1
|
Masset P, Tano P, Kim HR, Malik AN, Pouget A, Uchida N. Multi-timescale reinforcement learning in the brain. Nature 2025:10.1038/s41586-025-08929-9. [PMID: 40468072 DOI: 10.1038/s41586-025-08929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/21/2025] [Indexed: 06/11/2025]
Abstract
To thrive in complex environments, animals and artificial agents must learn to act adaptively to maximize fitness and rewards. Such adaptive behaviour can be learned through reinforcement learning1, a class of algorithms that has been successful at training artificial agents2-5 and at characterizing the firing of dopaminergic neurons in the midbrain6-8. In classical reinforcement learning, agents discount future rewards exponentially according to a single timescale, known as the discount factor. Here we explore the presence of multiple timescales in biological reinforcement learning. We first show that reinforcement agents learning at a multitude of timescales possess distinct computational benefits. Next, we report that dopaminergic neurons in mice performing two behavioural tasks encode reward prediction error with a diversity of discount time constants. Our model explains the heterogeneity of temporal discounting in both cue-evoked transient responses and slower timescale fluctuations known as dopamine ramps. Crucially, the measured discount factor of individual neurons is correlated across the two tasks, suggesting that it is a cell-specific property. Together, our results provide a new paradigm for understanding functional heterogeneity in dopaminergic neurons and a mechanistic basis for the empirical observation that humans and animals use non-exponential discounts in many situations9-12, and open new avenues for the design of more-efficient reinforcement learning algorithms.
Collapse
Affiliation(s)
- Paul Masset
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Psychology, McGill University, Montréal, Québec, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montréal, Québec, Canada.
| | - Pablo Tano
- Department of Basic Neuroscience, Université de Genève, Geneva, Switzerland
| | - HyungGoo R Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Athar N Malik
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| | - Alexandre Pouget
- Department of Basic Neuroscience, Université de Genève, Geneva, Switzerland.
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Lee S, Kable JW, Jung WH. Altering subjective time perception leads to correlated changes in neural activity and delay discounting. Neuroimage 2025; 313:121244. [PMID: 40306345 DOI: 10.1016/j.neuroimage.2025.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 03/18/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025] Open
Abstract
Several accounts of delay discounting suggest that subjective time perception contributes to individually varying discount rates. That is, one may seem impatient if their subjective perception of delay is longer than others' perception of it. Here we build upon the behavioral and neural research on time perception, and we investigate the effects of manipulating an individual's subjective time perception on their discount rates and neural activity. Using a novel time-counting task, we found that participants' discount rates are affected by our manipulation of time perception and that neural activity also correlates with our manipulation in brain regions, such as the anterior insula and the superior temporal gyri, which have been implicated in time perception. We link these behavioral and neural findings together by showing that the degree of neural activity change in response to our manipulation is predictive of the degree of change in the participants' discount rates.
Collapse
Affiliation(s)
- Sangil Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wi Hoon Jung
- Department of Psychology, Gachon University, Gyeonggi-do, South Korea.
| |
Collapse
|
3
|
Liu X, Zhang Z, Gan L, Yu P, Dai J. Medium Spiny Neurons Mediate Timing Perception in Coordination with Prefrontal Neurons in Primates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412963. [PMID: 39932056 PMCID: PMC12021029 DOI: 10.1002/advs.202412963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Indexed: 04/26/2025]
Abstract
Timing perception is a fundamental cognitive function that allows organisms to navigate their environment effectively, encompassing both prospective and retrospective timing. Despite significant advancements in understanding how the brain processes temporal information, the neural mechanisms underlying these two forms of timing remain largely unexplored. In this study, it aims to bridge this knowledge gap by elucidating the functional roles of various neuronal populations in the striatum and prefrontal cortex (PFC) in shaping subjective experiences of time. Utilizing a large-scale electrode array, it recorded responses from over 3000 neurons in the striatum and PFC of macaque monkeys during timing tasks. The analysis classified neurons into distinct groups and revealed that retrospective and prospective timings are governed by separate neural processes. Specifically, this study demonstrates that medium spiny neurons (MSNs) in the striatum play a crucial role in facilitating these timing processes. Through cell-type-specific manipulation, it identified D2-MSNs as the primary contributors to both forms of timing. Additionally, the findings indicate that effective processing of timing requires coordination between the PFC and the striatum. In summary, this study advances the understanding of the neural foundations of timing perception and highlights its behavioral implications.
Collapse
Affiliation(s)
- Xinhe Liu
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease InstitutesShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhiting Zhang
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease InstitutesShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Lu Gan
- Research Center for Medical Artificial IntelligenceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Panke Yu
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational MedicineShenzhen‐Hong Kong Institutes of Brain ScienceShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease InstitutesShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Garvert AC, Bieler M, Witoelar A, Vervaeke K. Area-specific encoding of temporal information in the neocortex. Cell Rep 2025; 44:115363. [PMID: 40022730 DOI: 10.1016/j.celrep.2025.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Episodic memory requires remembering the temporal sequence of events, a process attributed to hippocampal "time cells." However, the distributed nature of brain areas supporting episodic memory suggests that temporal representations may extend beyond the hippocampus. To investigate this possibility, we trained mice to remember the identity of an odor for a specific duration. Using mesoscale two-photon imaging of neuronal activity across the neocortex, we reveal a striking area-specific temporal representation. The retrosplenial cortex (RSC), a hippocampal target area, exhibits time-dependent sequential neuronal firing that encodes both odor identity and elapsed time, with decreasing accuracy over time. By contrast, temporal coding is far less prominent in areas surrounding the RSC, including the posterior parietal cortex and visual, somatosensory, and motor areas, highlighting functional specialization. Our results establish the RSC as a key temporal processing hub for episodic memory, supporting conjunctive "what" and "when" coding models.
