1
|
Matic K, Krishnan N, Frank E, Arellano M, Sriram A, Das M, Valentine MT, Rust MJ, Robertson-Anderson RM, Ross JL. Active and passive crosslinking of cytoskeleton scaffolds tune the effects of cell inclusions on composite structure. SOFT MATTER 2025. [PMID: 40289744 DOI: 10.1039/d4sm01527d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Incorporating cells within active biomaterial scaffolds is a promising strategy to develop forefront materials that can autonomously sense, respond, and alter the scaffold in response to environmental cues or internal cell circuitry. Using dynamic biocompatible scaffolds that can self-alter their properties via crosslinking and motor-driven force-generation opens even greater avenues for actuation and control. However, the design principles associated with engineering active scaffolds embedded with cells are not well established. To address this challenge, we design a dynamic scaffold material of bacteria cells embedded within a composite cytoskeletal network of actin and microtubules that can be passively or actively crosslinked by either biotin-streptavidin or multimeric kinesin motors. Using quantitative microscopy, we demonstrate the ability to embed cells of volume fractions 0.4-2% throughout the network without compromising the structural integrity of the network or inhibiting crosslinking or motor-driven dynamics. Our findings suggest that both passive and active crosslinking promote entrainment of cells within the network, while depletion interactions play a more important role in uncrosslinked networks. Moreover, we show that large-scale structures emerge with the addition of cell fractions as low as 0.4%, but these structures do not influence the microscale structural length scale of the materials. Our work highlights the potential of our composite biomaterial in designing autonomous materials controlled by cells, and provides a roadmap for effectively coupling cells to complex composite materials with an eye towards using cells as in situ factories to program material modifications.
Collapse
Affiliation(s)
- Katarina Matic
- Department of Physics and Biophysics, University of San Diego, USA.
| | | | - Eric Frank
- Department of Physics, Syracuse University, USA.
| | - Michael Arellano
- Department of Physics and Biophysics, University of San Diego, USA.
| | - Aditya Sriram
- Department of Physics and Biophysics, University of San Diego, USA.
| | - Moumita Das
- Rochester Institute of Technology, School of Physics and Astronomy, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, USA
| | | | | |
Collapse
|
2
|
Sheung J, Gunter C, Matic K, Sasanpour M, Ross JL, Katira P, Valentine MT, Robertson-Anderson RM. Kinesin-Driven De-Mixing of Cytoskeleton Composites Drives Emergent Mechanical Properties. Macromol Rapid Commun 2025:e2401128. [PMID: 40205878 DOI: 10.1002/marc.202401128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The cytoskeleton is an active composite of filamentous proteins that dictates diverse mechanical properties and processes in eukaryotic cells by generating forces and autonomously restructuring itself. Enzymatic motors that act on the comprising filaments play key roles in this activity, driving spatiotemporally heterogeneous mechanical responses that are critical to cellular multifunctionality, but also render mechanical characterization challenging. Here, we couple optical tweezers microrheology and fluorescence microscopy with simulations and mathematical modeling to robustly characterize the mechanics of active composites of actin filaments and microtubules restructured by kinesin motors. It is discovered that composites exhibit a rich ensemble of force response behaviors-elastic, yielding, and stiffening-with their propensity and properties tuned by motor concentration and strain rate. Moreover, intermediate kinesin concentrations elicit emergent mechanical stiffness and resistance while higher and lower concentrations exhibit softer, more viscous dissipation. It is further shown that composites transition from well-mixed interpenetrating double-networks of actin and microtubules to de-mixed states of microtubule-rich aggregates surrounded by relatively undisturbed actin phases. It is this de-mixing that leads to the emergent mechanical response, offering an alternate route that composites can leverage to achieve enhanced stiffness through coupling of structure and mechanics.
Collapse
Affiliation(s)
- Janet Sheung
- Department of Natural Sciences, Scripps and Pitzer Colleges, Claremont, CA, 92110, USA
- W. M. Keck Science Department, Claremont McKenna College, Claremont, CA, 91711, USA
| | - Christopher Gunter
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Katarina Matic
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Mehrzad Sasanpour
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY, 13244, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | | |
Collapse
|
3
|
Zhao QH, Qi JY, Deng NN. DNA photofluids show life-like motion. NATURE MATERIALS 2025:10.1038/s41563-025-02202-0. [PMID: 40204968 DOI: 10.1038/s41563-025-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
As active matter, cells exhibit non-equilibrium structures and behaviours such as reconfiguration, motility and division. These capabilities arise from the collective action of biomolecular machines continuously converting photoenergy or chemical energy into mechanical energy. Constructing similar dynamic processes in vitro presents opportunities for developing life-like intelligent soft materials. Here we report an active fluid formed from the liquid-liquid phase separation of photoresponsive DNA nanomachines. The photofluids can orchestrate and amplify nanoscale mechanical movements by orders of magnitude to produce macroscopic cell-like behaviours including elongation, division and rotation. We identify two dissipative processes in the DNA droplets, photoalignment and photofibrillation, which are crucial for harnessing stochastic molecular motions cooperatively. Our results demonstrate an active liquid molecular system that consumes photoenergy to create ordered out-of-equilibrium structures and behaviours. This system may help elucidate the physical principles underlying cooperative motion in active matter and pave the way for developing programmable interactive materials.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Ying Qi
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan-Nan Deng
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China.
| |
Collapse
|
4
|
Ghosh S, Baskaran A, Hagan MF. Achieving designed texture and flows in bulk active nematics using optimal control theory. J Chem Phys 2025; 162:134902. [PMID: 40167287 DOI: 10.1063/5.0244046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Being intrinsically nonequilibrium, active materials can potentially perform functions that would be thermodynamically forbidden in passive materials. However, active systems have diverse local attractors that correspond to distinct dynamical states, many of which exhibit chaotic turbulent-like dynamics and thus cannot perform work or useful functions. Designing such a system to choose a specific dynamical state is a formidable challenge. Motivated by recent advances enabling optogenetic control of experimental active materials, we describe an optimal control theory framework that identifies a spatiotemporal sequence of light-generated activity that drives an active nematic system toward a prescribed dynamical steady state. Active nematics are unstable to spontaneous defect proliferation and chaotic streaming dynamics in the absence of control. We demonstrate that optimal control theory can compute activity fields that redirect the dynamics into a variety of alternative dynamical programs and functions. This includes dynamically reconfiguring between states, selecting and stabilizing emergent behaviors that do not correspond to attractors, and are hence unstable in the uncontrolled system. Our results provide a roadmap to leverage optical control methods to rationally design structure, dynamics, and function in a wide variety of active materials.
