1
|
Holmdahl R. B suppressor cells and protective autoantibodies. Semin Arthritis Rheum 2025; 72S:152687. [PMID: 40050199 DOI: 10.1016/j.semarthrit.2025.152687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 04/19/2025]
Abstract
Recently the importance of B cells has been highlighted for therapy of several autoimmune diseases including rheumatoid arthritis (RA). Still, the functional role of B cells and antibodies in the disease process are unclear. Using animal models, antibodies specifically binding cartilage are pathogenic, but it has also recently been shown that both B cells and antibodies could be protective. These have specificities that are similar to B cells and autoantibodies detected in humans, including antibodies to citrullinated proteins and collagen type II, and may play an important role hindering an inflammatory attack, whereafter pathogenic B cells and antibodies are functionally more important to initiate and drive the clinically observable disease.
Collapse
Affiliation(s)
- Rikard Holmdahl
- Immunology section-Medical Inflammation research, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
2
|
Ning C, Gao M, Zhong J, Wu L, Su C. Quantification of Cry1Ab protein in genetically modified plants based on immunoaffinity magnetic bead enrichment and high-performance liquid chromatography-tandem mass spectrometry. Food Chem 2025; 483:144330. [PMID: 40245622 DOI: 10.1016/j.foodchem.2025.144330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Quantification of Cry1Ab in genetically modified (GM) plants based on immunoaffinity magnetic bead enrichment and high-performance liquid chromatography-tandem mass spectrometry was developed. The active concentration of Cry1Ab standard solution was determined via surface plasmon resonance. Magnetic beads coated with Cry1Ab monoclonal antibodies were used for affinity enrichment of the target protein from samples. After trypsin digestion, quantification was performed by LC-MS/MS with internal standards, showing the recovery rate of (93.2 %-110.69 %) and relative standard deviation of (2.4 %-4.8 %, n = 12). The limit of detection was 5.7 ng/mL, and the limit of quantification was 22.5 ng/mL. The method was further validated by comparing the measured Cry1Ab concentrations in GM soybean and corn leaves with those obtained using ELISA. This method enables facilitating accurate quantitation of Cry1Ab and the assessment of environmental impact, pest control efficacy, and safety of GM crops.
Collapse
Affiliation(s)
- Chengxiang Ning
- Shenyang University of Chemical Technology, Shenyang 110-142, China
| | - Meijing Gao
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210-014, China
| | - Jianfeng Zhong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210-014, China
| | - Liqing Wu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100-029, China
| | - Chang Su
- Shenyang University of Chemical Technology, Shenyang 110-142, China.
| |
Collapse
|
3
|
Chen X, Du R, Wang P, Qiu W, Chen L, Wan J, Qiu H, Xiong L, Nandakumar KS, Holmdahl R, Geng H. Proteomic analysis of infiltrating neutrophils from rheumatoid arthritis synovial fluid and their contribution to protein carbamylation. Front Immunol 2025; 16:1563426. [PMID: 40270967 PMCID: PMC12014540 DOI: 10.3389/fimmu.2025.1563426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Carbamylated proteins and dysregulated neutrophils are implicated in rheumatoid arthritis (RA) pathogenesis. Herein, we characterized the neutrophils present in RA synovial fluid (SF) using proteomic techniques and evaluated their contribution to protein carbamylation. Methods RA-SF neutrophil proteomic profile and SF proteome signature were investigated using high-resolution mass spectrometry. Carbamylated proteins and the degree of protein carbamylation were evaluated by mass spectrometric analysis. ELISA and chemiluminescence kits were used to examine myeloperoxidase (MPO) activity, and hydrogen peroxide (H2O2) generation. Results SF neutrophils exhibited a shift in proteomic cargo with up-regulated proteins involved in defense responses, neutrophil degranulation, and reactive oxygen species metabolic processes, while proteins down-regulated were associated with megakaryocyte differentiation, leukocyte migration, and integrin-mediated signaling pathway. Elevated levels of neutrophil-derived proteins were detected in RA-SF. In addition, we specifically identified many carbamylated proteins and observed an increased frequency of protein carbamylation in RA-SF samples. Functionally, neutrophils from RA-SF showed a significantly increased level of MPO release and HH2O2 generation. Moreover, MPO activity was higher in RA-SF than in autologous blood samples, which correlated well with the degree of protein carbamylation in RA-SF. Discussion Synovial neutrophils were found to be activated and increased releasing protein cargo, including MPO and ROS, into the synovial fluid. Presence of many carbamylated proteins in RA-SF and an increased MPO activity showed a strong correlation to the degree of protein carbamylation, suggesting neutrophil-derived MPO in promoting generation of aberrantly carbamylated proteins.
Collapse
Affiliation(s)
- Xueting Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - WenLin Qiu
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
Wang J, Miao J, Zhu P. Insights into the complexities of Citrullination: From immune regulation to autoimmune disease. Autoimmun Rev 2025; 24:103734. [PMID: 39719187 DOI: 10.1016/j.autrev.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria. The immune response to citrullination involves both innate and adaptive immunity, affecting monocytes/macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. Citrullination contributes to disease development in RA and other conditions such as multiple sclerosis, sepsis, and cancer. Therapeutic strategies targeting citrullination and its effects are being explored, including B cell depletion therapies, T cell-directed approaches, PAD inhibitors, and citrullinated peptide-based vaccines. Understanding the interplay between citrullination and the immune system may lead to novel diagnostic tools and targeted therapies for autoimmune diseases and beyond.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Cheng M, Wei W, Chang Y. The Role and Research Progress of ACPA in the Diagnosis and Pathological Mechanism of Rheumatoid Arthritis. Hum Immunol 2025; 86:111219. [PMID: 39700967 DOI: 10.1016/j.humimm.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
An autoimmune condition known as rheumatoid arthritis (RA) is characterized by persistent polyarticular inflammation. Within two years of the disease's onset, irreparable bone and joint deterioration can occur as a result of the inflammatory course of the illness, leading to joint deformity and loss of function. In most patients diagnosed with RA, a range of autoantibodies, particularly anti-citrullinated protein antibodies (ACPA), can be detected months to years before the onset of clinically recognizable disease. Additionally, an increasing number of studies suggest that ACPA is involved in the pathogenesis of RA and may play a direct pathogenic role in the disease. This paper focuses on the role of ACPA in the pathomechanism of RA and discusses its unique clinical applications for the early identification and prediction of RA, as well as the influencing factors. Moreover, this article outlines the association of ACPA-positive (ACPA+) RA with other autoimmune diseases.
Collapse
Affiliation(s)
- Meng Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Niu Q, Hao J, Li Z, Zhang H. Helper T cells: A potential target for sex hormones to ameliorate rheumatoid arthritis? (Review). Mol Med Rep 2024; 30:215. [PMID: 39370806 PMCID: PMC11450432 DOI: 10.3892/mmr.2024.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease whose etiology is not fully understood. Defective peripheral immune tolerance and subsequent mis‑differentiation and aberrant infiltration of synovium by various immune cells, especially helper T (Th) cells, play an important role in the development of RA. There are significant sex differences in RA, but the results of studies on the effects of sex hormones on RA have been difficult to standardize and hormone replacement therapy has been limited by the potential for serious side effects. Existing research has amply demonstrated that cellular immune responses are largely determined by sex and that sex hormones play a key role in Th cell responses. Based on the aforementioned background and the plasticity of Th cells, it is reasonable to hypothesize that the action of sex hormones on Th cells will hopefully become a therapeutic target for RA. The present review discussed the role of various Th cell subsets in the pathogenesis of RA and also explored the role of sex hormones on the phenotype and function of these aberrantly regulated immune cells in RA as well as other pathologic effects on RA.
Collapse
Affiliation(s)
- Quanjun Niu
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Junhang Hao
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Zhen Li
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Huiping Zhang
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| |
Collapse
|
7
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Chen J, Cao Y, Xiao J, Hong Y, Zhu Y. The emerging role of neutrophil extracellular traps in the progression of rheumatoid arthritis. Front Immunol 2024; 15:1438272. [PMID: 39221253 PMCID: PMC11361965 DOI: 10.3389/fimmu.2024.1438272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a complex etiology. Neutrophil extracellular traps (NETs are NETwork protein structures activated by neutrophils to induce the cleavage and release of DNA-protein complexes). Current studies have shown the critical involvement of NETs in the progression of autoimmune diseases, Neutrophils mostly gather in the inflammatory sites of patients and participate in the pathogenesis of autoimmune diseases in various ways. NETs, as the activated state of neutrophils, have attracted much attention in immune diseases. Many molecules released in NETs are targeted autoantigens in autoimmune diseases, such as histones, citrulline peptides, and myeloperoxidase. All of these suggest that NETs have a direct causal relationship between the production of autoantigens and autoimmune diseases. For RA in particular, as a disorder of the innate and adaptive immune response, the pathogenesis of RA is inseparable from the generation of RA. In this article, we investigate the emerging role of NETs in the pathogenesis of RA and suggest that NETs may be an important target for the treatment of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Jingjing Chen
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yang Cao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xiao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Hong
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
10
|
Ma H, Liang X, Li SS, Li W, Li TF. The role of anti-citrullinated protein antibody in pathogenesis of RA. Clin Exp Med 2024; 24:153. [PMID: 38972923 PMCID: PMC11228005 DOI: 10.1007/s10238-024-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/21/2024] [Indexed: 07/09/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic function of ACPAs.