Collapse
Affiliation(s)
- Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Malte Bieler
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Aree Witoelar
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Grabenhorst M, Poeppel D, Michalareas G. Neural signatures of temporal anticipation in human cortex represent event probability density. Nat Commun 2025; 16:2602. [PMID: 40091046 PMCID: PMC11911442 DOI: 10.1038/s41467-025-57813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Temporal prediction is a fundamental function of neural systems. Recent results show that humans anticipate future events by calculating probability density functions, rather than hazard rates. However, direct neural evidence for this hypothesized mechanism is lacking. We recorded neural activity using magnetoencephalography as participants anticipated auditory and visual events distributed in time. We show that temporal anticipation, measured as reaction times, approximates the event probability density function, but not hazard rate. Temporal anticipation manifests as spatiotemporally patterned activity in three anatomically and functionally distinct parieto-temporal and sensorimotor cortical areas. Each of these areas revealed a marked neural signature of anticipation: Prior to sensory cues, activity in a specific frequency range of neural oscillations, spanning alpha and beta ranges, encodes the event probability density function. These neural signals predicted reaction times to imminent sensory cues. These results demonstrate that supra-modal representations of probability density across cortex underlie the anticipation of future events.
Collapse
Affiliation(s)
- Matthias Grabenhorst
- Department of Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany.
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
| | - David Poeppel
- New York University, 6 Washington Place, New York, NY, USA
| | - Georgios Michalareas
- Department of Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
- CoBIC, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Gielow MR, Headley DB, Herzallah MM, Paré D. Common Neocortical and Hippocampal Correlates of Performance Errors in a Timing Task. J Neurosci 2025; 45:e2003232024. [PMID: 39794130 PMCID: PMC11823390 DOI: 10.1523/jneurosci.2003-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
We aimed to identify the neuronal correlates of performance errors in a difficult timing task. Male rats were trained to seek rewards and avoid shocks depending on the position of photic conditioned stimuli (CS-R and CS-S, respectively). Then, they were exposed to conflict trials where they had to time the interval between the CS-R and CS-S to obtain rewards while avoiding footshocks. There were pronounced individual differences in behavioral strategies on conflict trials. When presented with a CS-S, some rats quickly left the shock sector, forsaking the option of earning a reward, and rarely got shocked. Others earned rewards by delaying avoidance based on the interval between the CS-R and CS-S but were shocked more often. The probability rats would fail a given trial was not stable across trials as rats engaged in incorrect trial runs that were longer than expected by chance. Since this finding suggested that rats shift between two quasi-stable processing modes, we next examined the neuronal correlates of errors. Incorrect trials coincided with reduced firing rates in CA1 and sensory cortical neurons. Moreover, trial-to-trial variations in the firing rates of simultaneously recorded neurons were more strongly correlated on error than correct trials. Last, the power of low-frequency local field potential oscillations was higher during incorrect trials. The finding that the neuronal correlates of correct and error trials are similar in the hippocampus and neocortex lead us to hypothesize that they depend on changes in the activity of common afferents, such as neuromodulatory inputs.
Collapse
Affiliation(s)
- Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
7
|
Li Y, Yin W, Wang X, Li J, Zhou S, Ma C, Yuan P, Li B. Stable sequential dynamics in prefrontal cortex represents subjective estimation of time. eLife 2024; 13:RP96603. [PMID: 39660591 PMCID: PMC11634065 DOI: 10.7554/elife.96603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified 'sequential firing' and 'activity ramps' as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats' timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.
Collapse
Affiliation(s)
- Yiting Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wenqu Yin
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xin Wang
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jiawen Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- The Second Clinical Medicine School of Nanchang UniversityNanchangChina
| | - Shanglin Zhou
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOEFrontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Chaolin Ma
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Peng Yuan
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baoming Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Brain Science and Department of Physiology, School of Basic Medical Science, Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
8
|
Wang C, Lee H, Rao G, Knierim JJ. Multiplexing of temporal and spatial information in the lateral entorhinal cortex. Nat Commun 2024; 15:10533. [PMID: 39627238 PMCID: PMC11615229 DOI: 10.1038/s41467-024-54932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the mechanisms by which LEC integrates spatial and temporal information remain elusive. Here, we recorded LEC neurons while male rats performed one-dimensional tasks. Many LEC cells displayed spatial firing fields and demonstrated selectivity for traveling directions. Furthermore, some LEC neurons changed the firing rates of their spatial rate maps during a session (rate remapping). Importantly, this temporal modulation was consistent across sessions, even when the spatial environment was altered. Notably, the strength of temporal modulation was greater in LEC compared to other brain regions, such as the medial entorhinal cortex, CA1, and CA3. Thus, we demonstrate spatial rate mapping in LEC neurons, which may serve as a coding mechanism for temporal context, and allow for flexible multiplexing of spatial and temporal information.
Collapse
Affiliation(s)
- Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Li B, Lowe K, Chandra S, Chen G, Eldridge MAG, Richmond BJ. Dissociation between area TE and rhinal cortex in accuracy vs. speed of visual categorization in rhesus monkeys. Front Behav Neurosci 2024; 18:1481478. [PMID: 39640511 PMCID: PMC11617191 DOI: 10.3389/fnbeh.2024.1481478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
In real-world vision, objects may appear for a short period, such as in conjunction with visual search. Presumably, this puts a premium on rapid categorization. We designed a visual categorization task cued by briefly presented images to study how visual categorization is processed in an ethologically relevant context. We compared the performance of monkeys with bilateral area TE lesions, and those with bilateral rhinal cortex lesions, to control animals. TE lesions impaired the accuracy but not the speed of visual categorization. In contrast, rhinal cortex lesions did not affect the accuracy but reduced the speed of visual categorization. A generalized drift-diffusion model (GDDM) with collapsing bounds was fitted to the data. The drift rate was equivalent across all groups, but the decision bounds collapsed more slowly in the rhinal group than in the other two groups. This suggests that, although evidence is accumulated at the same rate in all groups, the rhinal lesion results in slower decision-making.