Collapse
Affiliation(s)
- Saptorshi Ghosh
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
5
|
Murrell M. Illuminating active matter by harnessing light for modular flow control. NATURE MATERIALS 2025; 24:489-490. [PMID: 40114035 DOI: 10.1038/s41563-025-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Affiliation(s)
- Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Yang F, Liu S, Lee HJ, Phillips R, Thomson M. Dynamic flow control through active matter programming language. NATURE MATERIALS 2025; 24:615-625. [PMID: 39880931 PMCID: PMC11961363 DOI: 10.1038/s41563-024-02090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications. Here we develop a light-controlled programming strategy for biological active matter to construct micrometre-scale fluid flow fields for transport, separation and mixing. We circumvent nonlinear dynamic effects within the active fluids by limiting hydrodynamic interactions between contracting motor-filament networks patterned with light. Using a predictive model, we design and apply flow fields to accomplish canonical microfluidic tasks such as transporting and separating cell clusters, probing the extensional rheology of polymers and giant lipid vesicles and generating mixing flows at low Reynolds numbers. Our findings provide a framework for programming dynamic flows and demonstrate the potential of active matter systems as an engineering technology.
Collapse
Affiliation(s)
- Fan Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Shichen Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Akenuwa OH, Abel SM. Polarity sorting of actin filaments by motor-driven cargo transport. Biophys J 2025; 124:704-716. [PMID: 39827370 PMCID: PMC11900188 DOI: 10.1016/j.bpj.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
During the active transport of cellular cargo, forces generated by cargo-associated molecular motors propel the cargo along cytoskeletal tracks. However, the forces impact not only the cargo, but also the underlying cytoskeletal filaments. To better understand the interplay between cargo transport and the organization of cytoskeletal filaments, we employ coarse-grained computer simulations to study actin filaments interacting with cargo-anchored myosin motors in a confined domain. We show that cargo transport can lead to the segregation of filaments into domains of preferred filament polarity separated by clusters of aggregated cargoes. The formation of polarity-sorted filament domains is enhanced by larger numbers of cargoes, more motors per cargo, and longer filaments. Analysis of individual trajectories reveals dynamic and heterogeneous behavior, including locally stable aggregates of cargoes that undergo rapid coalescence into larger clusters when sufficiently close. Our results provide insight into the impact of motor-driven organelle transport on actin filaments, which is relevant both in cells and in synthetic environments.
Collapse
Affiliation(s)
- Oghosa H Akenuwa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
8
|
Fan WL, Deng TK, Liu S, Liu RQ, He YF, Liu YH, Liu YN, Liu FC. Spatiotemporal patterns in coupled reaction-diffusion systems with nonidentical kinetics. Phys Rev E 2025; 111:024210. [PMID: 40103072 DOI: 10.1103/physreve.111.024210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/19/2024] [Indexed: 03/20/2025]
Abstract
Understanding of the effect of coupling interaction is at the heart of nonlinear science since some nonequilibrium systems are composed of different layers or units. In this paper, we demonstrate various spatio-temporal patterns in a nonlinearly coupled two-layer Turing system with nonidentical reaction kinetics. Both the type of Turing mode and coupling form play an important role in the pattern formation and pattern selection. Two kinds of Turing mode interactions, namely supercritical-subcritical and supercritical-supercritical Turing mode interaction, have been investigated. Stationary resonant superlattice patterns arise spontaneously in both cases, while dynamic patterns can also be formed in the latter case. The destabilization of spike solutions induced by spatial heterogeneity may be responsible for these dynamic patterns. In contrast to linear coupling, the nonlinear coupling not only increases the complexity of spatio-temporal patterns, but also reduces the requirements of spatial resonance conditions. The simulation results are in good agreement with the experimental observations in dielectric barrier discharge systems.
Collapse
Affiliation(s)
- Wei-Li Fan
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
| | - Teng-Kun Deng
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
| | - Shuang Liu
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
| | - Ruo-Qi Liu
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
| | - Ya-Feng He
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
- Hebei University, Institute of Environmental Engineering, Baoding 071002, China
| | - Ya-Hui Liu
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
| | - Yi-Ning Liu
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
| | - Fu-Cheng Liu
- Hebei University, College of Physics Science and Technology, Baoding 071002, China
- Hebei University, Institute of Life Science and Green Development, Baoding 071002, China
| |
Collapse
|
9
|
Li Y, Wu Y, He Q. Positive Chemotactic Flasklike Colloidal Motors Propelled by Rotary F oF 1-ATP Synthases. RESEARCH (WASHINGTON, D.C.) 2024; 7:0566. [PMID: 39717462 PMCID: PMC11665525 DOI: 10.34133/research.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FoF1-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.
