1
|
Wusiman R, Haimiti S, Abuduaini H, Yang M, Wang Y, Gu M, Sailike A, Gao L. Increased SUMO-activating enzyme subunit 1 promotes glycolysis and fibrotic phenotype of diabetic nephropathy. Biochem Pharmacol 2025; 237:116920. [PMID: 40194606 DOI: 10.1016/j.bcp.2025.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Renal fibrosis is a prominent feature of diabetic nephropathy (DN), and the connection between renal fibrosis and abnormal glycolysis is not fully understood. SUMO-activating enzyme subunit 1 (SAE1) plays a crucial role in the SUMO modification process and is related to abnormal glycolysis. Despite this, the specific role of SAE1 in DN and its mechanism are not well defined. To investigate this, a streptozotocin-induced diabetic CD1 mice model was used, with SAE1 suppression achieved through systemic administration of SAE1 siRNA. In parallel, human renal proximal tubular tubule HK2 cells transfected with siSAE1 were exposed to high glucose for in vitro studies. The study revealed that SAE1 levels were elevated in diabetic kidney, and the deletion of SAE1 mitigated renal fibrosis in DN mice. Such suppression in SAE1 was associated with the lower expression of hypoxia inducible factor-1α (HIF-1α) and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), these alterations subsequently improved abnormal glycolysis and mesenchymal transformations in vivo and in vitro. Further experiments discovered that SAE1 stabilized transcription factor HIF-1α expression through SUMOylation, promoting PFKFB3 transcription, which enhanced glycolysis characterized by increased PFK1 activity and lactate production. Additionally, pharmacological inhibition of PFKFB3 reduced renal fibrosis in DN mice, while overexpression of PFKFB3 partly restored the glycolysis and mesenchymal transformations inhibited by SAE1 knockdown in vitro. These data demonstrate that SAE1 promotes abnormal glycolysis by HIF-1α/PFKFB3 which is responsible for the fibrotic phenotype of diabetic kidney. Inhibition of SAE1 could be an alternative strategy in combating diabetes associated-kidney fibrosis via improving aberrant glycolysis.
Collapse
Affiliation(s)
- Reziwanguli Wusiman
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shayila Haimiti
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Hanikezi Abuduaini
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Miaoyan Yang
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yitian Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, PR China
| | - Meijun Gu
- Department of General Medicine, Bainiaohu Hospital, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Ali Sailike
- Department of General Medicine, Bainiaohu Hospital, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Lei Gao
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Department of General Medicine, Bainiaohu Hospital, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, PR China.
| |
Collapse
|
2
|
Lin Q, Zhang C, Huang H, Bai Z, Liu J, Zhang Y, Li X, Wang G. TLR2 reprograms glucose metabolism in CD4 + T cells of rheumatoid arthritis patients to mediate cell hyperactivation and TNF-α secretion. Clin Rheumatol 2024; 43:3537-3549. [PMID: 39356380 DOI: 10.1007/s10067-024-07125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 10/03/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which activated CD4+ T cells participate in the disease process by inducing inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) on CD4+ T cells in RA patients, and to elucidate the underlying mechanisms by which TLR2 contributes to the pathogenesis of RA. METHODS Serum samples were collected from RA patients and healthy controls. Soluble TLR2 levels were quantified using an enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to assess the TLR2 expression level, activation status, cytokine production, reactive oxygen species (ROS) levels, and glucose uptake capacity of CD4+ T cells. Quantitative polymerase chain reaction (qPCR) was used to measure the expression of enzymes associated with glucose and lipid metabolism. The concentration of lactic acid in the culture supernatant was determined using a dedicated detection kit. RESULTS RA patients had higher levels of TLR2 in their serum, which positively correlated with C-reactive protein and rheumatoid factor. The expression level of TLR2 in CD4+ T cells of RA patients was increased, and TLR2+ cells showed higher activation levels than TLR2- cells. Activation of TLR2 in CD4+ T cells of RA patients promoted their activation, TNF-α secretion, and increased production of ROS. Furthermore, TLR2 activation led to changes in enzymes related to glucose metabolism, causing a shift in glucose metabolism towards the pentose phosphate pathway. Blocking oxidative phosphorylation and the pentose phosphate pathway had varying effects on CD4+ T cell function. CONCLUSION TLR2 reprograms the glucose metabolism of CD4+ T cells in RA patients, contributing to the development of RA through ROS-mediated cell hyperactivation and TNF-α secretion. Key Points • TLR2 is upregulated in CD4+ T cells of RA patients and correlates with disease severity markers such as CRP and RF. • Activation of TLR2 in CD4+ T cells promotes cell activation, TNF-α secretion, and increased ROS production, contributing to the pathogenesis of RA. • TLR2 activates glucose metabolism in CD4+ T cells, shifting towards the pentose phosphate pathway, which may be a novel therapeutic target for RA treatment. • Blocking glucose metabolism and ROS production can reduce CD4 + T cell hyperactivation and TNF-α secretion, indicating potential therapeutic strategies for RA management.