Collapse
Affiliation(s)
- Bing Li
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaleb Lowe
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samarth Chandra
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Mark A. G. Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Barry J. Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Rodriguez-Larios J, Rassi E, Mendoza G, Merchant H, Haegens S. Common neural mechanisms supporting time judgements in humans and monkeys. PeerJ 2024; 12:e18477. [PMID: 39583107 PMCID: PMC11583905 DOI: 10.7717/peerj.18477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
There has been an increasing interest in identifying the biological underpinnings of human time perception, for which purpose research in non-human primates (NHP) is common. Although previous work, based on behaviour, suggests that similar mechanisms support time perception across species, the neural correlates of time estimation in humans and NHP have not been directly compared. In this study, we assess whether brain evoked responses during a time categorization task are similar across species. Specifically, we assess putative differences in post-interval evoked potentials as a function of perceived duration in human EEG (N = 24) and local field potential (LFP) and spike recordings in pre-supplementary motor area (pre-SMA) of one monkey. Event-related potentials (ERPs) differed significantly after the presentation of the temporal interval between "short" and "long" perceived durations in both species, even when the objective duration of the stimuli was the same. Interestingly, the polarity of the reported ERPs was reversed for incorrect trials (i.e., the ERP of a "long" stimulus looked like the ERP of a "short" stimulus when a time categorization error was made). Hence, our results show that post-interval potentials reflect the perceived (rather than the objective) duration of the presented time interval in both NHP and humans. In addition, firing rates in monkey's pre-SMA also differed significantly between short and long perceived durations and were reversed in incorrect trials. Together, our results show that common neural mechanisms support time categorization in NHP and humans, thereby suggesting that NHP are a good model for investigating human time perception.
Collapse
Affiliation(s)
| | - Elie Rassi
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | | | | | - Saskia Haegens
- Department of Psychiatry, Columbia University, New York, United States of America
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, United States of America
| |
Collapse
|
11
|
Knudstrup SG, Martinez C, Gavornik JP. Learned response dynamics reflect stimulus timing and encode temporal expectation violations in superficial layers of mouse V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576433. [PMID: 38328092 PMCID: PMC10849505 DOI: 10.1101/2024.01.20.576433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The ability to recognize ordered event sequences is a fundamental component of sensory cognition and underlies the capacity to generate temporally specific expectations of future events based on previous experience. Various lines of evidence suggest that the primary visual cortex participates in some form of predictive processing, though many details remain ambiguous. Here we use two-photon calcium imaging in layer 2/3 (L2/3) of the mouse primary visual cortex (V1) to study changes in neural activity under a multi-day sequence learning paradigm with respect to prediction error responses, stimulus encoding, and time. We find increased neural activity at the time an expected, but omitted, stimulus would have occurred but no significant prediction error responses following an unexpected stimulus substitution. Sequence representations became sparser and less correlated with training, although these changes had no effect on decoding accuracy of stimulus identity or timing. Additionally, we find that experience modifies the temporal structure of stimulus responses to produce a bias towards predictive stimulus-locked activity. Finally, we observe significant temporal structure during intersequence rest periods that was largely unchanged by training.
Collapse
Affiliation(s)
- Scott G Knudstrup
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215
- Neurophotonics Center, Boston University, Boston, MA, 02215
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215
| | - Catalina Martinez
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215
- Neurophotonics Center, Boston University, Boston, MA, 02215
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215
| |
Collapse
|
12
|
Silva AD, Laje R. Perturbation context in paced finger tapping tunes the error-correction mechanism. Sci Rep 2024; 14:27473. [PMID: 39523377 PMCID: PMC11551152 DOI: 10.1038/s41598-024-78786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Sensorimotor synchronization (SMS) is the mainly specifically human ability to move in sync with a periodic external stimulus, as in keeping pace with music. The most common experimental paradigm to study its largely unknown underlying mechanism is the paced finger-tapping task, where a participant taps to a periodic sequence of brief stimuli. Contrary to reaction time, this task involves temporal prediction because the participant needs to trigger the motor action in advance for the tap and the stimulus to occur simultaneously, then an error-correction mechanism takes past performance as input to adjust the following prediction. In a different, simpler task, it has been shown that exposure to a distribution of individual temporal intervals creates a "temporal context" that can bias the estimation/production of a single target interval. As temporal estimation and production are also involved in SMS, we asked whether a paced finger-tapping task with period perturbations would show any time-related context effect. In this work we show that a perturbation context can indeed be generated by exposure to period perturbations during paced finger tapping, affecting the shape and size of the resynchronization curve. Response asymmetry is also affected, thus evidencing an interplay between context and intrinsic nonlinearities of the correction mechanism. We conclude that perturbation context calibrates the underlying error-correction mechanism in SMS.
Collapse
Affiliation(s)
- Ariel D Silva
- Sensorimotor Dynamics Lab, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- CONICET, Buenos Aires, Argentina
| | - Rodrigo Laje
- Sensorimotor Dynamics Lab, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
- CONICET, Buenos Aires, Argentina.
- Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Teghil A. Interoceptive and Bodily Processing in Prospective and Retrospective Timing. Curr Top Behav Neurosci 2024. [PMID: 39436628 DOI: 10.1007/7854_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This chapter reviews some directions along which Craig's proposal of subjective time as emergent from interoceptive and bodily dynamics allows to frame recent findings on prospective and retrospective time processing. Behavioral and neuroimaging evidence from prospective timing studies demonstrates that an interoceptive-insular system may support the development of a primary representation of time in the context of large-scale networks involved in duration processing. Studies showing a tight link between episodic memory and interoceptive, emotional, and sensorimotor states further provide insights on processes supporting retrospective timing. These lines of evidence show that acknowledging its dependence on bodily states is most likely a crucial step toward a mechanistic understanding of time perception.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
14
|
Stojić S, Nadasdy Z. Event as the central construal of psychological time in humans. Front Psychol 2024; 15:1402903. [PMID: 39359968 PMCID: PMC11445672 DOI: 10.3389/fpsyg.2024.1402903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Time is a fundamental dimension of our perception and mental construction of reality. It enables resolving changes in our environment without a direct sensory representation of elapsed time. Therefore, the concept of time is inferential by nature, but the units of subjective time that provide meaningful segmentation of the influx of sensory input remain to be determined. In this review, we posit that events are the construal instances of time perception as they provide a reproducible and consistent segmentation of the content. In that light, we discuss the implications of this proposal by looking at "events" and their role in subjective time experience from cultural anthropological and ontogenetic perspectives, as well as their relevance for episodic memory. Furthermore, we discuss the significance of "events" for the two critical aspects of subjective time-duration and order. Because segmentation involves parsing event streams according to causal sequences, we also consider the role of causality in developing the concept of directionality of mental timelines. We offer a fresh perspective on representing past and future events before age 5 by an egocentric bi-directional timeline model before acquiring the allocentric concept of absolute time. Finally, we illustrate how the relationship between events and durations can resolve contradictory experimental results. Although "time" warrants a comprehensive interdisciplinary approach, we focus this review on "time perception", the experience of time, without attempting to provide an all encompassing overview of the rich philosophical, physical, psychological, cognitive, linguistic, and neurophysiological context.
