kim WS, Liu J, Halliday GM. Adaptive structural changes in the motor cortex and white matter in Parkinson's disease. Acta Neuropathol 2022; 144:861-879. [PMID: 36053316 PMCID: PMC9547807 DOI: 10.1007/s00401-022-02488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a movement disorder characterized by the early loss of nigrostriatal dopaminergic pathways producing significant network changes impacting motor coordination. Recently three motor stages of PD have been proposed (a silent period when nigrostriatal loss begins, a prodromal motor period with subtle focal manifestations, and clinical PD) with evidence that motor cortex abnormalities occur to produce clinical PD[8]. We directly assess structural changes in the primary motor cortex and corticospinal tract using parallel analyses of longitudinal clinical and cross-sectional pathological cohorts thought to represent different stages of PD. 18F-FP-CIT positron emission tomography and subtle motor features identified patients with idiopathic rapid-eye-movement sleep behaviour disorder (n = 8) that developed prodromal motor signs of PD. Longitudinal diffusion tensor imaging before and after the development of prodromal motor PD showed higher fractional anisotropy in motor cortex and corticospinal tract compared to controls, indicating adaptive structural changes in motor networks in concert with nigrostriatal dopamine loss. Histological analyses of the white matter underlying the motor cortex showed progressive disorientation of axons with segmental replacement of neurofilaments with α-synuclein, enlargement of myelinating oligodendrocytes and increased density of their precursors. There was no loss of neurons in the motor cortex in early or late pathologically confirmed motor PD compared to controls, although there were early cortical increases in neuronal neurofilament light chain and myelin proteins in association with α-synuclein accumulation. Our results collectively provide evidence of a direct impact of PD on primary motor cortex and its output pathways that begins in the prodromal motor stage of PD with structural changes confirmed in early PD. These adaptive structural changes become considerable as the disease advances potentially contributing to motor PD.
Collapse
Affiliation(s)
- YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongyun Li
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Jen-Hsiang T Hsiao
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Onur Tanglay
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew D Auwyang
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Elinor Wang
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Jieyao Feng
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
32
|
Chan RW, Cron GO, Asaad M, Edelman BJ, Lee HJ, Adesnik H, Feinberg D, Lee JH. Distinct local and brain-wide networks are activated by optogenetic stimulation of neurons specific to each layer of motor cortex. Neuroimage 2022; 263:119640. [PMID: 36176220 PMCID: PMC10025169 DOI: 10.1016/j.neuroimage.2022.119640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Primary motor cortex (M1) consists of a stack of interconnected but distinct layers (L1-L6) which affect motor control through large-scale networks. However, the brain-wide functional influence of each layer is poorly understood. We sought to expand our knowledge of these layers' circuitry by combining Cre-driver mouse lines, optogenetics, fMRI, and electrophysiology. Neuronal activities initiated in Drd3 neurons (within L2/3) were mainly confined within M1, while stimulation of Scnn1a, Rbp4, and Ntsr1 neurons (within L4, L5, and L6, respectively) evoked distinct responses in M1 and motor-related subcortical regions, including striatum and motor thalamus. We also found that fMRI responses from targeted stimulations correlated with both local field potentials (LFPs) and spike changes. This study represents a step forward in our understanding of how different layers of primary motor cortex are embedded in brain-wide circuitry.
Collapse
Affiliation(s)
- Russell W Chan
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Greg O Cron
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Mazen Asaad
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Bradley J Edelman
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - David Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA; Department of Bioengineering, Stanford University, CA 94305, USA; Department of Neurosurgery, Stanford University, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
33
|
Drori E, Berman S, Mezer AA. Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabm1971. [PMID: 35857492 PMCID: PMC9286505 DOI: 10.1126/sciadv.abm1971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of microstructure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron concentration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal structural gradients and cortical hierarchy. In Parkinson's disease (PD) patients, we found abnormal gradients in the putamen, revealing changes in the posterior putamen that explain patients' dopaminergic loss and motor dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function relationship in the striatum in vivo, in normal aging and PD.