Collapse
Affiliation(s)
| | - Yingjie Wu
- School of Medicine and Health,
Harbin Institute of Technology, Harbin 150001, China
| | - Qiang He
- School of Medicine and Health,
Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Vélez-Cerón I, Ignés-Mullol J, Sagués F. Active nematic coherence probed under spatial patterns of distributed activity. SOFT MATTER 2024; 20:9578-9585. [PMID: 39576238 DOI: 10.1039/d4sm00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A photoresponsive variant of the paradigmatic active nematic fluid made of microtubules and powered by kinesin motors is studied in a conventional two-dimensional interface under blue-light illumination. This advantageously permits the system's performance to be assessed under conditions of spatially distributed activity. Both turbulent and flow aligning conditions are separately analyzed. Under uniform illuminating conditions, active flows get enhanced, in accordance with previous observations. In contrast, patterning the activity appears to disturb the effective activity measured in terms of the vorticity of the elicited flows. We interpret this result as alternative evidence of the important role played by the active length scale in setting not only the textural and flow characteristics of the active nematic but also, most importantly, the range of material integrity. Our research continues to explore perspectives that should pave the way for an effective control of such an admirable material.
Collapse
Affiliation(s)
- Ignasi Vélez-Cerón
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Houston AJH, Mottram NJ. Spontaneous flows and quantum analogies in heterogeneous active nematic films. COMMUNICATIONS PHYSICS 2024; 7:375. [PMID: 39574428 PMCID: PMC11576538 DOI: 10.1038/s42005-024-01864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Incorporating the inherent heterogeneity of living systems into models of active nematics is essential to provide a more realistic description of biological processes such as bacterial growth, cell dynamics and tissue development. Spontaneous flow of a confined active nematic is a fundamental feature of these systems, in which the role of heterogeneity has not yet been considered. We therefore determine the form of spontaneous flow transition for an active nematic film with heterogeneous activity, identifying a correspondence between the unstable director modes and solutions to Schrödinger's equation. We consider both activity gradients and steps between regions of distinct activity, finding that such variations can change the signature properties of the flow. The threshold activity required for the transition can be raised or lowered, the fluid flux can be reduced or reversed and interfaces in activity induce shear flows. In a biological context fluid flux influences the spread of nutrients while shear flows affect the behaviour of rheotactic microswimmers and can cause the deformation of biofilms. All the effects we identify are found to be strongly dependent on not simply the types of activity present in the film but also on how they are distributed.
Collapse
Affiliation(s)
| | - Nigel J. Mottram
- School of Mathematics and Statistics, University Place, Glasgow, G12 8QQ United Kingdom
| |
Collapse
|
12
|
Norton MM, Grover P. Mechanochemical topological defects in an active nematic. Phys Rev E 2024; 110:054605. [PMID: 39690574 DOI: 10.1103/physreve.110.054605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 12/19/2024]
Abstract
We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.
Collapse
|
13
|
Kurjahn M, Abbaspour L, Papenfuß F, Bittihn P, Golestanian R, Mahault B, Karpitschka S. Collective self-caging of active filaments in virtual confinement. Nat Commun 2024; 15:9122. [PMID: 39443452 PMCID: PMC11499643 DOI: 10.1038/s41467-024-52936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
Collapse
Affiliation(s)
- Maximilian Kurjahn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Leila Abbaspour
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Franziska Papenfuß
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
| | - Stefan Karpitschka
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, Konstanz, Germany.
| |
Collapse
|
14
|
Yu W, Kothapalli SSK, Yang Z, Guo X, Li X, Cai Y, Feng W, Yuan L. Light-Controlled Interconvertible Self-Assembly of Non-Photoresponsive Suprastructures. Molecules 2024; 29:4842. [PMID: 39459210 PMCID: PMC11509933 DOI: 10.3390/molecules29204842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Achieving light-induced manipulation of controlled self-assembly in nanosized structures is essential for developing artificially dynamic smart materials. Herein, we demonstrate an approach using a non-photoresponsive hydrogen-bonded (H-bonded) macrocycle to control the self-assembly and disassembly of nanostructures in response to light. The present system comprises a photoacid (merocyanine, 1-MEH), a pseudorotaxane formed by two H-bonded macrocycles, dipyridinyl acetylene, and zinc ions. The operation of such a system is examined according to the alternation of self-assembly through proton transfer, which is mediated by the photoacid upon exposure to visible light. The host-guest complexation between the macrocycle and bipyridium guests was investigated by NMR spectroscopy, and one of the guests with the highest affinity for the ring was selected for use as one of the components of the system, which forms the host-guest complex with the ring in a 2:1 stoichiometry. In solution, a dipyridine and the ring, having no interaction with each other, rapidly form a complex in the presence of 1-MEH when exposed to light and thermally relax back to the free ring without entrapped guests after 4 h. Furthermore, the addition of zinc ions to the solution above leads to the formation of a polypseudorotaxane with its morphology responsive to photoirradiation. This work exemplifies the light-controlled alteration of self-assembly in non-photoresponsive systems based on interactions between the guest and the H-bonded macrocycle in the presence of a photoacid.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | | | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xuwen Guo
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| |
Collapse
|
15
|
Ghosh S, Joshi C, Baskaran A, Hagan MF. Spatiotemporal control of structure and dynamics in a polar active fluid. SOFT MATTER 2024; 20:7059-7071. [PMID: 39188251 DOI: 10.1039/d4sm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We apply optimal control theory to a model of a polar active fluid (the Toner-Tu model), with the objective of driving the system into particular emergent dynamical behaviors or programming switching between states on demand. We use the effective self-propulsion speed as the control parameter (i.e. the means of external actuation). We identify control protocols that achieve outcomes such as relocating asters to targeted positions, forcing propagating solitary waves to reorient to a particular direction, and switching between stationary asters and propagating fronts. We analyze the solutions to identify generic principles for controlling polar active fluids. Our findings have implications for achieving spatiotemporal control of active polar systems in experiments, particularly in vitro cytoskeletal systems. Additionally, this research paves the way for leveraging optimal control methods to engineer the structure and dynamics of active fluids more broadly.