Collapse
Affiliation(s)
- Sandra Stojić
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Nadasdy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
- Zeto, Inc., Santa Clara, CA, United States
| |
Collapse
|
15
|
Yang Z, Inagaki M, Gerfen CR, Fontolan L, Inagaki HK. Integrator dynamics in the cortico-basal ganglia loop underlie flexible motor timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601348. [PMID: 39005437 PMCID: PMC11244898 DOI: 10.1101/2024.06.29.601348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Flexible control of motor timing is crucial for behavior. Before volitional movement begins, the frontal cortex and striatum exhibit ramping spiking activity, with variable ramp slopes anticipating movement onsets. This activity in the cortico-basal ganglia loop may function as an adjustable 'timer,' triggering actions at the desired timing. However, because the frontal cortex and striatum share similar ramping dynamics and are both necessary for timing behaviors, distinguishing their individual roles in this timer function remains challenging. To address this, we conducted perturbation experiments combined with multi-regional electrophysiology in mice performing a flexible lick-timing task. Following transient silencing of the frontal cortex, cortical and striatal activity swiftly returned to pre-silencing levels and resumed ramping, leading to a shift in lick timing close to the silencing duration. Conversely, briefly inhibiting the striatum caused a gradual decrease in ramping activity in both regions, with ramping resuming from post-inhibition levels, shifting lick timing beyond the inhibition duration. Thus, inhibiting the frontal cortex and striatum effectively paused and rewound the timer, respectively. These findings suggest the striatum is a part of the network that temporally integrates input from the frontal cortex and generates ramping activity that regulates motor timing.
Collapse
|
16
|
Rodriguez-Larios J, Rassi E, Mendoza G, Merchant H, Haegens S. Common neural mechanisms supporting time judgements in humans and monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591075. [PMID: 38712259 PMCID: PMC11071527 DOI: 10.1101/2024.04.25.591075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
There has been an increasing interest in identifying the biological underpinnings of human time perception, for which purpose research in non-human primates (NHP) is common. Although previous work, based on behaviour, suggests that similar mechanisms support time perception across species, the neural correlates of time estimation in humans and NHP have not been directly compared. In this study, we assess whether brain evoked responses during a time categorization task are similar across species. Specifically, we assess putative differences in post-interval evoked potentials as a function of perceived duration in human EEG (N = 24) and local field potential (LFP) and spike recordings in pre-supplementary motor area (pre-SMA) of one monkey. Event-related potentials (ERPs) differed significantly after the presentation of the temporal interval between "short" and "long" perceived durations in both species, even when the objective duration of the stimuli was the same. Interestingly, the polarity of the reported ERPs was reversed for incorrect trials (i.e., the ERP of a "long" stimulus looked like the ERP of a "short" stimulus when a time categorization error was made). Hence, our results show that post-interval potentials reflect the perceived (rather than the objective) duration of the presented time interval in both NHP and humans. In addition, firing rates in monkey's pre-SMA also differed significantly between short and long perceived durations and were reversed in incorrect trials. Together, our results show that common neural mechanisms support time categorization in NHP and humans, thereby suggesting that NHP are a good model for investigating human time perception.
Collapse
Affiliation(s)
| | - Elie Rassi
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Queretaro, Mexico
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Queretaro, Mexico
| | - Saskia Haegens
- Department of Psychiatry, Columbia University, New York, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, USA
| |
Collapse
|
17
|
Cropper SJ, Little DR, Xu L, Bruno AM, Johnston A. Measuring the perception and metacognition of time. J Vis 2024; 24:5. [PMID: 38506794 PMCID: PMC10960227 DOI: 10.1167/jov.24.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
The ability of humans to identify and reproduce short time intervals (in the region of a second) may be affected by many factors ranging from the gender and personality of the individual observer, through the attentional state, to the precise spatiotemporal structure of the stimulus. The relative roles of these very different factors are a challenge to describe and define; several methodological approaches have been used to achieve this to varying degrees of success. Here we describe and model the results of a paradigm affording not only a first-order measurement of the perceived duration of an interval but also a second-order metacognitive judgement of perceived time. This approach, we argue, expands the form of the data generally collected in duration-judgements and allows more detailed comparison of psychophysical behavior to the underlying theory. We also describe a hierarchical Bayesian measurement model that performs a quantitative analysis of the trial-by-trial data calculating the variability of the temporal estimates and the metacognitive judgments allowing direct comparison between an actual and an ideal observer. We fit the model to data collected for judgements of 750 ms (bisecting 1500 ms) and 1500 ms (bisecting 3000 ms) intervals across three stimulus modalities (visual, audio, and audiovisual). This enhanced form of data on a given interval judgement and the ability to track its progression on a trial-by-trial basis offers a way of looking at the different roles that subject-based, task-based and stimulus-based factors have on the perception of time.