Collapse
Affiliation(s)
- Elior Drori
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Berman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
34
|
Guest AC, O'Neill KJ, Graham D, Mirzadeh Z, Ponce FA, Greger B. Microscale electrophysiological functional connectivity in human cortico-basal ganglia network. Clin Neurophysiol 2022; 142:11-19. [DOI: 10.1016/j.clinph.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
35
|
Li M, Zhang X, He Q, Chen D, Chen F, Wang X, Sun S, Sun Y, Li Y, Zhu Z, Fang H, Shi X, Yao X, Sun H, Wang M. Functional Interactions Between the Parafascicular Thalamic Nucleus and Motor Cortex Are Altered in Hemiparkinsonian Rat. Front Aging Neurosci 2022; 14:800159. [PMID: 35677204 PMCID: PMC9168077 DOI: 10.3389/fnagi.2022.800159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by aberrant discharge patterns and exaggerated oscillatory activity within basal ganglia-thalamocortical circuits. We have previously observed substantial alterations in spike and local field potential (LFP) activities recorded in the thalamic parafascicular nucleus (PF) and motor cortex (M1), respectively, of hemiparkinsonian rats during rest or catching movements. This study explored whether the mutual effects of the PF and M1 depended on the amplitude and phase relationship in their identified neuron spikes or group rhythmic activities. Microwire electrode arrays were paired and implanted in the PF and M1 of rats with unilateral dopaminergic cell lesions. The results showed that the identified PF neurons exhibited aberrant cell type-selective firing rates and preferential and excessive phase-locked firing to cortical LFP oscillations mainly at 12–35 Hz (beta frequencies), consistent with the observation of identified M1 neurons with ongoing PF LFP oscillations. Experimental evidence also showed a decrease in phase-locking at 0.7–12 Hz and 35–70 Hz in the PF and M1 circuits in the hemiparkinsonian rats. Furthermore, anatomical evidence was provided for the existence of afferent and efferent bidirectional reciprocal connectivity pathways between the PF and M1 using an anterograde and retrograde neuroanatomical tracing virus. Collectively, our results suggested that multiple alterations may be present in regional anatomical and functional modes with which the PF and M1 interact, and that parkinsonism-associated changes in PF integrate M1 activity in a manner that varies with frequency, behavioral state, and integrity of the dopaminergic system.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Zhang
- Editorial Department of Journal of Shandong Jianzhu University, Jinan, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Dadian Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan, China
| | - Xiaojun Wang
- The First Hospital Affiliated With Shandong First Medical University, Jinan, China
| | - Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuchuan Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhiwei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Heyi Fang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoman Shi
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaomeng Yao
- School of Nursing, Qilu Institute of Technology, Jinan, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- *Correspondence: Haiji Sun,
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- Min Wang,
| |
Collapse
|
36
|
Genç B, Jara JH, Sanchez SS, Lagrimas AKB, Gözütok Ö, Koçak N, Zhu Y, Hande Özdinler P. Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Ther 2022; 29:178-192. [PMID: 34853443 PMCID: PMC9018479 DOI: 10.1038/s41434-021-00303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
There are no effective cures for upper motor neuron (UMN) diseases, such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and hereditary spastic paraplegia. Here, we show UMN loss occurs independent of spinal motor neuron degeneration and that UMNs are indeed effective cellular targets for gene therapy, which offers a potential solution especially for UMN disease patients. UCHL1 (ubiquitin C-terminal hydrolase-L1) is a deubiquitinating enzyme crucial for maintaining free ubiquitin levels. Corticospinal motor neurons (CSMN, a.k.a UMNs in mice) show early, selective, and profound degeneration in Uchl1nm3419 (UCHL1-/-) mice, which lack all UCHL1 function. When UCHL1 activity is ablated only from spinal motor neurons, CSMN remained intact. However, restoring UCHL1 specifically in CSMN of UCHL1-/- mice via directed gene delivery was sufficient to improve CSMN integrity to the healthy control levels. In addition, when UCHL1 gene was delivered selectively to CSMN that are diseased due to misfolded SOD1 toxicity and TDP-43 pathology via AAV-mediated retrograde transduction, the disease causing misfolded SOD1 and mutant human TDP-43 were reduced in hSOD1G93A and prpTDP-43A315T models, respectively. Diseased CSMN retained their neuronal integrity and cytoarchitectural stability in two different mouse models that represent two distinct causes of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Santana S Sanchez
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amiko K B Lagrimas
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Öge Gözütok
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nuran Koçak
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
37
|
Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS. Proc Natl Acad Sci U S A 2022; 119:e2113813119. [PMID: 35259014 PMCID: PMC8931230 DOI: 10.1073/pnas.2113813119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/β4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.