Collapse
Affiliation(s)
- Saptorshi Ghosh
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Chaitanya Joshi
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| |
Collapse
|
16
|
Hirokawa S, Lee HJ, Banks RA, Duarte AI, Najma B, Thomson M, Phillips R. Motor-driven microtubule diffusion in a photobleached dynamical coordinate system. ARXIV 2024:arXiv:2408.11216v1. [PMID: 39253630 PMCID: PMC11383436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Motor-driven cytoskeletal remodeling in cellular systems can often be accompanied by a diffusive-like effect at local scales, but distinguishing the contributions of the ordering process, such as active contraction of a network, from this active diffusion is difficult to achieve. Using light-dimerizable kinesin motors to spatially control the formation and contraction of a microtubule network, we deliberately photobleach a grid pattern onto the filament network serving as a transient and dynamic coordinate system to observe the deformation and translation of the remaining fluorescent squares of microtubules. We find that the network contracts at a rate set by motor speed but is accompanied by a diffusive-like spread throughout the bulk of the contracting network with effective diffusion constant two orders of magnitude lower than that for a freely-diffusing microtubule. We further find that on micron scales, the diffusive timescale is only a factor of ≈ 3 slower than that of advection regardless of conditions, showing that the global contraction and long-time relaxation from this diffusive behavior are both motor-driven but exhibit local competition within the network bulk.
Collapse
Affiliation(s)
- Soichi Hirokawa
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Rachel A Banks
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ana I Duarte
- Department of Physics, California Institute of Technology, Pasadena, CA, USA
| | - Bibi Najma
- Department of Physics, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Department of Physics, California Institute of Technology, Pasadena, CA, USA
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Physics, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
17
|
Barakat JM, Modica KJ, Lu L, Anujarerat S, Choi KH, Takatori SC. Surface Topography Induces and Orients Nematic Swarms of Active Filaments: Considerations for Lab-On-A-Chip Devices. ACS APPLIED NANO MATERIALS 2024; 7:12142-12152. [PMID: 38808306 PMCID: PMC11129142 DOI: 10.1021/acsanm.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Surface-bound molecular motors can drive the collective motion of cytoskeletal filaments in the form of nematic bands and polar flocks in reconstituted gliding assays. Although these "swarming transitions" are an emergent property of active filament collisions, they can be controlled and guided by tuning the surface chemistry or topography of the substrate. To date, the impact of surface topography on collective motion in active nematics is only partially understood, with most experimental studies focusing on the escape of a single filament from etched channels. Since the late 1990s, significant progress has been made to utilize the nonequilibrium properties of active filaments and create a range of functional nanodevices relevant to biosensing and parallel computation; however, the complexity of these swarming transitions presents a challenge when attempting to increase filament surface concentrations. In this work, we etch shallow, linear trenches into glass substrates to induce the formation of swarming nematic bands and investigate the mechanisms by which surface topography regulates the two-dimensional (2D) collective motion of driven filamentous actin (F-actin). We demonstrate that nematic swarms only appear at intermediate trench spacings and vanish if the trenches are made too narrow, wide, or tortuous. To rationalize these results, we simulate the F-actin as self-propelled, semiflexible chains subject to a soft, spatially modulated potential that encodes the energetic cost of bending a filament along the edge of a trench. In our model, we hypothesize that an individual filament experiences a penalty when its projected end-to-end distance is smaller than the trench spacing ("bending and turning"). However, chains that span the channel width glide above the trenches in a force- and torque-free manner ("crowd-surfing"). Our simulations demonstrate that collections of filaments form nematic bands only at intermediate trench spacings, consistent with our experimental findings.
Collapse
Affiliation(s)
| | | | - Le Lu
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephanie Anujarerat
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kyu Hwan Choi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sho C. Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Sinigaglia C, Braghin F, Serra M. Optimal Control of Short-Time Attractors in Active Nematics. PHYSICAL REVIEW LETTERS 2024; 132:218302. [PMID: 38856253 DOI: 10.1103/physrevlett.132.218302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
Objective Eulerian coherent structures (OECSs) and instantaneous Lyapunov exponents (iLEs) govern short-term material transport in fluid flows as Lagrangian coherent structures and the finite-time Lyapunov exponent do over longer times. Attracting OECSs and iLEs reveal short-time attractors and are computable from the Eulerian rate-of-strain tensor. Here, we devise for the first time an optimal control strategy to create short-time attractors in compressible, viscosity-dominated active nematic flows. By modulating the active stress intensity, our framework achieves a target profile of the minimum eigenvalue of the rate-of-strain tensor, controlling the location and shape of short-time attractors. We show that our optimal control strategy effectively achieves desired short-time attractors while rejecting disturbances. Combining optimal control and coherent structures, our work offers a new perspective to steer material transport in compressible active nematics, with applications to morphogenesis and synthetic active matter.
Collapse
Affiliation(s)
- Carlo Sinigaglia
- Politecnico di Milano, Department of Mechanical Engineering, Milan 20156, Italy
| | - Francesco Braghin
- Politecnico di Milano, Department of Mechanical Engineering, Milan 20156, Italy
| | - Mattia Serra
- University of California San Diego, Department of Physics, San Diego, California 92093, USA
| |
Collapse
|
19
|
Shankar S, Scharrer LVD, Bowick MJ, Marchetti MC. Design rules for controlling active topological defects. Proc Natl Acad Sci U S A 2024; 121:e2400933121. [PMID: 38748571 PMCID: PMC11127047 DOI: 10.1073/pnas.2400933121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/27/2024] Open
Abstract
Topological defects play a central role in the physics of many materials, including magnets, superconductors, and liquid crystals. In active fluids, defects become autonomous particles that spontaneously propel from internal active stresses and drive chaotic flows stirring the fluid. The intimate connection between defect textures and active flow suggests that properties of active materials can be engineered by controlling defects, but design principles for their spatiotemporal control remain elusive. Here, we propose a symmetry-based additive strategy for using elementary activity patterns, as active topological tweezers, to create, move, and braid such defects. By combining theory and simulations, we demonstrate how, at the collective level, spatial activity gradients act like electric fields which, when strong enough, induce an inverted topological polarization of defects, akin to a negative susceptibility dielectric. We harness this feature in a dynamic setting to collectively pattern and transport interacting active defects. Our work establishes an additive framework to sculpt flows and manipulate active defects in both space and time, paving the way to design programmable active and living materials for transport, memory, and logic.