Collapse
Affiliation(s)
- Qian Lin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Huina Huang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yan Zhang
- Department of Rheumatology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Xiong H, Zhang H, Qin Y, Ye J, Zeng F, Xie P, Shi C, Luo C, Xu W, Yu C, Zhou Z, Chen X. Coassembly Nanomedicine Mediated by Intermolecular Interactions Between Methotrexate and Baricitinib for Improved Rheumatoid Arthritis Treatment. ACS NANO 2024; 18:8337-8349. [PMID: 38437640 DOI: 10.1021/acsnano.3c12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The combination of anti-rheumatoid arthritis (RA) drugs methotrexate (MTX) and baricitinib (BTN) has been reported to improve RA treatment efficacy. However, study on the strategy of combination is elusive when considering the benefit of the synergy between MTX and BTN. In this study, we found that the N-heterocyclic rings in the MTX and BTN offer hydrogen bonds and π-π stacking interactions, driving the formation of exquisite vesicular morphology of nanovesicles, denoted as MB NVs. The MB NVs with the MTX/BTN weight ratio of 2:1, MB NVs (2:1), showed an improved anti-RA effect through the synergy between the anti-inflammatory and antiproliferative responses. This work presents that the intermolecular interactions between drug molecules could mediate the coassembly behavior into nanomedicine as well as the therapy synergy both in vitro and in vivo, which may provide further understanding on the rational design of combination nanomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Peng Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changyuan Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weizhuo Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
4
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
5
|
Torres A, Pedersen B, Guma M. Solute carrier nutrient transporters in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 2022; 13:984408. [PMID: 36341411 PMCID: PMC9632162 DOI: 10.3389/fimmu.2022.984408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolomic studies show that rheumatoid arthritis (RA) is associated with metabolic disruption. Metabolic changes in fibroblast-like synoviocytes (FLS) likely contribute to FLS abnormal response and strongly contribute to joint destruction. These changes often involve increased expression of nutrient transporters to meet a high demand for energy or biomolecules. The solute carrier (SLC) transporter families are nutrient transporters and serve as 'metabolic gates' for cells by mediating the transport of several different nutrients such as glucose, amino acids, vitamins, neurotransmitters, and inorganic/metal ions. In RA FLS SLC-mediated transmembrane transport was one pathway associated with different epigenetic landscape between RA and osteoarthritis (OA) FLS. These highlight that transporters from the SLC family offer unique targets for further research and offer the promise of future therapeutic targets for RA.