Collapse
Affiliation(s)
- Hang Ma
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Anton ML, Cardoneanu A, Burlui AM, Mihai IR, Richter P, Bratoiu I, Macovei LA, Rezus E. The Lung in Rheumatoid Arthritis-Friend or Enemy? Int J Mol Sci 2024; 25:6460. [PMID: 38928165 PMCID: PMC11203675 DOI: 10.3390/ijms25126460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition frequently found in rheumatological patients that sometimes raises diagnosis and management problems. The pathogenesis of the disease is complex and involves the activation of many cells and intracellular signaling pathways, ultimately leading to the activation of the innate and acquired immune system and producing extensive tissue damage. Along with joint involvement, RA can have numerous extra-articular manifestations (EAMs), among which lung damage, especially interstitial lung disease (ILD), negatively influences the evolution and survival of these patients. Although there are more and more RA-ILD cases, the pathogenesis is incompletely understood. In terms of genetic predisposition, external environmental factors act and subsequently determine the activation of immune system cells such as macrophages, neutrophils, B and T lymphocytes, fibroblasts, and dendritic cells. These, in turn, show the ability to secrete molecules with a proinflammatory role (cytokines, chemokines, growth factors) that will produce important visceral injuries, including pulmonary changes. Currently, there is new evidence that supports the initiation of the systemic immune response at the level of pulmonary mucosa where the citrullination process occurs, whereby the autoantibodies subsequently migrate from the lung to the synovial membrane. The aim of this paper is to provide current data regarding the pathogenesis of RA-associated ILD, starting from environmental triggers and reaching the cellular, humoral, and molecular changes involved in the onset of the disease.
Collapse
Affiliation(s)
- Maria-Luciana Anton
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Maria Burlui
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
12
|
van der Woude D, Toes REM. Immune response to post-translationally modified proteins in rheumatoid arthritis: what makes it special? Ann Rheum Dis 2024; 83:838-846. [PMID: 38378236 DOI: 10.1136/ard-2023-224103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Rheumatoid arthritis (RA) exhibits common characteristics with numerous other autoimmune diseases, including the presence of susceptibility genes and the presence of disease-specific autoantibodies. Anti-citrullinated protein antibodies (ACPA) are the hallmarking autoantibodies in RA and the anti-citrullinated protein immune response has been implicated in disease pathogenesis. Insight into the immunological pathways leading to anti-citrullinated protein immunity will not only aid understanding of RA pathogenesis, but may also contribute to elucidation of similar mechanisms in other autoantibody-positive autoimmune diseases. Similarly, lessons learnt in other human autoimmune diseases might be relevant to understand potential drivers of RA. In this review, we will summarise several novel insights into the biology of the anti-citrullinated protein response and their clinical associations that have been obtained in recent years. These insights include the identification of glycans in the variable domain of ACPA, the realisation that ACPA are polyreactive towards other post-translational modifications on proteins, as well as new awareness of the contributing role of mucosal sites to the development of the ACPA response. These findings will be mirrored to emerging concepts obtained in other human (autoimmune) disease characterised by disease-specific autoantibodies. Together with an updated understanding of genetic and environmental risk factors and fresh perspectives on how the microbiome could contribute to antibody formation, these advancements coalesce to a progressively clearer picture of the B cell reaction to modified antigens in the progression of RA.
Collapse
Affiliation(s)
| | - René E M Toes
- Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
13
|
Steiner G, Toes RE. Autoantibodies in rheumatoid arthritis - rheumatoid factor, anticitrullinated protein antibodies and beyond. Curr Opin Rheumatol 2024; 36:217-224. [PMID: 38411194 PMCID: PMC11139241 DOI: 10.1097/bor.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW RA is characterized by the presence of autoantibodies among which rheumatoid factors (RFs) and antimodified protein antibodies (AMPA) are serological hallmarks of the disease. In recent years, several novel insights into the biology, immunogenetics and clinical relevance of these autoantibodies have been obtained, which deserve to be discussed in more detail. RECENT FINDINGS RFs from RA patients seem to target distinct epitopes which appear to be quite specific for RA. Determination of immunoglobulin A (IgA) isotypes of RF and anticitrullinated protein antibodies (ACPA) may provide prognostic information because their presence is associated with reduced therapeutic responses to TNF inhibitors. Furthermore, IgA levels are increased in RA patients and IgA immune complexes are more potent than immunoglobulin G (IgG) complexes in inducing NET formation. Concerning AMPAs, investigations on variable domain glycosylation (VDG) revealed effects on antigen binding and activation of autoreactive B cells. Studies on pathogenetic involvement of ACPA suggest Janus-faced roles: on the one hand, ACPA may be involved in joint destruction and pain perception while on the other hand protective anti-inflammatory effects may be attributed to a subset of ACPAs. SUMMARY The autoimmune response in RA is extremely complex and still far from being fully understood. Antibodies are not only valuable diagnostic biomarkers but also seem to play pivotal roles in the pathophysiology of RA.
Collapse
Affiliation(s)
- Günter Steiner
- Division of Rheumatology, Department of Internal Medicine III; Medical University of Vienna
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - René E.M. Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Perera J, Delrosso CA, Nerviani A, Pitzalis C. Clinical Phenotypes, Serological Biomarkers, and Synovial Features Defining Seropositive and Seronegative Rheumatoid Arthritis: A Literature Review. Cells 2024; 13:743. [PMID: 38727279 PMCID: PMC11083059 DOI: 10.3390/cells13090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.
Collapse
Affiliation(s)
- James Perera
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Chiara Aurora Delrosso
- Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Biomedical Sciences, Humanitas University & IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
15
|
He Y, Aoun M, Xu Z, Holmdahl R. Shift in perspective: autoimmunity protecting against rheumatoid arthritis. Ann Rheum Dis 2024; 83:550-555. [PMID: 38413169 DOI: 10.1136/ard-2023-225237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
A hallmark of rheumatoid arthritis (RA) is the increased levels of autoantibodies preceding the onset and contributing to the classification of the disease. These autoantibodies, mainly anti-citrullinated protein antibody (ACPA) and rheumatoid factor, have been assumed to be pathogenic and many attempts have been made to link them to the development of bone erosion, pain and arthritis. We and others have recently discovered that most cloned ACPA protect against experimental arthritis in the mouse. In addition, we have identified suppressor B cells in healthy individuals, selected in response to collagen type II, and these cells decrease in numbers in RA. These findings provide a new angle on how to explain the development of RA and maybe also other complex autoimmune diseases preceded by an increased autoimmune response.
Collapse
Affiliation(s)
- Yibo He
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Mike Aoun
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Zhongwei Xu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| |
Collapse
|
16
|
Aterido A, López-Lasanta M, Blanco F, Juan-Mas A, García-Vivar ML, Erra A, Pérez-García C, Sánchez-Fernández SÁ, Sanmartí R, Fernández-Nebro A, Alperi-López M, Tornero J, Ortiz AM, Fernández-Cid CM, Palau N, Pan W, Byrne-Steele M, Starenki D, Weber D, Rodriguez-Nunez I, Han J, Myers RM, Marsal S, Julià A. Seven-chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel features associated with disease and clinically relevant phenotypes. Genome Biol 2024; 25:68. [PMID: 38468286 PMCID: PMC10926600 DOI: 10.1186/s13059-024-03210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA), the activation of T and B cell clones specific for self-antigens leads to the chronic inflammation of the synovium. Here, we perform an in-depth quantitative analysis of the seven chains that comprise the adaptive immune receptor repertoire (AIRR) in RA. RESULTS In comparison to controls, we show that RA patients have multiple and strong differences in the B cell receptor repertoire including reduced diversity as well as altered isotype, chain, and segment frequencies. We demonstrate that therapeutic tumor necrosis factor inhibition partially restores this alteration but find a profound difference in the underlying biochemical reactivities between responders and non-responders. Combining the AIRR with HLA typing, we identify the specific T cell receptor repertoire associated with disease risk variants. Integrating these features, we further develop a molecular classifier that shows the utility of the AIRR as a diagnostic tool. CONCLUSIONS Simultaneous sequencing of the seven chains of the human AIRR reveals novel features associated with the disease and clinically relevant phenotypes, including response to therapy. These findings show the unique potential of AIRR to address precision medicine in immune-related diseases.