Collapse
Affiliation(s)
- Suraj Shankar
- Department of Physics, Harvard University, Cambridge, MA02138
- Department of Physics, University of Michigan, Ann Arbor, MI48109
| | - Luca V. D. Scharrer
- Department of Physics, University of California, Santa Barbara, CA93106
- Department of Physics, The University of Chicago, Chicago, IL60637
| | - Mark J. Bowick
- Department of Physics, University of California, Santa Barbara, CA93106
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA93106
| | | |
Collapse
|
20
|
Gibson W, Mulvey JT, Das S, Selmani S, Merham JG, Rakowski AM, Schwartz E, Hochbaum AI, Guan Z, Green JR, Patterson JP. Observing the Dynamics of an Electrochemically Driven Active Material with Liquid Electron Microscopy. ACS NANO 2024; 18:11898-11909. [PMID: 38648551 DOI: 10.1021/acsnano.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrochemical liquid electron microscopy has revolutionized our understanding of nanomaterial dynamics by allowing for direct observation of their electrochemical production. This technique, primarily applied to inorganic materials, is now being used to explore the self-assembly dynamics of active molecular materials. Our study examines these dynamics across various scales, from the nanoscale behavior of individual fibers to the micrometer-scale hierarchical evolution of fiber clusters. To isolate the influences of the electron beam and electrical potential on material behavior, we conducted thorough beam-sample interaction analyses. Our findings reveal that the dynamics of these active materials at the nanoscale are shaped by their proximity to the electrode and the applied electrical current. By integrating electron microscopy observations with reaction-diffusion simulations, we uncover that local structures and their formation history play a crucial role in determining assembly rates. This suggests that the emergence of nonequilibrium structures can locally accelerate further structural development, offering insights into the behavior of active materials under electrochemical conditions.
Collapse
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Swetamber Das
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Serxho Selmani
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Jovany G Merham
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Alexander M Rakowski
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Eric Schwartz
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
21
|
Xu J, Brown NJS, Seol Y, Neuman KC. Heterogeneous distribution of kinesin-streptavidin complexes revealed by Mass Photometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572878. [PMID: 38187562 PMCID: PMC10769409 DOI: 10.1101/2023.12.21.572878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physics, University of California, Merced, CA 95343, USA
| | - Nathaniel J. S. Brown
- Department of Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Redford SA, Colen J, Shivers JL, Zemsky S, Molaei M, Floyd C, Ruijgrok PV, Vitelli V, Bryant Z, Dinner AR, Gardel ML. Motor crosslinking augments elasticity in active nematics. SOFT MATTER 2024; 20:2480-2490. [PMID: 38385209 PMCID: PMC10933839 DOI: 10.1039/d3sm01176c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.
Collapse
Affiliation(s)
- Steven A Redford
- The Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan Colen
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jordan L Shivers
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Sasha Zemsky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Mehdi Molaei
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Carlos Floyd
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vincenzo Vitelli
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron R Dinner
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Li Y, Zarei Z, Tran PN, Wang Y, Baskaran A, Fraden S, Hagan MF, Hong P. A machine learning approach to robustly determine director fields and analyze defects in active nematics. SOFT MATTER 2024; 20:1869-1883. [PMID: 38318759 DOI: 10.1039/d3sm01253k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Active nematics are dense systems of rodlike particles that consume energy to drive motion at the level of the individual particles. They exist in natural systems like biological tissues and artificial materials such as suspensions of self-propelled colloidal particles or synthetic microswimmers. Active nematics have attracted significant attention in recent years due to their spectacular nonequilibrium collective spatiotemporal dynamics, which may enable applications in fields such as robotics, drug delivery, and materials science. The director field, which measures the direction and degree of alignment of the local nematic orientation, is a crucial characteristic of active nematics and is essential for studying topological defects. However, determining the director field is a significant challenge in many experimental systems. Although director fields can be derived from images of active nematics using traditional imaging processing methods, the accuracy of such methods is highly sensitive to the settings of the algorithms. These settings must be tuned from image to image due to experimental noise, intrinsic noise of the imaging technology, and perturbations caused by changes in experimental conditions. This sensitivity currently limits automatic analysis of active nematics. To address this, we developed a machine learning model for extracting reliable director fields from raw experimental images, which enables accurate analysis of topological defects. Application of the algorithm to experimental data demonstrates that the approach is robust and highly generalizable to experimental settings that are different from those in the training data. It could be a promising tool for investigating active nematics and may be generalized to other active matter systems.
Collapse
Affiliation(s)
- Yunrui Li
- Computer Science Department, Brandeis University, USA.
| | - Zahra Zarei
- Physics Department, Brandeis University, USA
| | - Phu N Tran
- Physics Department, Brandeis University, USA
| | - Yifei Wang
- Computer Science Department, Brandeis University, USA.
| | | | - Seth Fraden
- Physics Department, Brandeis University, USA
| | | | - Pengyu Hong
- Computer Science Department, Brandeis University, USA.