Collapse
Affiliation(s)
- Simon J Cropper
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Daniel R Little
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Liheng Xu
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Aurelio M Bruno
- Department of Psychology, University of York, York, UK
- School of Psychology and Vision Sciences, University of Leicester, Leicester, UK
| | - Alan Johnston
- Department of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Reinartz S, Fassihi A, Ravera M, Paz L, Pulecchi F, Gigante M, Diamond ME. Direct contribution of the sensory cortex to the judgment of stimulus duration. Nat Commun 2024; 15:1712. [PMID: 38402290 PMCID: PMC10894222 DOI: 10.1038/s41467-024-45970-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Decision making frequently depends on monitoring the duration of sensory events. To determine whether, and how, the perception of elapsed time derives from the neuronal representation of the stimulus itself, we recorded and optogenetically modulated vibrissal somatosensory cortical activity as male rats judged vibration duration. Perceived duration was dilated by optogenetic excitation. A second set of rats judged vibration intensity; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway both to time and to stimulus feature processing. A model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time successfully replicated rats' choices. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself, suggesting that the experience of time may be further investigated with the toolbox of sensory coding.
Collapse
Affiliation(s)
- Sebastian Reinartz
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Brain & Sound Lab, Department of Biomedicine, Basel University, 4056, Basel, Switzerland
| | - Arash Fassihi
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maria Ravera
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Luciano Paz
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Francesca Pulecchi
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Marco Gigante
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mathew E Diamond
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy.
| |
Collapse
|
19
|
Wang C, Lee H, Rao G, Knierim JJ. Multiplexing of temporal and spatial information in the lateral entorhinal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578307. [PMID: 38352543 PMCID: PMC10862918 DOI: 10.1101/2024.01.31.578307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the specific mechanism by which LEC integrates spatial and temporal information remains elusive. Here, we recorded LEC neurons while rats performed foraging and shuttling behaviors on one-dimensional, linear or circular tracks. Unlike open-field foraging tasks, many LEC cells displayed spatial firing fields in these tasks and demonstrated selectivity for traveling directions. Furthermore, some LEC neurons displayed changes in the firing rates of their spatial rate maps during a session, a phenomenon referred to as rate remapping. Importantly, this temporal modulation was consistent across sessions, even when the spatial environment was altered. Notably, the strength of temporal modulation was found to be greater in LEC compared to other brain regions, such as the medial entorhinal cortex (MEC), CA1, and CA3. Thus, the spatial rate mapping observed in LEC neurons may serve as a coding mechanism for temporal context, allowing for flexible multiplexing of spatial and temporal information.
Collapse
Affiliation(s)
- Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - James J. Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
- Lead contact
| |
Collapse
|
20
|
Lamprou-Kokolaki M, Nédélec Y, Lhuillier S, van Wassenhove V. Distinctive features of experiential time: Duration, speed and event density. Conscious Cogn 2024; 118:103635. [PMID: 38219402 DOI: 10.1016/j.concog.2024.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
William James's use of "time in passing" and "stream of thoughts" may be two sides of the same coin that emerge from the brain segmenting the continuous flow of information into discrete events. Herein, we investigated how the density of events affects two temporal experiences: the felt duration and speed of time. Using a temporal bisection task, participants classified seconds-long videos of naturalistic scenes as short or long (duration), or slow or fast (passage of time). Videos contained a varying number and type of events. We found that a large number of events lengthened subjective duration and accelerated the felt passage of time. Surprisingly, participants were also faster at estimating their felt passage of time compared to duration. The perception of duration scaled with duration and event density, whereas the felt passage of time scaled with the rate of change. Altogether, our results suggest that distinct mechanisms underlie these two experiential times.
Collapse
Affiliation(s)
- Marianna Lamprou-Kokolaki
- CEA, DRF/Joliot, NeuroSpin; INSERM, Cognitive Neuroimaging Unit; Université Paris-Saclay, F-91191 Gif/Yvette, France.
| | - Yvan Nédélec
- CEA, DRF/Joliot, NeuroSpin; INSERM, Cognitive Neuroimaging Unit; Université Paris-Saclay, F-91191 Gif/Yvette, France
| | - Simon Lhuillier
- LAPEA, Université Gustave Eiffel / Université de Paris, F-7800 Versailles, France
| | - Virginie van Wassenhove
- CEA, DRF/Joliot, NeuroSpin; INSERM, Cognitive Neuroimaging Unit; Université Paris-Saclay, F-91191 Gif/Yvette, France
| |
Collapse
|
21
|
Cheng S, Chen S, Glasauer S, Keeser D, Shi Z. Neural mechanisms of sequential dependence in time perception: the impact of prior task and memory processing. Cereb Cortex 2024; 34:bhad453. [PMID: 38037371 DOI: 10.1093/cercor/bhad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Our perception and decision-making are susceptible to prior context. Such sequential dependence has been extensively studied in the visual domain, but less is known about its impact on time perception. Moreover, there are ongoing debates about whether these sequential biases occur at the perceptual stage or during subsequent post-perceptual processing. Using functional magnetic resonance imaging, we investigated neural mechanisms underlying temporal sequential dependence and the role of action in time judgments across trials. Participants performed a timing task where they had to remember the duration of green coherent motion and were cued to either actively reproduce its duration or simply view it passively. We found that sequential biases in time perception were only evident when the preceding task involved active duration reproduction. Merely encoding a prior duration without reproduction failed to induce such biases. Neurally, we observed activation in networks associated with timing, such as striato-thalamo-cortical circuits, and performance monitoring networks, particularly when a "Response" trial was anticipated. Importantly, the hippocampus showed sensitivity to these sequential biases, and its activation negatively correlated with the individual's sequential bias following active reproduction trials. These findings highlight the significant role of memory networks in shaping time-related sequential biases at the post-perceptual stages.