Collapse
Affiliation(s)
- Adrià Aterido
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - Francisco Blanco
- Rheumatology Department, Hospital Juan Canalejo, A Coruña, Spain
| | | | | | - Alba Erra
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
- Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain
| | | | | | - Raimon Sanmartí
- Rheumatology Department, Hospital Clínic de Barcelona and IDIBAPS, Barcelona, Spain
| | | | | | - Jesús Tornero
- Rheumatology Department, Hospital Universitario Guadalajara, Guadalajara, Spain
| | - Ana María Ortiz
- Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain
| | | | - Núria Palau
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | | | | | | | | | | | - Jian Han
- iRepertoire Inc, Huntsville, AL, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara Marsal
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain.
| |
Collapse
|
17
|
Thomas R, Robinson WH. Immune tolerance of citrullinated peptides. Nat Rev Rheumatol 2024; 20:141-142. [PMID: 38263304 DOI: 10.1038/s41584-024-01081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Affiliation(s)
- Ranjeny Thomas
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
18
|
Gao Y, Zhang Y, Liu X. Rheumatoid arthritis: pathogenesis and therapeutic advances. MedComm (Beijing) 2024; 5:e509. [PMID: 38469546 PMCID: PMC10925489 DOI: 10.1002/mco2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
Collapse
Affiliation(s)
- Ying Gao
- Department of RheumatologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yunkai Zhang
- Naval Medical CenterNaval Medical UniversityShanghaiChina
| | - Xingguang Liu
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
19
|
Lastwika KJ, Lampe PD. Breaking tolerance: autoantibodies can target protein posttranslational modifications. Curr Opin Biotechnol 2024; 85:103056. [PMID: 38141322 PMCID: PMC10922400 DOI: 10.1016/j.copbio.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Autoantibodies (AAb) are an immunological resource ripe for exploitation in cancer detection and treatment. Key to this translation is a better understanding of the self-epitope that AAb target in tumor tissue, but do not bind to in normal tissue. Posttranslational modifications (PTMs) on self-proteins are known to break tolerance in many autoimmune diseases and have also recently been described in cancer. This scope of possible autoantigens is quite broad and new high-dimensional and -throughput technologies to probe this repertoire will be necessary to fully exploit their potential. Here, we discuss the strengths and weaknesses of existing high-throughput platforms to detect AAb, review the current methods for characterizing immunogenic PTMs, describe the main challenges to identifying disease-relevant antigens and suggest the properties of future technologies that may be able to address these challenges. We conclude that exploiting the evolutionary power of the immune system to distinguish between self and nonself has great potential to be translated into antibody-based clinical applications.
Collapse
Affiliation(s)
- Kristin J Lastwika
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Steiner G, Van Hoovels L, Csige D, Gatto M, Iagnocco A, Szekanecz Z. Should ACR/EULAR criteria be revised changing the RF and ACPA scores? Autoimmun Rev 2024; 23:103421. [PMID: 37633353 DOI: 10.1016/j.autrev.2023.103421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Current classification criteria for rheumatoid arthritis (RA) encompass clinical and immunological items and are capable of correctly identifying the majority of symptomatic RA patients. The presence of positive rheumatoid factor (RF) and/or and anti-cyclic citrullinated protein/peptide antibodies (ACPA) gaining increasing importance according to their serological titer eases the recognition of RA, yet the debate is open on whether this scoring system ought to be optimized by hierarchizing ACPA or the combination of ACPA and RF over single positivity, prioritizing specificity over sensitivity. The risk of misdiagnosis and misclassification are often entangled, yet they are not the same. In fact, while ideal diagnosis requires 100% sensitivity and specificity, classification criteria are conceived to gather a homogeneous patient population, favoring specificity over sensitivity. Nevertheless, as they are frequently summoned to support the diagnostic process in clinical practice, issues arise on how comprehensive those should be and on how frequently they should be updated in light of novel acquisitions regarding measurable RA-related abnormalities. In this viewpoint two different views on the topic are confronted, discussing the performance of available criteria and the potentiality and pitfalls of their refinement according to novel data on ACPA and RF contribution and emergence of newly discovered specificities.
Collapse
Affiliation(s)
- Guenter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Lieve Van Hoovels
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, OLV Hospital, Aalst, Belgium
| | - Dóra Csige
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariele Gatto
- Academic Rheumatology Centre, AO Mauriziano - Dipartimento Scienze Cliniche e Biologiche, Università degli Studi di Torino, Turin, Italy
| | - Annamaria Iagnocco
- Academic Rheumatology Centre, AO Mauriziano - Dipartimento Scienze Cliniche e Biologiche, Università degli Studi di Torino, Turin, Italy.
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Yamada H, Haraguchi A, Tsuru T, Kondo M, Sagawa F, Niiro H, Nakashima Y. Low avidity observed for anti-citrullinated peptide antibody is not a general phenomenon for autoantibodies. Ann Rheum Dis 2023; 82:1637-1638. [PMID: 37433576 DOI: 10.1136/ard-2023-224303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Affiliation(s)
- Hisakata Yamada
- Department of Clinical Immunology, Kyushu University Faculty of Medicine Graduate School of Medical Science, Fukuoka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kondo Clinic for Rheumatology and Orthopaedics, Fukuoka, Japan
| | - Akihisa Haraguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masakazu Kondo
- Kondo Clinic for Rheumatology and Orthopaedics, Fukuoka, Japan
| | | | - Hiroaki Niiro
- Department of Medical Education, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Nandakumar KS, Fang Q, Wingbro Ågren I, Bejmo ZF. Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15883. [PMID: 37958864 PMCID: PMC10648236 DOI: 10.3390/ijms242115883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Isabella Wingbro Ågren
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Zoe Fuwen Bejmo
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| |
Collapse
|
23
|
Trier NH, Houen G. Anti-citrullinated protein antibodies as biomarkers in rheumatoid arthritis. Expert Rev Mol Diagn 2023; 23:895-911. [PMID: 37578277 DOI: 10.1080/14737159.2023.2247986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION The serological biomarker anti-citrullinated protein antibodies (ACPAs) may have several functions but is especially important for the diagnosis of rheumatoid arthritis (RA) along with clinical symptoms. AREAS COVERED This review provides an overview of ACPAs, which are useful in RA diagnostics and may improve our understanding of disease etiology. PubMed was searched with combinations of words related to antibodies recognizing epitopes containing the post-translationally modified amino acid citrulline in combination with rheumatoid arthritis; cyclic citrullinated peptide, CCP, anti-CCP, anti-citrullinated protein antibodies, ACPA, citrullination, peptide/protein arginine deiminase, PAD, filaggrin, vimentin, keratin, collagen, perinuclear factor, EBNA1, EBNA2, and others. From this search, we made a qualitative extract of publications relevant to the discovery, characterization, and clinical use of these antibodies in relation to RA. We highlight significant findings and identify areas for improvement. EXPERT OPINION ACPAs have high diagnostic sensitivity and specificity for RA and recognize citrullinated epitopes from several proteins. The best-performing single epitope originates from Epstein-Barr Virus nuclear antigen 2 and contains a central Cit-Gly motif, which is recognized by ACPAS when located in a flexible peptide structure. In addition, ACPAs may also have prognostic value, especially in relation to early treatment, although ACPAs' main function is to aid in the diagnosis of RA.