| |
Collapse
|
24
|
Peng Z, Kapral R. Self-organization of active colloids mediated by chemical interactions. SOFT MATTER 2024; 20:1100-1113. [PMID: 38221884 DOI: 10.1039/d3sm01272g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Self-propelled colloidal particles exhibit rich non-equilibrium phenomena and have promising applications in fields such as drug delivery and self-assembled active materials. Previous experimental and theoretical studies have shown that chemically active colloids that consume or produce a chemical can self-organize into clusters with diverse characteristics depending on the effective phoretic interactions. In this paper, we investigate self-organization in systems with multiple chemical species that undergo a network of reactions and multiple colloidal species that participate in different reactions. Active colloids propelled by complex chemical reactions with potentially nonlinear kinetics can be realized using enzymatic reactions that occur on the surface of enzyme-coated particles. To demonstrate how the self-organizing behavior depends on the chemical reactions active colloids catalyze and their chemical environment, we consider first a single type of colloid undergoing a simple catalytic reaction, and compare this often-studied case with self-organization in binary mixtures of colloids with sequential reactions, and binary mixtures with nonlinear autocatalytic reactions. Our results show that in general active colloids at low particle densities can form localized clusters in the presence of bulk chemical reactions and phoretic attractions. The characteristics of the clusters, however, depend on the reaction kinetics in the bulk and on the particles and phoretic coefficients. With one or two chemical species that only undergo surface reactions, the space for possible self-organizations are limited. By considering the additional system parameters that enter the chemical reaction network involving reactions on the colloids and in the fluid, the design space of colloidal self-organization can be enlarged, leading to a variety of non-equilibrium structures.
Collapse
Affiliation(s)
- Zhiwei Peng
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
25
|
Zhang X, Mao L, He R, Shi Y, Li L, Li S, Zhu C, Zhang Y, Ma D. Tunable cyclic operation of dissipative molecular switches based on anion recognition. Chem Commun (Camb) 2024; 60:1180-1183. [PMID: 38193867 DOI: 10.1039/d3cc05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Rongjing He
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanting Shi
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lingyi Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Shuo Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Chenghao Zhu
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanjing Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Da Ma
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
26
|
Zaferani M, Song R, Petry S, Stone HA. Building on-chip cytoskeletal circuits via branched microtubule networks. Proc Natl Acad Sci U S A 2024; 121:e2315992121. [PMID: 38232292 PMCID: PMC10823238 DOI: 10.1073/pnas.2315992121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Controllable platforms to engineer robust cytoskeletal scaffolds have the potential to create novel on-chip nanotechnologies. Inspired by axons, we combined the branching microtubule (MT) nucleation pathway with microfabrication to develop "cytoskeletal circuits." This active matter platform allows control over the adaptive self-organization of uniformly polarized MT arrays via geometric features of microstructures designed within a microfluidic confinement. We build and characterize basic elements, including turns and divisions, as well as complex regulatory elements, such as biased division and MT diodes, to construct various MT architectures on a chip. Our platform could be used in diverse applications, ranging from efficient on-chip molecular transport to mechanical nano-actuators. Further, cytoskeletal circuits can serve as a tool to study how the physical environment contributes to MT architecture in living cells.
Collapse
Affiliation(s)
- Meisam Zaferani
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ08544
| | - Ryungeun Song
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| |
Collapse
|
27
|
Rajasekaran R, Chang CC, Weix EWZ, Galateo TM, Coyle SM. A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design. Cell 2024; 187:345-359.e16. [PMID: 38181787 PMCID: PMC10842744 DOI: 10.1016/j.cell.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.
Collapse
Affiliation(s)
- Rohith Rajasekaran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chih-Chia Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elliott W Z Weix
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas M Galateo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Najma B, Wei WS, Baskaran A, Foster PJ, Duclos G. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2300174121. [PMID: 38175870 PMCID: PMC10786313 DOI: 10.1073/pnas.2300174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 01/06/2024] Open
Abstract
Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.
Collapse
Affiliation(s)
- Bibi Najma
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Wei-Shao Wei
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Peter J. Foster
- Department of Physics, Brandeis University, Waltham, MA02453
| | | |
Collapse
|
29
|
Mitchell KA, Sabbir MMH, Geumhan K, Smith SA, Klein B, Beller DA. Maximally mixing active nematics. Phys Rev E 2024; 109:014606. [PMID: 38366395 DOI: 10.1103/physreve.109.014606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is maximally mixing, in that it optimizes the (dimensionless) "topological entropy"-the exponential stretching rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively, produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be seen in future experiments.
Collapse
Affiliation(s)
- Kevin A Mitchell
- Physics Department, University of California, Merced, California 95344, USA
| | | | - Kevin Geumhan
- Physics Department, University of California, Merced, California 95344, USA
| | - Spencer A Smith
- Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Brandon Klein
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel A Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
30
|
Tayar AM, Caballero F, Anderberg T, Saleh OA, Cristina Marchetti M, Dogic Z. Controlling liquid-liquid phase behaviour with an active fluid. NATURE MATERIALS 2023; 22:1401-1408. [PMID: 37679525 DOI: 10.1038/s41563-023-01660-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Demixing binary liquids is a ubiquitous transition explained using a well-established thermodynamic formalism that requires the equality of intensive thermodynamics parameters across phase boundaries. Demixing transitions also occur when binary fluid mixtures are driven away from equilibrium, but predicting and designing such out-of-equilibrium transitions remains a challenge. Here we study the liquid-liquid phase separation of attractive DNA nanostars driven away from equilibrium using a microtubule-based active fluid. We find that activity lowers the critical temperature and narrows the range of coexistence concentrations, but only in the presence of mechanical bonds between the liquid droplets and reconfiguring active fluid. Similar behaviours are observed in numerical simulations, suggesting that the activity suppression of the critical point is a generic feature of active liquid-liquid phase separation. Our work describes a versatile platform for building soft active materials with feedback control and providing an insight into self-organization in cell biology.