Collapse
Affiliation(s)
- Si Cheng
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstraße 13, 80802, Munich, Germany
| | - Siyi Chen
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstraße 13, 80802, Munich, Germany
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Lipezker Straße 47, 03048, Cottbus, Germany
| | - Daniel Keeser
- NeuroImaging Core Unit Munich (NICUM), Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstraße 7, 80336, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstraße 13, 80802, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstraße 7, 80336, Munich, Germany
| |
Collapse
|
22
|
White E, Dalley JW. Brain mechanisms of temporal processing in impulsivity: Relevance to attention-deficit hyperactivity disorder. Brain Neurosci Adv 2024; 8:23982128241272234. [PMID: 39148691 PMCID: PMC11325328 DOI: 10.1177/23982128241272234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 08/17/2024] Open
Abstract
In this article, we critique the hypothesis that different varieties of impulsivity, including impulsiveness present in attention-deficit hyperactivity disorder, encompass an accelerated perception of time. This conceptualisation provides insights into how individuals with attention-deficit hyperactivity disorder have the capacity to maximise cognitive capabilities by more closely aligning themselves with appropriate environmental contexts (e.g. fast paced tasks that prevent boredom). We discuss the evidence for altered time perception in attention-deficit hyperactivity disorder alongside putative underlying neurobiological substrates, including a distributed brain network mediating time perception over multiple timescales. In particular, we explore the importance of temporal representations across the brain for time perception and symptom manifestation in attention-deficit hyperactivity disorder, including a prominent role of the hippocampus and other temporal lobe regions. We also reflect on how abnormalities in the perception of time may be relevant for understanding the aetiology of attention-deficit hyperactivity disorder and mechanism of action of existing medications.
Collapse
Affiliation(s)
- Eleanor White
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Herschel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
23
|
Vatakis A, Teki S. Creating a Home for Timing Researchers: Then, Now, and the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:25-33. [PMID: 38918344 DOI: 10.1007/978-3-031-60183-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Our ability to perceive event duration and order is critical in every aspect of our lives, from everyday tasks like coordinating our limbs to walk safely, to uniquely human activities like planning our children's future. Many theoretical accounts of timing have been proposed to explain the mechanisms underlying our ability to estimate time and unify events in time. Continuous progress is being met in further refining and extending current theories, with the aim not only to advance our understanding of timing and time perception, but also to make timing more accessible and applicable to daily life. For this to be possible, cross-disciplinary thinking is required, which is something one cannot easily attain in a scientific conference, rather it requires a community. Having a community with an interest and/or expertise in timing can allow for cross-fertilization of ideas. This chapter introduced the story of the Timing Research Forum or else TRF.
Collapse
Affiliation(s)
- Argiro Vatakis
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
| | - Sundeep Teki
- University College London, London, UK
- Ιndependent AI consultant, Delhi, India
| |
Collapse
|
24
|
Merchant H, Mendoza G, Pérez O, Betancourt A, García-Saldivar P, Prado L. Diverse Time Encoding Strategies Within the Medial Premotor Areas of the Primate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:117-140. [PMID: 38918349 DOI: 10.1007/978-3-031-60183-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The measurement of time in the subsecond scale is critical for many sophisticated behaviors, yet its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the neural activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing. During single interval categorization, we found that preSMA encodes a subjective category limit by reaching a peak of activity at a time that divides the set of test intervals into short and long. We also observed neural signals associated with the category selected by the subjects and the reward outcomes of the perceptual decision. On the other hand, we have studied the behavioral and neurophysiological basis of rhythmic timing. First, we have shown in different tapping tasks that macaques are able to produce predictively and accurately intervals that are cued by auditory or visual metronomes or when intervals are produced internally without sensory guidance. In addition, we found that the rhythmic timing mechanism in MPC is governed by different layers of neural clocks. Next, the instantaneous activity of single cells shows ramping activity that encodes the elapsed or remaining time for a tapping movement. In addition, we found MPC neurons that build neural sequences, forming dynamic patterns of activation that flexibly cover all the produced interval depending on the tapping tempo. This rhythmic neural clock resets on every interval providing an internal representation of pulse. Furthermore, the MPC cells show mixed selectivity, encoding not only elapsed time, but also the tempo of the tapping and the serial order element in the rhythmic sequence. Hence, MPC can map different task parameters, including the passage of time, using different cell populations. Finally, the projection of the time varying activity of MPC hundreds of cells into a low dimensional state space showed circular neural trajectories whose geometry represented the internal pulse and the tapping tempo. Overall, these findings support the notion that MPC is part of the core timing mechanism for both single interval and rhythmic timing, using neural clocks with different encoding principles, probably to flexibly encode and mix the timing representation with other task parameters.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Pérez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | | | | | - Luis Prado
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
25
|
Kim YK, Choe HK. Core clock gene, Bmal1, is required for optimal second-level interval production. Anim Cells Syst (Seoul) 2023; 27:425-435. [PMID: 38125761 PMCID: PMC10732218 DOI: 10.1080/19768354.2023.2290827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Perception and production of second-level temporal intervals are critical in several behavioral and cognitive processes, including adaptive anticipation, motor control, and social communication. These processes are impaired in several neurological and psychological disorders, such as Parkinson's disease and attention-deficit hyperactivity disorder. Although evidence indicates that second-level interval timing exhibit circadian patterns, it remains unclear whether the core clock machinery controls the circadian pattern of interval timing. To investigate the role of core clock molecules in interval timing capacity, we devised a behavioral assay called the interval timing task to examine prospective motor interval timing ability. In this task, the mouse produces two separate nose pokes in a pretrained second-level interval to obtain a sucrose solution as a reward. We discovered that interval perception in wild-type mice displayed a circadian pattern, with the best performance observed during the late active phase. To investigate whether the core molecular clock is involved in the circadian control of interval timing, we employed Bmal1 knockout mice (BKO) in the interval timing task. The interval production of BKO did not display any difference between early and late active phase, without reaching the optimal interval production level observed in wild-type. In summary, we report that the core clock gene Bmal1 is required for the optimal performance of prospective motor timing typically observed during the late part of the active period.