Collapse
Affiliation(s)
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
24
|
Djukić T, Drvenica I, Kovačić M, Minić R, Vučetić D, Majerič D, Šefik-Bukilica M, Savić O, Bugarski B, Ilić V. Dynamic light scattering analysis of immune complexes in sera of rheumatoid arthritis patients. Anal Biochem 2023:115194. [PMID: 37279816 DOI: 10.1016/j.ab.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
The size of circulating immune complexes (CICs) in rheumatoid arthritis (RA) could be an emerging criterion in disease diagnosis. This study analyzed size and electrokinetic potential of CICs from RA patients, healthy young adults, and RA patients age-matched controls aiming to establish their unique CIC features. Pooled CIC of 30 RA patients, 30 young adults, and 30 RA group's age-matched controls (middle-aged and oldеr healthy adults), and in vitro IgG aggregates from pooled sera of 300 healthy volunteers were tested using dynamic light scattering (DLS). Size distribution of CIC in healthy young adults exhibited high polydispersity. RA CIC patients and their age-matched control showed distinctly narrower size distributions compared with young adults. In these groups, particles clustered around two well-defined peaks. Particles of peak 1 were 36.1 ± 6.8 nm in RA age-matched control, and 30.8 ± 4.2 nm in RA patients. Particles of peak 2 of the RA age-matched control's CIC was 251.7 ± 41.2 nm, while RA CIC contained larger particles (359.9 ± 50.5 nm). The lower zeta potential of RA CIC, compared to control, indicated a disease-related decrease in colloidal stability. DLS identified RA-specific, but also age-specific distribution of CIC size and opened possibility of becoming a method for CIC size analysis in IC-mediated diseases.
Collapse
Affiliation(s)
- Tamara Djukić
- Innovation Center of the Faculty of Technology and Metallurgy Ltd, Belgrade, Serbia
| | - Ivana Drvenica
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia.
| | - Marijana Kovačić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Rajna Minić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Dušan Vučetić
- Institute for Transfusiology and Haemobiology, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Dragana Majerič
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Šefik-Bukilica
- Institute for Rheumatology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Savić
- Blood Transfusion Institute of Serbia, Belgrade, Serbia
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
25
|
Umemoto A, Kuwada T, Murata K, Shiokawa M, Ota S, Murotani Y, Itamoto A, Nishitani K, Yoshitomi H, Fujii T, Onishi A, Onizawa H, Murakami K, Tanaka M, Ito H, Seno H, Morinobu A, Matsuda S. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2023; 25:25. [PMID: 36804906 PMCID: PMC9936655 DOI: 10.1186/s13075-023-03007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Anti-citrullinated protein/peptide antibodies (ACPAs) are present in patients at onset and have important pathogenic roles during the course of rheumatoid arthritis (RA). The characteristics of several molecules recognized by ACPA have been studied in RA, but the positivity rate of autoantibodies against each antigen is not high, and the pathogenic mechanism of each antibody is not fully understood. We investigated the role of anti-citrullinated osteopontin (anti-cit-OPN) antibodies in RA pathogenesis. METHODS Enzyme-linked immunosorbent assays on RA patients' sera were used to detect autoantibodies against OPN. Fibroblast-like synoviocytes (FLS) isolated from RA patients were used to test the binding activity and inflammatory response of OPN mediated by anti-cit-OPN antibodies, and their effect was tested using an inflammatory arthritis mouse model immunized with cit-OPN. Anti-cit-OPN antibody positivity and clinical characteristics were investigated in the patients as well. RESULTS Using sera from 224 RA patients, anti-cit-OPN antibodies were positive in approximately 44% of RA patients, while approximately 78% of patients were positive for the cyclic citrullinated peptide (CCP2) assay. IgG from patients with anti-cit-OPN antibody increased the binding activity of OPN to FLSs, which further increased matrix metalloproteinase and interleukin-6 production in TNF-stimulated FLSs. Mice immunized with cit-OPN antibodies experienced severe arthritis. Anti-cit-OPN antibodies in RA patients decreased the drug survival rate of tumor necrosis factor (TNF) inhibitors, while it did not decrease that of CTLA4-Ig. CONCLUSIONS Anti-cit-OPN antibodies were detected in patients with RA. IgG from patients with anti-cit-OPN antibodies aggravated RA, and anti-cit-OPN antibody was a marker of reduced the survival rate of TNF inhibitors in RA patients.
Collapse
Affiliation(s)
- Akio Umemoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan. .,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yoshiki Murotani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Akihiro Itamoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8501, Japan
| | - Takayuki Fujii
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
26
|
A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat Commun 2023; 14:691. [PMID: 36754962 PMCID: PMC9908943 DOI: 10.1038/s41467-023-36257-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Although elevated levels of anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA), the in vivo functions of these antibodies remain unclear. Here, we have expressed monoclonal ACPAs derived from patients with RA, and analyzed their functions in mice, as well as their specificities. None of the ACPAs showed arthritogenicity nor induced pain-associated behavior in mice. However, one of the antibodies, clone E4, protected mice from antibody-induced arthritis. E4 showed a binding pattern restricted to skin, macrophages and dendritic cells in lymphoid tissue, and cartilage derived from mouse and human arthritic joints. Proteomic analysis confirmed that E4 strongly binds to macrophages and certain RA synovial fluid proteins such as α-enolase. The protective effect of E4 was epitope-specific and dependent on the interaction between E4-citrullinated α-enolase immune complexes with FCGR2B on macrophages, resulting in increased IL-10 secretion and reduced osteoclastogenesis. These findings suggest that a subset of ACPAs have therapeutic potential in RA.
Collapse
|
27
|
Xu M, Du R, Xing W, Chen X, Wan J, Wang S, Xiong L, Nandakumar KS, Holmdahl R, Geng H. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front Immunol 2023; 14:1084283. [PMID: 36761728 PMCID: PMC9902922 DOI: 10.3389/fimmu.2023.1084283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Citrullinated neoepitopes have emerged as key triggers of autoantibodies anti-citrullinated protein antibodies (ACPA) synthesis in rheumatoid arthritis (RA) patients. Apart from their critical role in homeostasis and thrombosis, platelets have a significant contribution to inflammation as well. Although anuclear in nature, platelets have an intricate post-translational modification machinery. Till now, citrullination in platelets and its contribution to trigger autoantibodies ACPA production in RA is an unexplored research direction. Herein, we investigated the expression of peptidylarginine deiminase (PAD) enzymes and citrullinated proteins/peptides in the human platelets and platelet derived microparticles (PDP). Both PAD4 mRNA and protein, but not the other PAD isoforms, are detectable in the human platelets. With a strict filtering criterion,108 citrullination sites present on 76 proteins were identified in the human platelets, and 55 citrullinated modifications present on 37 different proteins were detected in the PDPs. Among them, some are well-known citrullinated autoantigens associated with RA. Citrullinated forms of thrombospondin-1, β-actin, and platelet factor-4 (also known as CXCL4) are highly immunogenic and bound by autoantibodies ACPA. Furthermore, ACPA from RA sera and synovial fluids recognized citrullinated proteins from platelets and significantly activated them as evidenced by P-selectin upregulation and sCD40 L secretion. These results clearly demonstrate the presence of citrullinated autoantigens in platelets and PDPs, thus could serve as potential targets of ACPA in RA.
Collapse
Affiliation(s)
- Minjie Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenping Xing
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueting Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shengqing Wang
- Department of Dermatology, Hospital affiliated to Central China Normal University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
28
|
Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, Gao C, Li X, Wang C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 2022; 133:102950. [PMID: 36356551 DOI: 10.1016/j.jaut.2022.102950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling, systemic autoimmune disease. It presents a remarkable tendency to recur, which renders it almost impossible for patients to live without drugs. Under such circumstances, many patients have to suffer the pain of recurrent attacks as well as the side effects of long-term medication. Current therapies for RA are primarily systemic treatments without targeting the problem that RA is more likely to recur locally. Emerging studies suggest the existence of a mechanism mediating local memory during RA, which is closely related to the persistent residence of tissue-resident memory T cells (TRM). TRM, one of the memory T cell subsets, reside in tissues providing immediate immune protection but driving recurrent local inflammation on the other hand. The heterogeneity among synovial TRM is unclear, with the dominated CD8+ TRM observed in inflamed synovium of RA patients coming into focus. Besides local arthritis relapse, TRM may also contribute to extra-articular organ involvement in RA due to their migration potential. Future integration of single-cell RNA sequencing (scRNA-seq) with spatial transcriptomics to explore the gene expression patterns of TRM in both temporal dimension and spatial dimension may help us identify specific therapeutic targets. Targeting synovial TRM to suppress local arthritis flares while using systemic therapies to prevent extra-articular organ involvement may provide a new perspective to address RA recurrence.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Wenpeng Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China.