Collapse
Affiliation(s)
- Alexandra M Tayar
- Department of Physics, University of California, Santa Barbara, CA, USA.
| | | | - Trevor Anderberg
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Omar A Saleh
- Department of Physics, University of California, Santa Barbara, CA, USA
- Materials Department, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - M Cristina Marchetti
- Department of Physics, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
31
|
Zarei Z, Berezney J, Hensley A, Lemma L, Senbil N, Dogic Z, Fraden S. Light-activated microtubule-based two-dimensional active nematic. SOFT MATTER 2023; 19:6691-6699. [PMID: 37609884 DOI: 10.1039/d3sm00270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
Collapse
Affiliation(s)
- Zahra Zarei
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - John Berezney
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Alexander Hensley
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Linnea Lemma
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
- The Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Nesrin Senbil
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Seth Fraden
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
32
|
McGorty RJ, Currie CJ, Michel J, Sasanpour M, Gunter C, Lindsay KA, Rust MJ, Katira P, Das M, Ross JL, Robertson-Anderson RM. Kinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites. PNAS NEXUS 2023; 2:pgad245. [PMID: 37575673 PMCID: PMC10416814 DOI: 10.1093/pnasnexus/pgad245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate-far from the composite cytoskeleton in cells. Here, we engineer actin-microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our minimal advection-diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three classes-slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag. These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes.
Collapse
Affiliation(s)
- Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Christopher J Currie
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Jonathan Michel
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Mehrzad Sasanpour
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Christopher Gunter
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - K Alice Lindsay
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| | | |
Collapse
|
33
|
Inoue D, Ohashi K, Takasuka TE, Kakugo A. In Vitro Synthesis and Design of Kinesin Biomolecular Motors by Cell-Free Protein Synthesis. ACS Synth Biol 2023; 12:1624-1631. [PMID: 37219894 DOI: 10.1021/acssynbio.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kinesin is a biomolecular motor that generates force and motility along microtubule cytoskeletons in cells. Owing to their ability to manipulate cellular nanoscale components, microtubule/kinesin systems show great promise as actuators of nanodevices. However, classical in vivo protein production has some limitations for the design and production of kinesins. Designing and producing kinesins is laborious, and conventional protein production requires specific facilities to create and contain recombinant organisms. Here, we demonstrated the in vitro synthesis and editing of functional kinesins using a wheat germ cell-free protein synthesis system. The synthesized kinesins propelled microtubules on a kinesin-coated substrate and showed a higher binding affinity with microtubules than E. coli-produced kinesins. We also successfully incorporated affinity tags into the kinesins by extending the original sequence of the DNA template by PCR. Our method will accelerate the study of biomolecular motor systems and encourage their wider use in various nanotechnology applications.
Collapse
Affiliation(s)
- Daisuke Inoue
- Faculty of Design, Kyushu University, Room 605, Building 3, Shiobaru 4-9-1, Minami-Ku, Fukuoka 815-8540, Japan
| | - Keisuke Ohashi
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0810, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0810, Japan
| | - Taichi E Takasuka
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0810, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Lemma LM, Varghese M, Ross TD, Thomson M, Baskaran A, Dogic Z. Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids. PNAS NEXUS 2023; 2:pgad130. [PMID: 37168671 PMCID: PMC10165807 DOI: 10.1093/pnasnexus/pgad130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Microtubule-based active fluids exhibit turbulent-like autonomous flows, which are driven by the molecular motor powered motion of filamentous constituents. Controlling active stresses in space and time is an essential prerequisite for controlling the intrinsically chaotic dynamics of extensile active fluids. We design single-headed kinesin molecular motors that exhibit optically enhanced clustering and thus enable precise and repeatable spatial and temporal control of extensile active stresses. Such motors enable rapid, reversible switching between flowing and quiescent states. In turn, spatio-temporal patterning of the active stress controls the evolution of the ubiquitous bend instability of extensile active fluids and determines its critical length dependence. Combining optically controlled clusters with conventional kinesin motors enables one-time switching from contractile to extensile active stresses. These results open a path towards real-time control of the autonomous flows generated by active fluids.
Collapse
Affiliation(s)
- Linnea M Lemma
- Department of Physics, Brandeis University, 415 South St., Waltham, 02453 MA, USA
- Department of Physics, University of California, Santa Barbara, 93106 CA, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, 415 South St., Waltham, 02453 MA, USA
| | - Tyler D Ross
- Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. Pasadena, 91125 CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, 91125 CA, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, 415 South St., Waltham, 02453 MA, USA
| | | |
Collapse
|
35
|
Foster PJ, Bae J, Lemma B, Zheng J, Ireland W, Chandrakar P, Boros R, Dogic Z, Needleman DJ, Vlassak JJ. Dissipation and energy propagation across scales in an active cytoskeletal material. Proc Natl Acad Sci U S A 2023; 120:e2207662120. [PMID: 37000847 PMCID: PMC10083585 DOI: 10.1073/pnas.2207662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Living systems are intrinsically nonequilibrium: They use metabolically derived chemical energy to power their emergent dynamics and self-organization. A crucial driver of these dynamics is the cellular cytoskeleton, a defining example of an active material where the energy injected by molecular motors cascades across length scales, allowing the material to break the constraints of thermodynamic equilibrium and display emergent nonequilibrium dynamics only possible due to the constant influx of energy. Notwithstanding recent experimental advances in the use of local probes to quantify entropy production and the breaking of detailed balance, little is known about the energetics of active materials or how energy propagates from the molecular to emergent length scales. Here, we use a recently developed picowatt calorimeter to experimentally measure the energetics of an active microtubule gel that displays emergent large-scale flows. We find that only approximately one-billionth of the system's total energy consumption contributes to these emergent flows. We develop a chemical kinetics model that quantitatively captures how the system's total thermal dissipation varies with ATP and microtubule concentrations but that breaks down at high motor concentration, signaling an interference between motors. Finally, we estimate how energy losses accumulate across scales. Taken together, these results highlight energetic efficiency as a key consideration for the engineering of active materials and are a powerful step toward developing a nonequilibrium thermodynamics of living systems.