Collapse
Affiliation(s)
- Yoon Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
26
|
Masset P, Tano P, Kim HR, Malik AN, Pouget A, Uchida N. Multi-timescale reinforcement learning in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566754. [PMID: 38014166 PMCID: PMC10680596 DOI: 10.1101/2023.11.12.566754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To thrive in complex environments, animals and artificial agents must learn to act adaptively to maximize fitness and rewards. Such adaptive behavior can be learned through reinforcement learning1, a class of algorithms that has been successful at training artificial agents2-6 and at characterizing the firing of dopamine neurons in the midbrain7-9. In classical reinforcement learning, agents discount future rewards exponentially according to a single time scale, controlled by the discount factor. Here, we explore the presence of multiple timescales in biological reinforcement learning. We first show that reinforcement agents learning at a multitude of timescales possess distinct computational benefits. Next, we report that dopamine neurons in mice performing two behavioral tasks encode reward prediction error with a diversity of discount time constants. Our model explains the heterogeneity of temporal discounting in both cue-evoked transient responses and slower timescale fluctuations known as dopamine ramps. Crucially, the measured discount factor of individual neurons is correlated across the two tasks suggesting that it is a cell-specific property. Together, our results provide a new paradigm to understand functional heterogeneity in dopamine neurons, a mechanistic basis for the empirical observation that humans and animals use non-exponential discounts in many situations10-14, and open new avenues for the design of more efficient reinforcement learning algorithms.
Collapse
Affiliation(s)
- Paul Masset
- Department of Molecular and Cellular Biology, Harvard University, USA
- Center for Brain Science, Harvard University, USA
| | - Pablo Tano
- Department of Basic Neuroscience, University of Geneva, Switzerland
| | - HyungGoo R. Kim
- Department of Molecular and Cellular Biology, Harvard University, USA
- Center for Brain Science, Harvard University, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Athar N. Malik
- Department of Molecular and Cellular Biology, Harvard University, USA
- Center for Brain Science, Harvard University, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, USA
| | - Alexandre Pouget
- Department of Basic Neuroscience, University of Geneva, Switzerland
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, USA
- Center for Brain Science, Harvard University, USA
| |
Collapse
|
27
|
Buonomano DV, Buzsáki G, Davachi L, Nobre AC. Time for Memories. J Neurosci 2023; 43:7565-7574. [PMID: 37940593 PMCID: PMC10634580 DOI: 10.1523/jneurosci.1430-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
The ability to store information about the past to dynamically predict and prepare for the future is among the most fundamental tasks the brain performs. To date, the problems of understanding how the brain stores and organizes information about the past (memory) and how the brain represents and processes temporal information for adaptive behavior have generally been studied as distinct cognitive functions. This Symposium explores the inherent link between memory and temporal cognition, as well as the potential shared neural mechanisms between them. We suggest that working memory and implicit timing are interconnected and may share overlapping neural mechanisms. Additionally, we explore how temporal structure is encoded in associative and episodic memory and, conversely, the influences of episodic memory on subsequent temporal anticipation and the perception of time. We suggest that neural sequences provide a general computational motif that contributes to timing and working memory, as well as the spatiotemporal coding and recall of episodes.
Collapse
Affiliation(s)
- Dean V Buonomano
- Department of Neurobiology, University of California, Los Angeles, California 90095
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
- Integrative Center for Learning and Memory, UCLA, Los Angeles, California 90025
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, Connecticut 06510
- Wu Tsai Center for Neurocognition and Behavior, Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
28
|
Hinault T, D'Argembeau A, Bowler DM, La Corte V, Desaunay P, Provasi J, Platel H, Tran The J, Charretier L, Giersch A, Droit-Volet S. Time processing in neurological and psychiatric conditions. Neurosci Biobehav Rev 2023; 154:105430. [PMID: 37871780 DOI: 10.1016/j.neubiorev.2023.105430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
A central question in understanding cognition and pathology-related cognitive changes is how we process time. However, time processing difficulties across several neurological and psychiatric conditions remain seldom investigated. The aim of this review is to develop a unifying taxonomy of time processing, and a neuropsychological perspective on temporal difficulties. Four main temporal judgments are discussed: duration processing, simultaneity and synchrony, passage of time, and mental time travel. We present an integrated theoretical framework of timing difficulties across psychiatric and neurological conditions based on selected patient populations. This framework provides new mechanistic insights on both (a) the processes involved in each temporal judgement, and (b) temporal difficulties across pathologies. By identifying underlying transdiagnostic time-processing mechanisms, this framework opens fruitful avenues for future research.
Collapse
Affiliation(s)
- Thomas Hinault
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France.
| | - Arnaud D'Argembeau
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, F.R.S-FNRS, 4000 Liège, Belgium
| | - Dermot M Bowler
- Autism Research Group, City, University of London, EC1V 0HB London, United Kingdom
| | - Valentina La Corte
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab), UR 7536, Université de Paris cité, 92774 Boulogne-Billancourt, France; Institut Universitaire de France, 75231 Paris, France
| | - Pierre Desaunay
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France; Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, 14000 Caen, France
| | - Joelle Provasi
- CHArt laboratory (Human and Artificial Cognition), EPHE-PSL, 75014 Paris, France
| | - Hervé Platel
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
| | - Jessica Tran The
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
| | - Laura Charretier
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032 Caen, France
| | - Anne Giersch
- Cognitive Neuropsychology and Pathophysiology of Schizophrenia Laboratory, National Institute of Health and Medical Research, University of Strasbourg, 67081 Strasbourg, France
| | - Sylvie Droit-Volet
- Université Clermont Auvergne, LAPSCO, CNRS, UMR 6024, 60032 Clermont-Ferrand, France
| |
Collapse
|
29
|
Azizi L, Polti I, van Wassenhove V. Spontaneous α Brain Dynamics Track the Episodic "When". J Neurosci 2023; 43:7186-7197. [PMID: 37704373 PMCID: PMC10601376 DOI: 10.1523/jneurosci.0816-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 09/15/2023] Open
Abstract
Across species, neurons track time over the course of seconds to minutes, which may feed the sense of time passing. Here, we asked whether neural signatures of time-tracking could be found in humans. Participants stayed quietly awake for a few minutes while being recorded with magnetoencephalography (MEG). They were unaware they would be asked how long the recording lasted (retrospective time) or instructed beforehand to estimate how long it will last (prospective timing). At rest, rhythmic brain activity is nonstationary and displays bursts of activity in the alpha range (α: 7-14 Hz). When participants were not instructed to attend to time, the relative duration of α bursts linearly predicted individuals' retrospective estimates of how long their quiet wakefulness lasted. The relative duration of α bursts was a better predictor than α power or burst amplitude. No other rhythmic or arrhythmic activity predicted retrospective duration. However, when participants timed prospectively, the relative duration of α bursts failed to predict their duration estimates. Consistent with this, the amount of α bursts was discriminant between prospective and retrospective timing. Last, with a control experiment, we demonstrate that the relation between α bursts and retrospective time is preserved even when participants are engaged in a visual counting task. Thus, at the time scale of minutes, we report that the relative time of spontaneous α burstiness predicts conscious retrospective time. We conclude that in the absence of overt attention to time, α bursts embody discrete states of awareness constitutive of episodic timing.SIGNIFICANCE STATEMENT The feeling that time passes is a core component of consciousness and episodic memory. A century ago, brain rhythms called "α" were hypothesized to embody an internal clock. However, rhythmic brain activity is nonstationary and displays on-and-off oscillatory bursts, which would serve irregular ticks to the hypothetical clock. Here, we discovered that in a given lapse of time, the relative bursting time of α rhythms is a good indicator of how much time an individual will report to have elapsed. Remarkably, this relation only holds true when the individual does not attend to time and vanishes when attending to it. Our observations suggest that at the scale of minutes, α brain activity tracks episodic time.