| |
Collapse
|
29
|
Gatto M, Bjursten S, Jonsson CA, Agelii ML, Jonell C, McGrath S, Lönnblom E, Sareila O, Holmdahl R, Rudin A, Levin M, Gjertsson I. Early Increase of Circulating Transitional B Cells and Autoantibodies to Joint-Related Proteins in Patients With Metastatic Melanoma Developing Checkpoint Inhibitor-Induced Inflammatory Arthritis. Arthritis Rheumatol 2022; 75:856-863. [PMID: 36409578 DOI: 10.1002/art.42406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate potential associations between B cell-related immunologic changes and development of inflammatory arthritis (IA) after treatment with immune checkpoint inhibitors (ICIs). METHODS Patients who developed ICI-induced IA (ICI-IA) and patients who did not develop immune-related adverse events (non-IRAE) after receiving ICIs to treat metastatic melanoma were consecutively recruited. Blood samples were collected at the time of ICI-IA occurrence and at different time points during treatment. Peripheral blood B cell subsets during ICI treatment were analyzed by flow cytometry. Rheumatoid factor, anti-citrullinated protein antibodies, and antibodies against joint-related proteins were measured. RESULTS Proportions of CD19+ B cells were higher in patients with ICI-IA (n = 7) compared to patients with non-IRAE (n = 15) (median 11.7% [interquartile range (IQR) 9.7-16.2%] versus 8.1% [IQR 5.7-11.0%]; P = 0.03). The proportion and absolute numbers of transitional CD19+CD10+CD24high CD38high B cells were increased in patients with ICI-IA compared to non-IRAE patients (median 8.1% [IQR 4.9-12.1%] versus 3.6% [IQR 1.9-4.9%]; median 10.7 cells/μl [IQR 8.9-19.6] versus 4.4 cells/μl [IQR 2.3-6.6]; P < 0.01 for both). In addition, higher levels of transitional B cells were associated with development of ICI-IA (odds ratio 2.25 [95% confidence interval 1.03-4.9], P = 0.04). Transitional B cells increased before the onset of overt ICI-IA and decreased between the active and quiescent stages of ICI-IA (P = 0.02). Autoantibodies to type II collagen epitopes were detected in up to 43% of ICI-IA patients compared to none of the non-IRAE patients (P = 0.02). CONCLUSION Development of ICI-IA is accompanied by an increase in transitional B cells and by production of autoantibodies to joint-related proteins. Monitoring of B cell-driven abnormalities upon ICI treatment may help earlier recognition of ICI-IA.
Collapse
Affiliation(s)
- Mariele Gatto
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Department of Medicine, Unit of Rheumatology, University of Padova, Italy
| | - Sara Bjursten
- Department of Oncology, Sahlgrenska University Hospital, and Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Jonell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Lönnblom
- Department of Medical Biochemistry and Biophysics, Section for Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Outi Sareila
- Department of Medical Biochemistry and Biophysics, Section for Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Section for Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Miura Y, Isogai S, Maeda S, Kanazawa S. CTLA-4-Ig internalizes CD80 in fibroblast-like synoviocytes from chronic inflammatory arthritis mouse model. Sci Rep 2022; 12:16363. [PMID: 36180526 PMCID: PMC9525600 DOI: 10.1038/s41598-022-20694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
CD80 interact with CD28 and CTLA-4 on antigen-presenting cells, and function in the co-stimulatory signaling that regulates T cell activity. CTLA-4-Ig is used to treat RA by blocking co-stimulatory signaling. Chronic inflammatory arthritis was induced in D1BC mice using low-dose arthritogenic antigens and treated with CTLA-4-Ig. We performed histopathology of the joints and lymph nodes, serological examination for rheumatoid factors, and flow cytometric analysis of isolated synovial cells, including CD45- FLSs and CD45+ synovial macrophages. CTLA-4-Ig treatment ameliorated the chronic inflammatory polyarthritis. There was a decrease in the number of infiltrating lymphoid cells in the joints as well as in the levels of RF-IgG associated with a decrease in the number of B cells in the lymph nodes; more than 15% of CD45- FLSs expressed CD80, and a small number of them expressed PD-L1, indicating the presence of PD-L1/CD80 cis-heterodimers in these cells. CTLA-4-Ig internalized CD80, but not PD-L1, in isolated synovial cells. Gene ontology analysis revealed that CTLA-4-Ig internalization did not significantly alter the expression of inflammation-related genes. The therapeutic effect of CTLA-4-Ig appears to extend beyond the lymph nodes into the inflamed synovial compartment through the synergistic inactivation of T cells by the CD80 and PD-L1 axes.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shyuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
31
|
From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:371-383. [PMID: 35606567 DOI: 10.1038/s41584-022-00786-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
The presence of disease-specific autoantibody responses and the efficacy of B cell-targeting therapies in rheumatoid arthritis (RA) indicate a pivotal role for B cells in disease pathogenesis. Important advances have shaped our understanding of the involvement of autoantibodies and autoreactive B cells in the disease process. In RA, autoantibodies target antigens with a variety of post-translational modifications such as carbamylation, acetylation and citrullination. B cell responses against citrullinated antigens generate anti-citrullinated protein antibodies (ACPAs), which are themselves modified in the variable domains by abundant N-linked glycans. Insights into the induction of autoreactive B cells against antigens with post-translational modifications and the development of autoantibody features such as isotype usage, epitope recognition, avidity and glycosylation reveal their relationship to particular RA risk factors and clinical phenotypes. Glycosylation of the ACPA variable domain, for example, seems to predict RA onset in ACPA+ healthy individuals, possibly because it affects B cell receptor signalling. Moreover, ACPA-expressing B cells show dynamic phenotypic changes and develop a continuously proliferative and activated phenotype that can persist in patients who are in drug-induced clinical remission. Together, these findings can be integrated into a conceptual framework of immunological autoreactivity in RA, delineating how it develops and persists and why disease activity recurs when therapy is tapered or stopped.
Collapse
|
32
|
Zeng F, Liu H, Xia X, Shu Y, Cheng W, Xu H, Yin G, Xie Q. Case Report: Brachydactyly Type A1 Induced by a Novel Variant of in-Frame Insertion in the IHH Gene. Front Genet 2022; 13:814786. [PMID: 35669189 PMCID: PMC9163809 DOI: 10.3389/fgene.2022.814786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Brachydactyly type A1 (BDA1) is an autosomal dominant inherited disease characterized by the shortness/absence of the middle phalanges, which can be induced by mutations in the Indian hedgehog gene (IHH). Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by joint destruction, synovitis, and the presence of autoantibodies. In this study, the proband was diagnosed with both BDA1 and RA. We performed whole-exome sequencing in a four-generation Chinese family to investigate their inherited causal mutation to BDA1. A novel in-frame insertion variant in IHH: NM_002,181.4: c.383_415dup/p.(R128_H138dup) was identified in the BDA1 pedigree. This insertion of 11 amino acids was located in the highly conserved amino-terminal signaling domain of IHH and co-segregated with the disease status. This adds one to the total number of different IHH mutations found to cause BDA1. Moreover, we found a potential causal germline variant in CRY1 for a molecular biomarker of RA (i.e., a high level of anti-cyclic citrullinated peptide). Collectively, we identified novel variants in IHH for inherited BDA1, which highlights the important role of this gene in phalange development.
Collapse
Affiliation(s)
- Feier Zeng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Gastrointestinal Surgery, West China Hospital, Chengdu, China
| | - Wei Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Chengdu, China
- *Correspondence: Heng Xu, ; Geng Yin, ; Qibing Xie,
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Geng Yin, ; Qibing Xie,
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Geng Yin, ; Qibing Xie,
| |
Collapse
|
33
|
Liang P, Li Y, Xu R, Nandakumar KS, Stawikowska R, Fields GB, Holmdahl R. Characterization of chronic relapsing antibody mediated arthritis in mice with a mutation in Ncf1 causing reduced oxidative burst. MOLECULAR BIOMEDICINE 2022; 3:14. [PMID: 35551534 PMCID: PMC9098740 DOI: 10.1186/s43556-022-00076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/30/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder affecting joints with a hallmark of autoantibody production. Mannan-enhanced collagen type II (COL2) antibody induced arthritis (mCAIA) in neutrophil cytosolic factor 1(Ncf1) mutation mouse is a chronic disease model imitating RA in mice. In this study, we characterize the chronic phase of mCAIA in Ncf1 mutated (BQ.Ncf1m1j/m1j) mice. Arthritis was induced by an intravenous injection of anti-COL2 monoclonal antibodies on day 0 followed by intra-peritoneal injections of mannan (from Saccharomyces cerevisiae) on days 3 and 65 in BQ.Ncf1m1j/m1j and BQ mice. Bone erosion was analysed by computed tomography (CT) and blood cell phenotypes by flow cytometry. Cytokines and anti-COL2 antibodies were analyzed with multiplex bead-based assays. The arthritis in the Ncf1m1j/m1j mice developed with a chronic and relapsing disease course, which was followed for 200 days and bone erosions of articular joints were evaluated. An increased number of circulating CD11b+ Ly6G+ neutrophils were observed during the chronic phase, together with a higher level of G-CSF (granulocyte colony-stimulating factor) and TNF-α. In conclusion, the chronic relapsing arthritis of mCAIA in the Ncf1m1j/m1j mice develop bone erosions associated with a sustained neutrophil type of inflammatory responses.