Collapse
Affiliation(s)
- Alyssa Torres
- Division of Rheumatology, Allergy and Immunology and School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Brian Pedersen
- Division of Rheumatology, Allergy and Immunology and School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Veterans’ Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology and School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Veterans’ Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Elkomy MH, Alruwaili NK, Elmowafy M, Shalaby K, Zafar A, Ahmad N, Alsalahat I, Ghoneim MM, Eissa EM, Eid HM. Surface-Modified Bilosomes Nanogel Bearing a Natural Plant Alkaloid for Safe Management of Rheumatoid Arthritis Inflammation. Pharmaceutics 2022; 14:pharmaceutics14030563. [PMID: 35335939 PMCID: PMC8951435 DOI: 10.3390/pharmaceutics14030563] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory illness affecting the joints. The characteristic of RA is gradual joint deterioration. Current RA treatment alleviates signs such as inflammation and pain and substantially slows the progression of the disease. In this study, we aimed to boost the transdermal delivery of berberine (a natural product) by encapsulating it in chitosan, surface-modified bilosomes nanogel for better management of the inflammation of RA. The chitosan-coated bilosomes loaded with berberine (BER-CTS-BLS) were formulated according to the thin-film hydration approach and optimized for various causal variables, considering the effect of lipid, sodium deoxycholate, and chitosan concentrations on the size of the particles, entrapment, and the surface charge. The optimized BER-CTS-BLS has 202.3 nm mean diameter, 83.8% entrapment, and 30.8 mV surface charge. The optimized BER-CTS-BLS exhibited a delayed-release profile in vitro and increased skin permeability ex vivo. Additionally, histological examination revealed that the formulated BLS had no irritating effects on the skin. Furthermore, the optimized BER-CTS-BLS ability to reduce inflammation was evaluated in rats with carrageenan-induced paw edema. Our results demonstrate that the group treated with topical BER-CTS-BLS gel exhibited a dramatic reduction in rat paw edema swelling percentage to reach 24.4% after 12 h, which was substantially lower than other groups. Collectively, chitosan-coated bilosomes containing berberine have emerged as a promising therapeutic approach to control RA inflammation.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
- Correspondence: author: ; Tel.: +966-56-096-7705
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (N.K.A.); (M.E.); (K.S.); (A.Z.); (N.A.)
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 1TP, UK;
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (E.M.E.); (H.M.E.)
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (E.M.E.); (H.M.E.)
| |
Collapse
|
7
|
Damerau A, Kirchner M, Pfeiffenberger M, Ehlers L, Do Nguyen DH, Mertins P, Bartek B, Maleitzke T, Palmowski Y, Hardt S, Winkler T, Buttgereit F, Gaber T. Metabolic reprogramming of synovial fibroblasts in osteoarthritis by inhibition of pathologically overexpressed pyruvate dehydrogenase kinases. Metab Eng 2022; 72:116-132. [DOI: 10.1016/j.ymben.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
8
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
10
|
He YF, Mai CT, Pan HD, Liu L, Zhou H, Xie Y. Targeting immunometabolism by active ingredients derived from traditional Chinese medicines for treatment of rheumatoid arthritis. CHINESE HERBAL MEDICINES 2021; 13:451-460. [PMID: 36119361 PMCID: PMC9476673 DOI: 10.1016/j.chmed.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA), the most common inflammatory arthropathy word wild, is a systemic autoimmune disease that mainly affects the synovium of joints with a high disability rate. Metabolic mis-regulation has emerged as a fundamental pathogenesis of RA linked to immune cell dysfunction, while targeting immunometabolism provides a new and effective approach to regulate the immune responses and thus alleviate the symptom of RA. Recently, natural active compounds from traditional Chinese medicines (TCMs) have potential therapeutic effects on RA and regulating immunometabolism. In this review, in addition to updating the connection between cellular metabolism and cell function in immune cells of RA, we summarized that the anti-inflammatory mechanisms of the potential natural compounds from TCM by targeting metabolic reprogramming of immune cells, and discusses them as a rich resource for providing the new potential paradigm for the treatment of RA.