Collapse
Affiliation(s)
- Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Gif/Yvette 91191, France
| | - Ignacio Polti
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway 7030
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany D-04103
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Gif/Yvette 91191, France
| |
Collapse
|
30
|
Pourmohammadi A, Sanayei M. Context-specific and context-invariant computations of interval timing. Front Neurosci 2023; 17:1249502. [PMID: 37799342 PMCID: PMC10547875 DOI: 10.3389/fnins.2023.1249502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction An accurate sense of time is crucial in flexible sensorimotor control and other cognitive functions. However, it remains unknown how multiple timing computations in different contexts interact to shape our behavior. Methods We asked 41 healthy human subjects to perform timing tasks that differed in the sensorimotor domain (sensory timing vs. motor timing) and effector (hand vs. saccadic eye movement). To understand how these different behavioral contexts contribute to timing behavior, we applied a three-stage Bayesian model to behavioral data. Results Our results demonstrate that the Bayesian model for each effector could not describe bias in the other effector. Similarly, in each task the model-predicted data could not describe bias in the other task. These findings suggest that the measurement stage of interval timing is context-specific in the sensorimotor and effector domains. We also showed that temporal precision is context-invariant in the effector domain, unlike temporal accuracy. Discussion This combination of context-specific and context-invariant computations across sensorimotor and effector domains suggests overlapping and distributed computations as the underlying mechanism of timing in different contexts.
Collapse
Affiliation(s)
- Ahmad Pourmohammadi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mehdi Sanayei
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Center for Translational Neuroscience (CTN), Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Arslanova I, Kotsaris V, Tsakiris M. Perceived time expands and contracts within each heartbeat. Curr Biol 2023; 33:1389-1395.e4. [PMID: 36905931 DOI: 10.1016/j.cub.2023.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
Perception of passing time can be distorted.1 Emotional experiences, particularly arousal, can contract or expand experienced duration via their interactions with attentional and sensory processing mechanisms.2,3 Current models suggest that perceived duration can be encoded from accumulation processes4,5 and from temporally evolving neural dynamics.6,7 Yet all neural dynamics and information processing ensue at the backdrop of continuous interoceptive signals originating from within the body. Indeed, phasic fluctuations within the cardiac cycle impact neural and information processing.8,9,10,11,12,13,14,15 Here, we show that these momentary cardiac fluctuations distort experienced time and that their effect interacts with subjectively experienced arousal. In a temporal bisection task, durations (200-400 ms) of an emotionally neutral visual shape or auditory tone (experiment 1) or of an image displaying happy or fearful facial expressions (experiment 2) were categorized as short or long.16 Across both experiments, stimulus presentation was time-locked to systole, when the heart contracts and baroreceptors fire signals to the brain, and to diastole, when the heart relaxes, and baroreceptors are quiescent. When participants judged the duration of emotionally neural stimuli (experiment 1), systole led to temporal contraction, whereas diastole led to temporal expansion. Such cardiac-led distortions were further modulated by the arousal ratings of the perceived facial expressions (experiment 2). At low arousal, systole contracted while diastole expanded time, but as arousal increased, this cardiac-led time distortion disappeared, shifting duration perception toward contraction. Thus, experienced time contracts and expands within each heartbeat-a balance that is disrupted under heightened arousal.
Collapse
Affiliation(s)
- Irena Arslanova
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK.
| | | | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK; Centre for the Politics of Feeling, School of Advanced Study, University of London, London WC1E 7HU, UK
| |
Collapse
|
32
|
Teghil A, Bonavita A, Procida F, Giove F, Boccia M. Intrinsic hippocampal connectivity is associated with individual differences in retrospective duration processing. Brain Struct Funct 2023; 228:687-695. [PMID: 36695891 PMCID: PMC9944733 DOI: 10.1007/s00429-023-02612-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The estimation of incidentally encoded durations of time intervals (retrospective duration processing) is thought to rely on the retrieval of contextual information associated with a sequence of events, automatically encoded in medial temporal lobe regions. "Time cells" have been described in the hippocampus (HC), encoding the temporal progression of events and their duration. However, whether the HC supports explicit retrospective duration judgments in humans, and which neural dynamics are involved, is still poorly understood. Here we used resting-state fMRI to test the relation between variations in intrinsic connectivity patterns of the HC, and individual differences in retrospective duration processing, assessed using a novel task involving the presentation of ecological stimuli. Results showed that retrospective duration discrimination performance predicted variations in the intrinsic connectivity of the bilateral HC with the right precentral gyrus; follow-up exploratory analyses suggested a role of the CA1 and CA4/DG subfields in driving the observed pattern. Findings provide insights on neural networks associated with implicit processing of durations in the second range.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy. .,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Alessia Bonavita
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy ,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy ,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Federica Procida
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Federico Giove
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy ,MARBILab, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy ,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
33
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|