Collapse
Affiliation(s)
- Peibin Liang
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Yanpeng Li
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Rui Xu
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Roma Stawikowska
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL, USA
| | - Rikard Holmdahl
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China. .,Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden.
| |
Collapse
|
34
|
Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2022; 36:389-409. [PMID: 33906423 PMCID: PMC8982126 DOI: 10.1089/ars.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Significance: The production of antibodies to posttranslationally modified antigens is a hallmark in rheumatoid arthritis (RA). In particular, the presence of citrullination-associated antibodies, targeting both citrullinating enzymes (the peptidylarginine deiminases [PADs]) and citrullinated antigens (anticitrullinated protein antibodies [ACPAs]), has suggested that dysregulated citrullination is relevant for disease pathogenesis. Antibodies to other protein modifications with physicochemical similarities to citrulline, such as carbamylated-lysine and acetylated-lysine, have also gained interest in RA, but their mechanistic relation to ACPAs remains unclear. Recent Advances: Recent studies using RA-derived monoclonal antibodies have found that ACPAs are cross-reactive to carbamylated and acetylated peptides, challenging our understanding of the implications of such cross-reactivity. Critical Issues: Analogous to the classic antibody response to chemically modified proteins, we examine the possibility that antibodies to modified proteins in RA are more likely to resemble antihapten antibodies rather than autoantibodies. This potential shift in the autoantibody paradigm in RA offers the opportunity to explore new mechanisms involved in the origin and cross-reactivity of pathogenic antibodies in RA. In contrast to citrullination, carbamylation is a chemical modification associated with oxidative stress, it is highly immunogenic, and is considered in the group of posttranslational modification-derived products. We discuss the possibility that carbamylated proteins are antigenic drivers of cross-reacting antihapten antibodies that further create the ACPA response, and that ACPAs may direct the production of antibodies to PAD enzymes. Future Directions: Understanding the complexity of autoantibodies in RA is critical to develop tools to clearly define their origin, identify drivers of disease propagation, and develop novel therapeutics. Antioxid. Redox Signal. 36, 389-409.
Collapse
Affiliation(s)
| | - Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Virtual Screening and In vitro Evaluation Identify Methotrexate and Testosterone as Inhibitors of Protein Arginine Deiminase 4. Arch Med Res 2022. [DOI: 10.1016/j.arcmed.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Ge C, Tong D, Lönnblom E, Liang B, Cai W, Fahlquist-Hagert C, Li T, Kastbom A, Gjertsson I, Dobritzsch D, Holmdahl R. Antibodies to cartilage oligomeric matrix protein are pathogenic in mice and may be clinically relevant in rheumatoid arthritis. Arthritis Rheumatol 2022; 74:961-971. [PMID: 35080151 PMCID: PMC9320966 DOI: 10.1002/art.42072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Objective Cartilage oligomeric matrix protein (COMP) is an autoantigen in rheumatoid arthritis (RA) and experimental models of arthritis. This study was undertaken to investigate the structure, function, and relevance of anti‐COMP antibodies. Methods We investigated the pathogenicity of monoclonal anti‐COMP antibodies in mice using passive transfer experiments, and we explored the interaction of anti‐COMP antibodies with cartilage using immunohistochemical staining. The interaction of the monoclonal antibody 15A11 in complex with its specific COMP epitope P6 was determined by x‐ray crystallography. An enzyme‐linked immunosorbent assay and a surface plasma resonance technique were used to study the modulation of calcium ion binding to 15A11. The clinical relevance and value of serum IgG specific to the COMP P6 epitope and its citrullinated variants were evaluated in a large Swedish cohort of RA patients. Results The murine monoclonal anti‐COMP antibody 15A11 induced arthritis in naive mice. The crystal structure of the 15A11–P6 complex explained how the antibody could bind to COMP, which can be modulated by calcium ions. Moreover, serum IgG specific to the COMP P6 peptide and its citrullinated variants was detectable at significantly higher levels in RA patients compared to healthy controls and correlated with a higher disease activity score. Conclusion Our findings provide the structural basis for binding a pathogenic anti‐COMP antibody to cartilage. The recognized epitope can be citrullinated, and levels of antibodies to this epitope are elevated in RA patients and correlate with higher disease activity, implicating a pathogenic role of anti‐COMP antibodies in a subset of RA patients.
Collapse
Affiliation(s)
- Changrong Ge
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Dongmei Tong
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Erik Lönnblom
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Bibo Liang
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden.,Center for Medical Immunopharmacology Research, Pharmacology School, Southern Medical University, Guangzhou, China
| | - Weiwei Cai
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Cecilia Fahlquist-Hagert
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden.,Medical Inflammation Research, MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Taotao Li
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Alf Kastbom
- Department of Rheumatology in Östergötland, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Doreen Dobritzsch
- Section of Biochemistry, Department of Chemistry-BMC, Uppsala University, 171 23, Uppsala, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 77, Stockholm, Sweden.,Center for Medical Immunopharmacology Research, Pharmacology School, Southern Medical University, Guangzhou, China.,Medical Inflammation Research, MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
37
|
Ge C, Weisse S, Xu B, Dobritzsch D, Viljanen J, Kihlberg J, Do NN, Schneider N, Lanig H, Holmdahl R, Burkhardt H. Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor. Ann Rheum Dis 2022; 81:480-489. [PMID: 35027402 PMCID: PMC8921575 DOI: 10.1136/annrheumdis-2021-220500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022]
Abstract
Objectives Rheumatoid arthritis (RA) is an autoimmune disease strongly associated with the major histocompatibility complex (MHC) class II allele DRB1*04:01, which encodes a protein that binds self-peptides for presentation to T cells. This study characterises the autoantigen-presenting function of DRB1*04:01 (HLA-DRA*01:01/HLA-DRB1*04:01) at a molecular level for prototypic T-cell determinants, focusing on a post-translationally modified collagen type II (Col2)-derived peptide. Methods The crystal structures of DRB1*04:01 molecules in complex with the peptides HSP70289-306, citrullinated CILP982-996 and galactosylated Col2259-273 were determined on cocrystallisation. T cells specific for Col2259-273 were investigated in peripheral blood mononuclear cells from patients with DRB1*04:01-positive RA by cytofluorometric detection of the activation marker CD154 on peptide stimulation and binding of fluorescent DRB1*0401/Col2259-273 tetramer complexes. The cDNAs encoding the T-cell receptor (TCR) α-chains and β-chains were cloned from single-cell sorted tetramer-positive T cells and transferred via a lentiviral vector into TCR-deficient Jurkat 76 cells. Results The crystal structures identified peptide binding to DRB1*04:01 and potential side chain exposure to T cells. The main TCR recognition sites in Col2259-273 were lysine residues that can be galactosylated. RA T-cell responses to DRB1*04:01-presented Col2259-273 were dependent on peptide galactosylation at lysine 264. Dynamic molecular modelling of a functionally characterised Col2259-273-specific TCR complexed with DRB1*04:01/Col2259-273 provided evidence for differential allosteric T-cell recognition of glycosylated lysine 264. Conclusions The MHC-peptide-TCR interactions elucidated in our study provide new molecular insights into recognition of a post-translationally modified RA T-cell determinant with a known dominant role in arthritogenic and tolerogenic responses in murine Col2-induced arthritis.