Collapse
|
38
|
Motor cortex plasticity response to acute cardiorespiratory exercise and intermittent theta-burst stimulation is attenuated in premanifest and early Huntington’s disease. Sci Rep 2022; 12:1104. [PMID: 35058470 PMCID: PMC8776762 DOI: 10.1038/s41598-021-04378-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
AbstractHuntington’s disease (HD) mouse models suggest that cardiovascular exercise may enhance neuroplasticity and delay disease signs, however, the effects of exercise on neuroplasticity in people with HD are unknown. Using a repeated-measures experimental design, we compared the effects of a single bout of high-intensity exercise, moderate-intensity exercise, or rest, on motor cortex synaptic plasticity in 14 HD CAG-expanded participants (9 premanifest and 5 early manifest) and 20 CAG-healthy control participants, using transcranial magnetic stimulation. Measures of cortico-motor excitability, short-interval intracortical inhibition and intracortical facilitation were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). HD participants showed less inhibition at baseline compared to controls. Whereas the control group showed increased excitability and facilitation following high-intensity exercise and iTBS, the HD group showed no differences in neuroplasticity responses following either exercise intensity or rest, with follow-up Bayesian analyses providing consistent evidence that these effects were absent in the HD group. These findings indicate that exercise-induced synaptic plasticity mechanisms in response to acute exercise may be attenuated in HD, and demonstrate the need for future research to further investigate exercise and plasticity mechanisms in people with HD.
Collapse
|
39
|
Pasniceanu IS, Atwal MS, Souza CDS, Ferraiuolo L, Livesey MR. Emerging Mechanisms Underpinning Neurophysiological Impairments in C9ORF72 Repeat Expansion-Mediated Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Front Cell Neurosci 2021; 15:784833. [PMID: 34975412 PMCID: PMC8715728 DOI: 10.3389/fncel.2021.784833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Matthew R. Livesey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
41
|
Rier L, Zamyadi R, Zhang J, Emami Z, Seedat ZA, Mocanu S, Gascoyne LE, Allen CM, Scadding JW, Furlong PL, Gooding-Williams G, Woolrich MW, Evangelou N, Brookes MJ, Dunkley BT. Mild traumatic brain injury impairs the coordination of intrinsic and motor-related neural dynamics. NEUROIMAGE-CLINICAL 2021; 32:102841. [PMID: 34653838 PMCID: PMC8517919 DOI: 10.1016/j.nicl.2021.102841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
MTBI is poorly understood and lacks objective diagnostic and prognostic tools. Abnormal neural oscillations are found in subjects with a history of mTBI. We identify transient bursts in MEG data using a Hidden Markov Model. We explain a deficit in beta connectivity and power in terms of transient bursts. Data-driven feature selection identifies symptom-relevant functional connections.