Collapse
Affiliation(s)
| | | | - Hu-dan Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| |
Collapse
|
11
|
Wang H, Zhang N, Fang K, Chang X. 2-Deoxy-D-glucose Alleviates Collagen-Induced Arthritis of Rats and Is Accompanied by Metabolic Regulation of the Spleen and Liver. Front Immunol 2021; 12:713799. [PMID: 34539643 PMCID: PMC8440946 DOI: 10.3389/fimmu.2021.713799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is significantly associated with glycolysis. This study used 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, to treat rats with collagen-induced arthritis (CIA) and investigate the metabolic regulatory mechanism of glycolysis in the disease. 2-DG significantly alleviated CIA. Metabolomics and transcriptomics, as well as their integrative analysis, detected significant changes in the pathways of bile secretion, cholesterol and linoleic acid metabolism in the plasma, liver and spleen during the CIA process and the opposite changes following 2-DG treatment, whereas the expression of the genes regulating these metabolic pathways were changed only in the spleen. In the rat liver, levels of (S)-5-diphosphomevalonic acid in the terpenoid backbone biosynthesis pathway were significantly decreased during CIA progression and increased following 2-DG treatment, and levels of taurochenodeoxycholic acid in the pentose and glucuronate interconversions pathway showed the opposite results. In the spleen, levels of 3-methoxy-4-hydroxyphenylglycol glucuronide in bile secretion and 12(S)-leukotriene B4 in arachidonic acid metabolism were significantly decreased during CIA progression and increased following 2-DG treatment. The changes in the gene-metabolite network of bile secretion in the spleen correlated with a decreased plasma L-acetylcarnitine level in CIA rats and an increase following 2-DG treatment. Our analysis suggests the involvement of spleen and liver metabolism in CIA under the control of glycolysis.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Nanyang Zhang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center For Major Disease Marker, Qingdao, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center For Major Disease Marker, Qingdao, China.,Shandong Provincial Clinical Research Center for Immune Disease and Gout, Qingdao, China
| |
Collapse
|
12
|
Del Rey MJ, Meroño C, Municio C, Usategui A, Mittelbrunn M, García-Consuegra I, Criado G, Pablos JL. TFAM-deficient mouse skin fibroblasts - an ex vivo model of mitochondrial dysfunction. Dis Model Mech 2021; 14:271052. [PMID: 34312668 PMCID: PMC8405849 DOI: 10.1242/dmm.048995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction associates with several pathological processes and contributes to chronic inflammatory and ageing-related diseases. Mitochondrial transcription factor A (TFAM) plays a critical role in maintaining mtDNA integrity and function. Taking advantage of Tfamfl/fl UBC-Cre/ERT2+/+ mice to investigate mitochondrial dysfunction in the stromal cell component, we describe an inducible in vitro model of mitochondrial dysfunction by stable depletion of TFAM in primary mouse skin fibroblasts (SK-FBs) after 4-hydroxytamoxifen (4-OHT) administration. Tfam gene deletion caused a sustained reduction in Tfam and mtDNA-encoded mRNA in Cre(+) SK-FBs cultured for low (LP) and high (HP) passages that translated into a loss of TFAM protein. TFAM depletion led to a substantial reduction in mitochondrial respiratory chain complexes that was exacerbated in HP SK-FB cultures. The assembly pattern showed that the respiratory complexes fail to reach the respirasome in 4-OHT-treated Cre(+) SK-FBs. Functionally, mito-stress and glycolysis-stress tests showed that mitochondrial dysfunction developed after long-term 4-OHT treatment in HP Cre(+) SK-FBs and was compensated by an increase in the glycolytic capacity. Finally, expression analysis revealed that 4-OHT-treated HP Cre(+) SK-FBs showed a senescent and pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Manuel J Del Rey
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Carolina Meroño
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Cristina Municio
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Alicia Usategui
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - María Mittelbrunn
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Inés García-Consuegra