Collapse
Affiliation(s)
- Changrong Ge
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sylvia Weisse
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Doreen Dobritzsch
- Section of Biochemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Johan Viljanen
- Section of Organic Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jan Kihlberg
- Section of Organic Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Nhu-Nguyen Do
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Nadine Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (current affiliation)
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany .,Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt am Main, Germany.,Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
38
|
de França NR, Ménard HA, Lora M, Zhou Z, Rauch J, Hitchon C, Andrade LEC, Colmegna I. Characterization and use of the ECV304 autoantigenic citrullinome to understand anti-citrullinated protein/peptide autoantibodies in rheumatoid arthritis. Arthritis Res Ther 2022; 24:23. [PMID: 35027076 PMCID: PMC8756661 DOI: 10.1186/s13075-021-02698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
Background Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA). In vivo, ACPAs target peptidyl-citrulline epitopes (cit-) in a variety of proteins (cit-prot-ACPAs) and derived peptides (cit-pept-ACPAs) generated via the peptidylarginine deiminase (PAD) isoenzymes. We aimed to identify a cell line with self-citrullination capacity, to describe its autoantigenic citrullinome, and to test it as a source of autocitrullinated proteins and peptides. Methods Human cell lines were screened for cit-proteins by Western blot. PAD isoenzymes were identified by RT-PCR. Autocitrullination of ECV304 was optimized, and the ECV304 autocitrullinomes immunoprecipitated by sera from three RA patients were characterized by mass spectrometry. Cit-pept-ACPAs were detected using anti-CCP2 ELISA and cit-prot-ACPAs, by an auto-cit-prot-ECV304 ELISA. Sera from 177 RA patients, 59 non-RA rheumatic disease patients and 25 non-disease controls were tested. Results Of the seven cell lines studied, only ECV304 simultaneously overexpressed PAD2 and PAD3 and its extracts reproducibly autocitrullinated self and non-self-proteins. Proteomic analysis of the cit-ECV304 products immunoprecipitated by RA sera, identified novel cit-targets: calreticulin, profilin 1, vinculin, new 14–3-3 protein family members, chaperones, and mitochondrial enzymes. The auto-cit-prot-ECV304 ELISA had a sensitivity of 50% and a specificity of 95% for RA diagnosis. Conclusions ECV304 cells overexpress two of the PAD isoenzymes capable of citrullinating self-proteins. These autocitrullinated cells constitute a basic and clinical research tool that enable the detection of cit-prot-ACPAs with high diagnostic specificity and allow the identification of the specific cit-proteins targeted by individual RA sera. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02698-2.
Collapse
Affiliation(s)
- Natalia Regine de França
- Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada.,Division of Rheumatology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Henri André Ménard
- Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada
| | - Maximilien Lora
- Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada
| | - Zhijie Zhou
- Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada
| | - Carol Hitchon
- Section of Rheumatology, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | - Inés Colmegna
- Division of Rheumatology, Department of Medicine, McGill University, The Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
39
|
Li Q, Li Y, Liang B, Xu R, Xu B, Lönnblom E, Feng H, Bai J, Stawikowska R, Ge C, Lu A, Fields GB, Xiao L, Holmdahl R. Rheumatoid arthritis sera antibodies to citrullinated collagen type II bind to joint cartilage. Arthritis Res Ther 2022; 24:257. [PMID: 36419093 PMCID: PMC9682822 DOI: 10.1186/s13075-022-02945-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To investigate the occurrence and frequency of anti-citrullinated protein antibodies (ACPA) to cyclic citrullinated type II collagen (COL2) epitope with a capacity to bind joint cartilage. METHODS Luminex immunoassay was used to analyze serum antibody reactivity to 10 COL2-citrullinated peptides (ACC10) and corresponding arginine peptide controls in rheumatoid arthritis (RA), osteoarthritis (OA), and healthy individuals' cohorts. Top ten "promiscuous" sera (cross-reactive with all ACC10) and top ten "private" sera (restrictedly reactive with one ACC10 peptide) from RA and OA cohorts were selected. Enzyme-linked immunosorbent assay (ELISA) was used to detect response to native COL2. Sera were analyzed with naive and arthritic joints from DBA/1J mice by immunohistochemistry, using monoclonal ACPAs and COL2 reactive antibodies with human Fc as comparison. Staining specificity was confirmed with C1 (a major antibody epitope on COL2) mutated mice and competitive blocking with epitope-specific antibodies. RESULTS All patient sera bound ACC10 compared with control peptides but very few (3/40) bound native triple-helical COL2. Most sera (27/40) specifically bound to arthritic cartilage, whereas only one private RA serum bound to healthy cartilage. Despite very low titers, private sera from both RA and OA showed an epitope-specific response, documented by lack of binding to cartilage from C1-mutated mice and blocking binding to wild-type cartilage with a competitive monoclonal antibody. As a comparison, monoclonal ACPAs visualized typical promiscuous, or private reactivity to joint cartilage and other tissues. CONCLUSION ACPA from RA and OA sera, reactive with citrullinated non-triple-helical COL2 peptides, can bind specifically to arthritic cartilage.
Collapse
Affiliation(s)
- Qixing Li
- grid.284723.80000 0000 8877 7471Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China
| | - Yanpeng Li
- grid.284723.80000 0000 8877 7471Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China ,grid.4714.60000 0004 1937 0626Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Quarter 9D, 171 65 Solna, Sweden
| | - Bibo Liang
- grid.284723.80000 0000 8877 7471Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China ,grid.4714.60000 0004 1937 0626Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Quarter 9D, 171 65 Solna, Sweden
| | - Rui Xu
- grid.284723.80000 0000 8877 7471Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China
| | - Bingze Xu
- grid.4714.60000 0004 1937 0626Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Quarter 9D, 171 65 Solna, Sweden
| | - Erik Lönnblom
- grid.4714.60000 0004 1937 0626Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Quarter 9D, 171 65 Solna, Sweden
| | - Hui Feng
- grid.440158.c0000 0004 8516 2657Guanghua Integrative Medicine Hospital, Changning District, Shanghai, China
| | - Jing’an Bai
- grid.410318.f0000 0004 0632 3409Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Roma Stawikowska
- grid.255951.fDepartment of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL USA
| | - Changrong Ge
- grid.4714.60000 0004 1937 0626Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Quarter 9D, 171 65 Solna, Sweden
| | - Aiping Lu
- grid.410318.f0000 0004 0632 3409Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gregg B. Fields
- grid.255951.fDepartment of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL USA
| | - Lianbo Xiao
- grid.440158.c0000 0004 8516 2657Guanghua Integrative Medicine Hospital, Changning District, Shanghai, China
| | - Rikard Holmdahl
- grid.284723.80000 0000 8877 7471Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China ,grid.4714.60000 0004 1937 0626Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Quarter 9D, 171 65 Solna, Sweden ,grid.452672.00000 0004 1757 5804The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 China
| |
Collapse
|
40
|
Sokolova MV, Schett G, Steffen U. Autoantibodies in Rheumatoid Arthritis: Historical Background and Novel Findings. Clin Rev Allergy Immunol 2022; 63:138-151. [PMID: 34495490 PMCID: PMC9464122 DOI: 10.1007/s12016-021-08890-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Autoantibodies represent a hallmark of rheumatoid arthritis (RA), with the rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPA) being the most acknowledged ones. RA patients who are positive for RF and/or ACPA ("seropositive") in general display a different etiology and disease course compared to so-called "seronegative" patients. Still, the seronegative patient population is very heterogeneous and not well characterized. Due to the identification of new autoantibodies and advancements in the diagnosis of rheumatic diseases in the last years, the group of seronegative patients is constantly shrinking. Aside from antibodies towards various post-translational modifications, recent studies describe autoantibodies targeting some native proteins, further broadening the spectrum of recognized antigens. Next to the detection of new autoantibody groups, much research has been done to answer the question if and how autoantibodies contribute to the pathogenesis of RA. Since autoantibodies can be detected years prior to RA onset, it is a matter of debate whether their presence alone is sufficient to trigger the disease. Nevertheless, there is gathering evidence of direct autoantibody effector functions, such as stimulation of osteoclastogenesis and synovial fibroblast migration in in vitro experiments. In addition, autoantibody positive patients display a worse clinical course and stronger radiographic progression. In this review, we discuss current findings regarding different autoantibody types, the underlying disease-driving mechanisms, the role of Fab and Fc glycosylation and clinical implications.