Mild traumatic brain injury (mTBI) poses a considerable burden on healthcare systems. Whilst most patients recover quickly, a significant number suffer from sequelae that are not accompanied by measurable structural damage. Understanding the neural underpinnings of these debilitating effects and developing a means to detect injury, would address an important unmet clinical need. It could inform interventions and help predict prognosis. Magnetoencephalography (MEG) affords excellent sensitivity in probing neural function and presents significant promise for assessing mTBI, with abnormal neural oscillations being a potential specific biomarker. However, growing evidence suggests that neural dynamics are (at least in part) driven by transient, pan-spectral bursting and in this paper, we employ this model to investigate mTBI. We applied a Hidden Markov Model to MEG data recorded during resting state and a motor task and show that previous findings of diminished intrinsic beta amplitude in individuals with mTBI are largely due to the reduced beta band spectral content of bursts, and that diminished beta connectivity results from a loss in the temporal coincidence of burst states. In a motor task, mTBI results in diminished burst amplitude, altered modulation of burst probability during movement, and a loss in connectivity in motor networks. These results suggest that, mechanistically, mTBI disrupts the structural framework underlying neural synchrony, which impairs network function. Whilst the damage may be too subtle for structural imaging to see, the functional consequences are detectable and persist after injury. Our work shows that mTBI impairs the dynamic coordination of neural network activity and proposes a potent new method for understanding mTBI.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Rouzbeh Zamyadi
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Jing Zhang
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Zahra Emami
- Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zelekha A Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Sergiu Mocanu
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Lauren E Gascoyne
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Christopher M Allen
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - John W Scadding
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Paul L Furlong
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | | | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Warneford Hospital, University of Oxford, Oxford, UK
| | - Nikos Evangelou
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Benjamin T Dunkley
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada; Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Ica R, Munteanu CV, Vukelic Z, Zamfir AD. High-resolution mass spectrometry reveals a complex ganglioside pattern and novel polysialylated structures associated with the human motor cortex. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:205-214. [PMID: 34516313 DOI: 10.1177/14690667211040912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have developed here a superior methodology based on high-resolution mass spectrometry for screening and fragmentation analysis of gangliosides extracted and purified from the human motor cortex . The experiments, conducted on a nanoelectrospray Orbitrap mass spectroscope in the negative ion mode, allowed the discrimination in the native mixture extracted from human motor cortex of no less than 83 different gangliosides, which represents the highest number of structures identified so far in this brain region. The spectral data, acquired in high-resolution mass spectrometry mode with a remarkable sensitivity and an average mass accuracy of 4.48 ppm, also show that the gangliosidome of motor cortex is generally characterized by species exhibiting a much higher degree of sialylation than previously known. Motor cortex was found dominated by complex structures with a sialylation degree ≥3, exhibiting long saccharide chains, in the G1 class. Fucogangliosides and species with the glycan chain elongated by either O-acetylation and/or acetate anion attachments were also detected; the later modification was for the first time discovered in this brain region. Of major significance is the identification of hepta and octasialylated species of GS1 and GO1 type, which are among the structures with the longest oligosaccharide chain discovered so far in the human brain. In the last stage of research, tandem mass spectrometry performed by higher energy collision dissociation provided structural data documenting the occurrence of GT1b (d18:1/20:0) isomer in the human motor cortex.
Collapse
Affiliation(s)
- Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Romania
- Faculty of Physics, 124255West University of Timisoara, Romania
| | | | - Zeljka Vukelic
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Croatia
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Romania
- "Aurel Vlaicu"University of Arad, Romania
| |
Collapse
|
43
|
Berntson GG, Khalsa SS. Neural Circuits of Interoception. Trends Neurosci 2021; 44:17-28. [PMID: 33378653 DOI: 10.1016/j.tins.2020.09.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/30/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
The present paper considers recent progress in our understanding of the afferent/ascending neural pathways and neural circuits of interoception. Of particular note is the extensive role of rostral neural systems, including cortical systems, in the recognition of internal body states, and the reciprocal role of efferent/descending systems in the regulation of those states. Together these reciprocal interacting networks entail interoceptive circuits that play an important role in a broad range of functions beyond the homeostatic maintenance of physiological steady-states. These include the regulation of behavioral, cognitive, and affective processes across conscious and nonconscious levels of processing. We highlight recent advances and knowledge gaps that are important for accelerating progress in the study of interoception.