- Unidad de Proteómica, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Wang C, Xiao Y, Lao M, Wang J, Xu S, Li R, Xu X, Kuang Y, Shi M, Zou Y, Wang Q, Liang L, Zheng SG, Xu H. Increased SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes. JCI Insight 2020; 5:135935. [PMID: 32938830 PMCID: PMC7526534 DOI: 10.1172/jci.insight.135935] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to joint inflammation and destruction in rheumatoid arthritis (RA). Increased glycolysis in RA FLSs contributes to persistent joint damage. SUMOylation, a posttranslational modification of proteins, plays an important role in initiation and development of many diseases. However, the role of small ubiquitin-like modifier–activating (SUMO-activating) enzyme 1 (SAE1)/ubiquitin like modifier activating enzyme 2 (UBA2) in regulating the pathogenic FLS behaviors is unknown. Here, we found an increased expression of SAE1 and UBA2 in FLSs and synovial tissues from patients with RA. SAE1 or UBA2 knockdown by siRNA and treatment with GA, an inhibitor of SAE1/UBA2-mediated SUMOylation, resulted in reduced glycolysis, aggressive phenotype, and inflammation. SAE1/UBA2-mediated SUMOylation of pyruvate kinase M2 (PKM2) promoted its phosphorylation and nuclear translocation and decreased PK activity. Moreover, inhibition of PKM2 phosphorylation increased PK activity and suppressed glycolysis, aggressive phenotype, and inflammation. We further demonstrated that STAT5A mediated SUMOylated PKM2-induced glycolysis and biological behaviors. Interestingly, GA treatment attenuated the severity of arthritis in mice with collagen-induced arthritis and human TNF-α transgenic mice. These findings suggest that an increase in synovial SAE1/UBA2 may contribute to synovial glycolysis and joint inflammation in RA and that targeting SAE1/UBA2 may have therapeutic potential in patients with RA. SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes through SUMOylation of pyruvate kinase M2.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Rheumatology and Immunology and
| | - Youjun Xiao
- Department of Rheumatology and Immunology and
| | - Minxi Lao
- Department of Rheumatology and Immunology and
| | | | - Siqi Xu
- Department of Rheumatology and Immunology and
| | - Ruiru Li
- Department of Rheumatology and Immunology and
| | - Xuanxian Xu
- Department of Anesthesia, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology and
| | - Maohua Shi
- Department of Rheumatology and Immunology and
| | - Yaoyao Zou
- Department of Rheumatology and Immunology and
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University People's Hospital, Shenzhen, China
| | | | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine and The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hanshi Xu
- Department of Rheumatology and Immunology and
| |
Collapse
|
14
|
Xu J, Jiang C, Wang X, Geng M, Peng Y, Guo Y, Wang S, Li X, Tao P, Zhang F, Han Y, Ning Q, Zhu W, Meng L, Lu S. Upregulated PKM2 in Macrophages Exacerbates Experimental Arthritis via STAT1 Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:181-192. [PMID: 32503893 DOI: 10.4049/jimmunol.1901021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis. We hypothesize that Pkm2, as a key regulatory enzyme of glycolysis pathway, triggers the activation of macrophages (Mφ), which results in proinflammatory cytokine production during the arthritis progress. In this study, Pkm2 was found to be overexpressed in ED1-positive Mφ in spleens and synovial tissues from arthritic rats via immunofluorescence, Western blotting, and quantitative RT-PCR. To reveal the role of Pkm2, Dark Agouti rats were treated with either Pkm2 enzyme inhibitor shikonin or the RNA interference plasmids of Pkm2 and negative control plasmids, respectively, via i.p. injection. Pkm2 intervention could alleviate the severity of pristane-induced arthritis in aspects of the macroscopic arthritis score, perimeter changes of midpaw, and the synovitis and destruction of the bone and cartilage as well as reduce the ED1 and p-Stat1-positive cell population in rat synovial tissues. Silencing Pkm2 by RNA interference in classical activated rat and mouse Mφ resulted in less Tnf-α, Il-1β production via Stat1 signaling. Collectively, Pkm2 is highly expressed in ED1-positive Mφ of spleens and synovial tissues from arthritic rats and promotes Mφ activation via Stat1 signaling. Pkm2 might be a promising selective metabolic target molecule for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xipeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yizhao Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Pei Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
15
|
Xu H, Zheng SG, Fox D. Editorial: Immunomodulatory Functions of Fibroblast-like Synoviocytes in Joint Inflammation and Destruction during Rheumatoid Arthritis. Front Immunol 2020; 11:955. [PMID: 32508834 PMCID: PMC7251023 DOI: 10.3389/fimmu.2020.00955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center and College of Medicine, Columbus, OH, United States