Collapse
Affiliation(s)
- Maria V. Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
41
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
42
|
Li H, Li L, Liu C, Cheng L, Yan S, Chen H, Li Y. Diagnostic value of anti-citrullinated α-enolase peptide 1 antibody in patients with rheumatoid arthritis: A systematic review and meta-analysis. Int J Rheum Dis 2021; 24:633-646. [PMID: 33713557 PMCID: PMC8252446 DOI: 10.1111/1756-185x.14093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022]
Abstract
Aim To evaluate the diagnostic value of anti‐citrullinated α‐enolase peptide 1 (anti‐CEP 1) antibody in patients with rheumatoid arthritis (RA) by conducting a systematic review and meta‐analysis. Methods The PubMed, Web of Science, Embase, Scopus, and Cochrane Library databases were searched for relevant studies published until September 23, 2020. A bivariate mixed‐effects model was used to calculate the diagnostic indices from primary data of eligible studies. We performed meta‐regression and subgroup analysis to explore the sources of heterogeneity. Results Twenty‐four articles, with a total of 17 380 patients with RA and 7505 control participants, met the criteria for inclusion in the meta‐analysis. The pooled sensitivity, specificity, and positive and negative likelihood ratios for the anti‐CEP 1 antibody were 44% (95% CI: 38%‐51%), 97% (95% CI: 96%‐98%), and 14.81 (95% CI: 10.66‐20.57) and 0.57 (95% CI: 0.52‐0.64), respectively. The pooled positive and negative predictive values were 0.96 (95% CI: 0.95‐0.97) and 0.53 (95% CI: 0.43‐0.63), respectively. The area under the summary receiver operating characteristic curve was 0.86. Meta‐regression indicated that the anti‐CEP 1 antibody detection method may be a source of heterogeneity. The subgroup analysis of the group in which the anti‐CEP 1 antibody was detected by using a commercial enzyme‐linked immunosorbent assay (ELISA) kit had a sensitivity of 59% (95% CI: 50%‐68%) and a specificity of 93% (95% CI: 85%‐97%). Conclusions The anti‐CEP 1 antibody had moderate RA diagnostic value with relatively low sensitivity and high specificity. An ELISA may increase the RA diagnostic sensitivity.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Haizhen Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Jilin, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
43
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Abstract
Rheumatoid arthritis is a chronic, autoimmune connective tissue disease. In addition to joint involvement, extra-articular changes and organ complications also occur in the course of the disease. Untreated disease leads to disability and premature death. Therefore, it is important to recognise and begin treatment early. Based on the presence of rheumatoid factor and antibodies against citrullinated peptides, we can distinguish two forms of the disease: seropositive and seronegative. Research continues to elucidate the mechanisms of the onset of the disease, as well as to uncover factors that induce and influence the activity of the disease. The presence of markers that initially appear and affect the course of the disease can potentially aid in patient treatment. In this article, we have collected biomarkers of rheumatoid arthritis that are well understood as well as those that have been recently described.
Collapse
Affiliation(s)
- Bogdan Kolarz
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Dominika Podgorska
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Rafal Podgorski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
45
|
Wu CY, Yang HY, Luo SF, Lai JH. From Rheumatoid Factor to Anti-Citrullinated Protein Antibodies and Anti-Carbamylated Protein Antibodies for Diagnosis and Prognosis Prediction in Patients with Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22020686. [PMID: 33445768 PMCID: PMC7828258 DOI: 10.3390/ijms22020686] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mainly involving synovial inflammation and articular bone destruction. RA is a heterogeneous disease with diverse clinical presentations, prognoses and therapeutic responses. Following the first discovery of rheumatoid factors (RFs) 80 years ago, the identification of both anti-citrullinated protein antibodies (ACPAs) and anti-carbamylated protein antibodies (anti-CarP Abs) has greatly facilitated approaches toward RA, especially in the fields of early diagnosis and prognosis prediction of the disease. Although these antibodies share many common features and can function synergistically to promote disease progression, they differ mechanistically and have unique clinical relevance. Specifically, these three RA associating auto-antibodies (autoAbs) all precede the development of RA by years. However, while the current evidence suggests a synergic effect of RF and ACPA in predicting the development of RA and an erosive phenotype, controversies exist regarding the additive value of anti-CarP Abs. In the present review, we critically summarize the characteristics of these autoantibodies and focus on their distinct clinical applications in the early identification, clinical manifestations and prognosis prediction of RA. With the advancement of treatment options in the era of biologics, we also discuss the relevance of these autoantibodies in association with RA patient response to therapy.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
46
|
Abstract
The immunopathogenesis of rheumatoid arthritis (RA) spans decades, beginning with the production of autoantibodies against post-translationally modified proteins (checkpoint 1). After years of asymptomatic autoimmunity and progressive immune system remodeling, tissue tolerance erodes and joint inflammation ensues as tissue-invasive effector T cells emerge and protective joint-resident macrophages fail (checkpoint 2). The transition of synovial stromal cells into autoaggressive effector cells converts synovitis from acute to chronic destructive (checkpoint 3). The loss of T cell tolerance derives from defective DNA repair, causing abnormal cell cycle dynamics, telomere fragility and instability of mitochondrial DNA. Mitochondrial and lysosomal anomalies culminate in the generation of short-lived tissue-invasive effector T cells. This differentiation defect builds on a metabolic platform that shunts glucose away from energy generation toward the cell building and motility programs. The next frontier in RA is the development of curative interventions, for example, reprogramming T cell defects during the period of asymptomatic autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
47
|
Nel HJ, Malmström V, Wraith DC, Thomas R. Autoantigens in rheumatoid arthritis and the potential for antigen-specific tolerising immunotherapy. THE LANCET. RHEUMATOLOGY 2020; 2:e712-e723. [PMID: 38279365 DOI: 10.1016/s2665-9913(20)30344-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases, including rheumatoid arthritis, develop and persist due to impaired immune self-tolerance, which has evolved to regulate inflammatory responses to injury or infection. After diagnosis, patients rarely achieve drug-free remission, and although at-risk individuals can be identified with genotyping, antibody tests, and symptoms, rheumatoid arthritis cannot yet be successfully prevented. Precision medicine is increasingly offering solutions to diseases that were previously considered to be incurable, and immunotherapy has begun to achieve this aim in cancer. Comparatively, modulating autoantigen-specific immune responses with immunotherapy for the cure of autoimmune diseases is at a relatively immature stage. Current treatments using non-specific immune or inflammatory suppression increase susceptibility to infection, and are rarely curative. However, early stage clinical trials suggesting that immunotherapy might allow extended duration of remission and even prevention of progression to disease suggest modulating tolerance in rheumatoid arthritis could be a promising opportunity for therapy.
Collapse
Affiliation(s)
- Hendrik J Nel
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.
| |
Collapse
|
48
|
Margolis DJ, Mitra N, Monos DS. Rheumatoid Arthritis Known HLA Associations are Unlikely To Be Associated With Atopic Dermatitis. J Rheumatol 2020; 48:308-309. [PMID: 33060326 DOI: 10.3899/jrheum.200583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine; .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Emerging Strategies for Therapeutic Antibody Discovery from Human B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32949403 DOI: 10.1007/978-981-15-4494-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Monoclonal antibodies from human sources are being increasingly recognized as valuable options in many therapeutic areas. These antibodies can show exquisite specificity and high potency while maintaining a desirable safety profile, having been matured and tolerized within human patients. However, the discovery of these antibodies presents important challenges, since the B cells encoding therapeutic antibodies can be rare in a typical blood draw and are short-lived ex vivo. Furthermore, the unique pairing of VH and VL domains in each B cell contributes to specificity and function; therefore, maintaining antibody chain pairing presents a throughput limitation. This work will review the various approaches aimed at addressing these challenges with an eye to next-generation methods for high-throughput discovery from the human B-cell repertoire.
Collapse
|
50
|
Viljanen J, Lönnblom E, Ge C, Yang J, Cheng L, Aldi S, Cai W, Kastbom A, Sjöwall C, Gjertsson I, Holmdahl R, Kihlberg J. Synthesis of an Array of Triple-Helical Peptides from Type II Collagen for Multiplex Analysis of Autoantibodies in Rheumatoid Arthritis. ACS Chem Biol 2020; 15:2605-2615. [PMID: 32909734 DOI: 10.1021/acschembio.0c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type II collagen (CII) is the most abundant protein in joint cartilage. Antibodies to CII appear around the clinical onset of the autoimmune disease rheumatoid arthritis (RA) in a subset of patients. They target specific epitopes on CII and can be pathogenic or protective. Assays for early detection of such autoantibodies may provide new opportunities for selecting effective treatment strategies of RA. We report the efficient and reproducible assembly of an array of covalently branched native and citrullinated triple helical peptides (THPs) from CII that contain defined autoantibody epitopes. Both monoclonal antibodies and sera from experimental mouse models show a unique reactivity toward the THPs, compared to cyclic peptides containing the epitopes, revealing the importance that the epitopes are displayed in a triple-helical conformation. Importantly, antibodies against three of the THPs that contain major CII epitopes were found to be increased in sera from patients with RA, compared to control persons. These results indicate that such synthetic THPs should be included in multiplex analysis of autoantibodies that are uniquely occurring in individuals with early RA, to provide valuable information on disease prognosis and on what type of therapy should be chosen for individual patients.
Collapse
Affiliation(s)
- Johan Viljanen
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Erik Lönnblom
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Changrong Ge
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Jie Yang
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lei Cheng
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Silvia Aldi
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Weiwei Cai
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Alf Kastbom
- Department of Rheumatology and Department of Biochemical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Christopher Sjöwall
- Department of Rheumatology and Department of Biochemical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Inger Gjertsson
- Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
- The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), 710004 Xi’an, China
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|