Collapse
Affiliation(s)
- Gary G Berntson
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
44
|
Owjfard M, Taghadosi Z, Bigdeli MR, Safari A, Zarifkar A, Borhani-Haghighi A, Namavar MR. Effect of nicorandil on the spatial arrangement of primary motor cortical neurons in the sub-acute phase of stroke in a rat model. J Chem Neuroanat 2021; 117:102000. [PMID: 34233211 DOI: 10.1016/j.jchemneu.2021.102000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Ischemic stroke remains a major cause of disability and death worldwide. The density and the spatial distribution of the primary motor (M1) cortical neurons are important in signal transmission and control the movement-related functions. Recently, the neuroprotective effect of nicorandil in cerebral ischemia was described through its anti-apoptosis, antioxidant and anti-inflammatory properties. This study aimed to determine the effects of nicorandil on the neurobehavioral outcome, infarct size, and density, and spatial distribution of M1 cortical neurons after cerebral ischemia. METHODS Thirty Sprague-Dawley rats were randomly divided into three groups. Sham underwent surgery without middle cerebral artery occlusion (MCAO) and drug. The MCAO and treatment groups after MCAO received saline or nicorandil 2, 24, 48, and 72 h after the induction of brain ischemia. Neurobehavioral tests were performed, brains removed, sectioned, and stained by 2,3,5-triphenyltetrazolium chloride (TTC) to estimate the size of the infarction and Nissl staining to evaluate the numerical density, mean area, and the distribution pattern of M1 cortical neurons, using Voronoi spatial tessellation. RESULTS Although nicorandil treatment significantly decreased the neurological deficits and density of neuronal neighbors, it could not preserve the normal regular spatial distributions of M1 cortical neurons after MCAO. It also could not significantly improve motor function or reduce ischemic lesion size. CONCLUSIONS Treatment using the present dose of nicorandil during sub-acute ischemic stroke could not increase neuronal density or preserve the normal regular spatial distributions after MCAO. However, it had beneficial effects on neurobehavioral and motor function and somewhat reduced ischemic lesion size.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
45
|
Reply to 'Topographical layer imaging as a tool to track neurodegenerative disease spread in M1'. Nat Rev Neurosci 2021; 22:69. [PMID: 33154582 DOI: 10.1038/s41583-020-00405-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Schreiber S, Northall A, Weber M, Vielhaber S, Kuehn E. Topographical layer imaging as a tool to track neurodegenerative disease spread in M1. Nat Rev Neurosci 2021; 22:68-69. [PMID: 33154581 DOI: 10.1038/s41583-020-00404-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Alicia Northall
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miriam Weber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
47
|
Yang K, Zhao X, Wang C, Zeng C, Luo Y, Sun T. Circuit Mechanisms of L-DOPA-Induced Dyskinesia (LID). Front Neurosci 2021; 15:614412. [PMID: 33776634 PMCID: PMC7988225 DOI: 10.3389/fnins.2021.614412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
L-DOPA is the criterion standard of treatment for Parkinson disease. Although it alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–induced dyskinesia (LID). Several theoretical models including the firing rate model, the firing pattern model, and the ensemble model are proposed to explain the mechanisms of LID. The “firing rate model” proposes that decreasing the mean firing rates of the output nuclei of basal ganglia (BG) including the globus pallidus internal segment and substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing pattern model” claimed that abnormal firing pattern of a single unit activity and local field potentials may disturb the information processing in the BG, resulting in dyskinesia. The “ensemble model” described that dyskinesia symptoms might represent a distributed impairment involving many brain regions, but the number of activated neurons in the striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit mechanisms in driving LID symptoms has also been presented. LID is a multisystem disease that affects wide areas of the brain. Brain regions including the striatum, the pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are all involved in the pathophysiology of LID. In addition, although both amantadine and deep brain stimulation help reduce LID, these approaches have complications that limit their wide use, and a novel antidyskinetic drug is strongly needed; these require us to understand the circuit mechanism of LID more deeply.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Cheng Zeng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yan Luo