| | - David Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Fan XX, Xu MZ, Leung ELH, Jun C, Yuan Z, Liu L. ROS-Responsive Berberine Polymeric Micelles Effectively Suppressed the Inflammation of Rheumatoid Arthritis by Targeting Mitochondria. NANO-MICRO LETTERS 2020; 12:76. [PMID: 34138288 PMCID: PMC7770724 DOI: 10.1007/s40820-020-0410-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which attacks human joint system and causes lifelong inflammatory condition. To date, no cure is available for RA and even the ratio of achieving remission is very low. Hence, to enhance the efficacy of RA treatment, it is essential to develop novel approaches specifically targeting pathological tissues. In this study, we discovered that RA synovial fibroblasts exhibited higher reactive oxygen species (ROS) and mitochondrial superoxide level, which were adopted to develop ROS-responsive nano-medicines in inflammatory microenvironment for enhanced RA treatment. A selenocystamine-based polymer was synthesized as a ROS-responsive carrier nanoplatform, and berberine serves as a tool drug. By assembling, ROS-responsive berberine polymeric micelles were fabricated, which remarkably increased the uptake of berberine in RA fibroblast and improved in vitro and in vivo efficacy ten times higher. Mechanistically, the anti-RA effect of micelles was blocked by the co-treatment of AMPK inhibitor or palmitic acid, indicating that the mechanism of micelles was carried out through targeting mitochondrial, suppressing lipogenesis and finally inhibiting cellular proliferation. Taken together, our ROS-responsive nano-medicines represent an effective way of preferentially releasing prodrug at the inflammatory microenvironment and improving RA therapeutic efficacy.
Collapse
Affiliation(s)
- Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Meng-Ze Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Cai Jun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China.
| |
Collapse
|
17
|
de Oliveira PG, Farinon M, Sanchez-Lopez E, Miyamoto S, Guma M. Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Front Immunol 2019; 10:1743. [PMID: 31428089 PMCID: PMC6688519 DOI: 10.3389/fimmu.2019.01743] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Metabolomic studies show that rheumatoid arthritis (RA) is associated with metabolic disruption that may be therapeutically targetable. Among them, glucose metabolism and glycolytic intermediaries seem to have an important role in fibroblast-like synoviocytes (FLS) phenotype and might contribute to early stage disease pathogenesis. RA FLS are transformed from quiescent to aggressive and metabolically active cells and several works have shown that glucose metabolism is increased in activated FLS. Glycolytic inhibitors reduce not only FLS aggressive phenotype in vitro but also decrease bone and cartilage damage in several murine models of arthritis. Essential glycolytic enzymes, including hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) enzymes, have important roles in FLS behavior. Of interest, HK2 is an inducible enzyme present only in the inflamed rheumatic tissues compared to osteoarthritis synovium. It is a contributor to glucose metabolism that could be selectively targeted without compromising systemic homeostasis as a novel approach for combination therapy independent of systemic immunosuppression. More information about metabolic targets that do not compromise global glucose metabolism in normal cells is needed.
Collapse
Affiliation(s)
| | - Mirian Farinon
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elsa Sanchez-Lopez
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shigeki Miyamoto
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Arioka M, Takahashi-Yanaga F. Glycogen synthase kinase-3 inhibitor as a multi-targeting anti-rheumatoid drug. Biochem Pharmacol 2019; 165:207-213. [PMID: 30776323 DOI: 10.1016/j.bcp.2019.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes swelling, bone erosion, and joint disorder. Patients with RA therefore suffer from pain and physiological disability, and have a decreased quality of life. During the progression of RA, many different types of cells and inflammatory factors influence each other with an important role. A better understanding of the pathology of RA should therefore lead to the development of effective anti-rheumatoid drugs, such as the anti-TNFα antibody. Glycogen synthase kinase-3 (GSK-3) is a cytoplasmic serine/threonine protein kinase that is involved in a large number of key cellular processes and is dysregulated in a wide variety of diseases, including inflammation and osteoporosis. The accumulated evidence has suggested that GSK-3 could be involved in multiple steps in the progression of RA. In the present review, the mechanisms of the pathogenesis of RA are summarized, and recent developments and potential new drugs targeting GSK-3 are discussed.
Collapse
Affiliation(s)
- Masaki Arioka
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|