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
48
|
Cope TE, Weil RS, Düzel E, Dickerson BC, Rowe JB. Advances in neuroimaging to support translational medicine in dementia. J Neurol Neurosurg Psychiatry 2021; 92:263-270. [PMID: 33568448 PMCID: PMC8862738 DOI: 10.1136/jnnp-2019-322402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Advances in neuroimaging are ideally placed to facilitate the translation from progress made in cellular genetics and molecular biology of neurodegeneration into improved diagnosis, prevention and treatment of dementia. New positron emission tomography (PET) ligands allow one to quantify neuropathology, inflammation and metabolism in vivo safely and reliably, to examine mechanisms of human disease and support clinical trials. Developments in MRI-based imaging and neurophysiology provide complementary quantitative assays of brain function and connectivity, for the direct testing of hypotheses of human pathophysiology. Advances in MRI are also improving the quantitative imaging of vascular risk and comorbidities. In combination with large datasets, open data and artificial intelligence analysis methods, new informatics-based approaches are set to enable accurate single-subject inferences for diagnosis, prediction and treatment that have the potential to deliver precision medicine for dementia. Here, we show, through the use of critically appraised worked examples, how neuroimaging can bridge the gaps between molecular biology, neural circuits and the dynamics of the core systems that underpin complex behaviours. We look beyond traditional structural imaging used routinely in clinical care, to include ultrahigh field MRI (7T MRI), magnetoencephalography and PET with novel ligands. We illustrate their potential as safe, robust and sufficiently scalable to be viable for experimental medicine studies and clinical trials. They are especially informative when combined in multimodal studies, with model-based analyses to test precisely defined hypotheses.
Collapse
Affiliation(s)
- Thomas Edmund Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK .,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rimona Sharon Weil
- Dementia Research Centre, University College London, London, UK.,National Hospital for Neurology & Neurosurgery, Queen square, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Movement Disorders Centre, University College London, London, UK
| | - Emrah Düzel
- Otto-von-Guericke-University Magdeburg Institute of Cognitive Neurology and Dementia Research, Magdeburg, Sachsen-Anhalt, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.,Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - James Benedict Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
49
|
Genç B, Gautam M, Gözütok Ö, Dervishi I, Sanchez S, Goshu GM, Koçak N, Xie E, Silverman RB, Özdinler PH. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med 2021; 11:e336. [PMID: 33634973 PMCID: PMC7898037 DOI: 10.1002/ctm2.336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upper motor neurons (UMNs) are a key component of motor neuron circuitry. Their degeneration is a hallmark for diseases, such as hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), and amyotrophic lateral sclerosis (ALS). Currently there are no preclinical assays investigating cellular responses of UMNs to compound treatment, even for diseases of the UMNs. The basis of UMN vulnerability is not fully understood, and no compound has yet been identified to improve the health of diseased UMNs: two major roadblocks for building effective treatment strategies. METHODS Novel UMN reporter models, in which UMNs that are diseased because of misfolded superoxide dismutase protein (mSOD1) toxicity and TDP-43 pathology are labeled with eGFP expression, allow direct assessment of UMN response to compound treatment. Electron microscopy reveals very precise aspects of endoplasmic reticulum (ER) and mitochondrial damage. Administration of NU-9, a compound initially identified based on its ability to reduce mSOD1 toxicity, has profound impact on improving the health and stability of UMNs, as identified by detailed cellular and ultrastructural analyses. RESULTS Problems with mitochondria and ER are conserved in diseased UMNs among different species. NU-9 has drug-like pharmacokinetic properties. It lacks toxicity and crosses the blood brain barrier. NU-9 improves the structural integrity of mitochondria and ER, reduces levels of mSOD1, stabilizes degenerating UMN apical dendrites, improves motor behavior measured by the hanging wire test, and eliminates ongoing degeneration of UMNs that become diseased both because of mSOD1 toxicity and TDP-43 pathology, two distinct and important overarching causes of motor neuron degeneration. CONCLUSIONS Mechanism-focused and cell-based drug discovery approaches not only addressed key cellular defects responsible for UMN loss, but also identified NU-9, the first compound to improve the health of diseased UMNs, neurons that degenerate in ALS, HSP, PLS, and ALS/FTLD patients.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mukesh Gautam
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Öge Gözütok
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ina Dervishi
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Santana Sanchez
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Gashaw M. Goshu
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edward Xie
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Richard B. Silverman
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
| | - P. Hande Özdinler
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
- Mesulam Center for Cognitive Neurology and Alzheimer's DiseaseNorthwestern University, Feinberg School of MedicineChicagoIL60611
- Les Turner ALS CenterNorthwestern University, Feinberg School of MedicineChicagoIL60611
| |
Collapse
|
50
|
Molnar MJ, Molnar V, Fedor M, Csehi R, Acsai K, Borsos B, Grosz Z. Improving Mood and Cognitive Symptoms in Huntington's Disease With Cariprazine Treatment. Front Psychiatry 2021; 12:825532. [PMID: 35222108 PMCID: PMC8866559 DOI: 10.3389/fpsyt.2021.825532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
In Huntington's disease (HD), the main clinical symptoms include depression, apathy, cognitive deficits, motor deficiencies and involuntary movements. Cognitive, mood and behavioral changes may precede motor symptoms by up to 15 years. The treatment of these diverse symptoms is challenging. Tetrabenazine and deutetrabenazine are the only medications specifically approved for Huntington's chorea, but they do not affect the non-motor symptoms. For these, antidepressants, antipsychotics, and benzodiazepines have demonstrated benefit in some cases and can be used off-label. These drugs, due to sedative side effects, may negatively influence cognition. Sixteen patients having HD received a 12-week off-label cariprazine (CAR) treatment (1.5-3 mg/day). Cognitive performance and behavioral changes were measured by the Addenbrooke Cognitive Examination (ACE) test, the Cognitive and Behavioral part of the Unified Huntington's Disease Rating Scale (UHDRS), and the Beck Depression Inventory (BDI). Mixed model for repeated measures was fitted to the data, with terms of visit, baseline (BL) and their interaction. Cariprazine treatment resulted in the following changes from BL to week 12, respectively: the mean score of BDI decreased from 17.7 ± 10.7 to 10.0 ± 10.7 (p <0.0097), while the Behavioral Assessment score of the UHDRS decreased from 54.9 ± 11.3 to 32.5 ± 15.4 (p < 0.0001); ACE score increased from 75.1 ± 11.0 to 89.0 ± 9.3 (p < 0.0001); Cognitive Verbal Fluency score from 6.2 ± 2.5 to 7.7 ± 2.7 (p < 0.0103); Symbol Digit Test from 9.2 ± 6.9 to 12.3 ± 8.9 (p < 0.0009). Mild akathisia was the most frequent side effect, presenting in 2 out of 16 patients (12.5%). We conclude that CAR had a positive effect on depressive mood, apathy and cognitive functions in patients with early stage of HD. Based on the neurobiological basis of these symptoms, CAR can improve the dopamine imbalance of the prefrontal cortex. This draws attention to the transdiagnostic approach which supports the further understanding of the similar symptomatology of different neuropsychiatric disorders and helps to identify new indications of pharmaceutical compounds.
Collapse
Affiliation(s)
- Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University Budapest, Budapest, Hungary
| | - Viktor Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University Budapest, Budapest, Hungary
| | - Mariann Fedor
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University Budapest, Budapest, Hungary
| | - Reka Csehi
- Global Medical Division, Richter Gedeon Plc., Budapest, Hungary
| | - Karoly Acsai
- Global Medical Division, Richter Gedeon Plc., Budapest, Hungary
| | - Beata Borsos
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University Budapest, Budapest, Hungary
| | - Zoltan Grosz
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|