Collapse
Affiliation(s)
- Peter J. Foster
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics, Brandeis University, Waltham, MA02454
| | - Jinhye Bae
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of NanoEngineering, University of California San Diego, La Jolla, CA92093
| | - Bezia Lemma
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, Harvard University, Cambridge, MA02138
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Juanjuan Zheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - William Ireland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Pooja Chandrakar
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Rémi Boros
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Daniel J. Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Joost J. Vlassak
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
36
|
Shaik VA, Peng Z, Brady JF, Elfring GJ. Confined active matter in external fields. SOFT MATTER 2023; 19:1384-1392. [PMID: 36723138 DOI: 10.1039/d2sm01135b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We analyze a dilute suspension of active particles confined between walls and subjected to fields that can modulate particle speed as well as orientation. Generally, the particle distribution is different in the bulk compared to near the walls. In the bulk, particles tend to accumulate in the regions of low speed, but in the presence of an orienting field normal to the walls, particles rotate to align with the field and accumulate in the field direction. At the walls, particles tend to accumulate pointing into the walls and thereby exert pressure on walls. But the presence of strong orienting fields can cause the particles to reorient away from the walls, and hence shows a possible mechanism for preventing contamination of surfaces. The pressure at the walls depends on the wall separation and the field strengths. This work demonstrates how multiple fields with different functionalities can be used to control active matter under confinement.
Collapse
Affiliation(s)
- Vaseem A Shaik
- Department of Mechanical Engineering, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Zhiwei Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Gwynn J Elfring
- Department of Mechanical Engineering, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
37
|
Barpuzary D, Hurst PJ, Patterson JP, Guan Z. Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System. J Am Chem Soc 2023; 145:3727-3735. [PMID: 36746118 DOI: 10.1021/jacs.2c13140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The importance and prevalence of energy-fueled active materials in living systems have inspired the design of synthetic active materials using various fuels. However, several major limitations of current designs remain to be addressed, such as the accumulation of chemical wastes during the process, unsustainable active behavior, and the lack of precise spatiotemporal control. Here, we demonstrate a fully electrically fueled (e-fueled) active self-assembly material that can overcome the aforementioned limitations. Using an electrochemical setup with dual electrocatalysts, the anodic oxidation of one electrocatalyst (ferrocyanide, [Fe(CN)6]4-) creates a positive fuel to activate the self-assembly, while simultaneously, the cathodic reduction of the other electrocatalyst (methyl viologen, [MV]2+) generates a negative fuel triggering fiber disassembly. Due to the fully catalytic nature for the reaction networks, this fully e-fueled active material system does not generate any chemical waste, can sustain active behavior for an extended period when the electrical potential is maintained, and provides spatiotemporal control.
Collapse
Affiliation(s)
- Dipankar Barpuzary
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States
| | - Paul J Hurst
- Department of Chemistry, University of California Irvine, Irvine, California92697, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States.,Department of Materials Science and Engineering, University of California Irvine, Irvine, California92697, United States
| | - Zhibin Guan
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States.,Department of Materials Science and Engineering, University of California Irvine, Irvine, California92697, United States.,Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California92697, United States.,Department of Biomedical Engineering, University of California Irvine, Irvine, California92697, United States
| |
Collapse
|
38
|
Banks RA, Galstyan V, Lee HJ, Hirokawa S, Ierokomos A, Ross TD, Bryant Z, Thomson M, Phillips R. Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies. eLife 2023; 12:e79402. [PMID: 36752605 PMCID: PMC10014072 DOI: 10.7554/elife.79402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Active matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules. Here, we investigate how the microscopic motor-microtubule interactions affect the coherent structures formed in a reconstituted motor-microtubule system. This question is of deeper evolutionary significance as we suspect motor and microtubule type contribute to the shape and size of resulting structures. We explore key parameters experimentally and theoretically, using a variety of motors with different speeds, processivities, and directionalities. We demonstrate that aster size depends on the motor used to create the aster, and develop a model for the distribution of motors and microtubules in steady-state asters that depends on parameters related to motor speed and processivity. Further, we show that network contraction rates scale linearly with the single-motor speed in quasi-one-dimensional contraction experiments. In all, this theoretical and experimental work helps elucidate how microscopic motor properties are translated to the much larger scale of collective motor-microtubule assemblies.
Collapse
Affiliation(s)
- Rachel A Banks
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Vahe Galstyan
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
| | - Soichi Hirokawa
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
| | | | - Tyler D Ross
- Department of Computing and Mathematical Science, California Institute of TechnologyPasadenaUnited States
| | - Zev Bryant
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
- Department of Physics, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
39
|
Bate TE, Varney ME, Taylor EH, Dickie JH, Chueh CC, Norton MM, Wu KT. Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity. Nat Commun 2022; 13:6573. [PMID: 36323696 PMCID: PMC9630547 DOI: 10.1038/s41467-022-34396-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Active fluids have applications in micromixing, but little is known about the mixing kinematics of systems with spatiotemporally-varying activity. To investigate, UV-activated caged ATP is used to activate controlled regions of microtubule-kinesin active fluid and the mixing process is observed with fluorescent tracers and molecular dyes. At low Péclet numbers (diffusive transport), the active-inactive interface progresses toward the inactive area in a diffusion-like manner that is described by a simple model combining diffusion with Michaelis-Menten kinetics. At high Péclet numbers (convective transport), the active-inactive interface progresses in a superdiffusion-like manner that is qualitatively captured by an active-fluid hydrodynamic model coupled to ATP transport. Results show that active fluid mixing involves complex coupling between distribution of active stress and active transport of ATP and reduces mixing time for suspended components with decreased impact of initial component distribution. This work will inform application of active fluids to promote micromixing in microfluidic devices.
Collapse
Affiliation(s)
- Teagan E Bate
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Megan E Varney
- Department of Physics, New York University, New York, NY, 10003, USA
| | - Ezra H Taylor
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Joshua H Dickie
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Chih-Che Chueh
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Michael M Norton
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Kun-Ta Wu
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
40
|
Najma B, Varghese M, Tsidilkovski L, Lemma L, Baskaran A, Duclos G. Competing instabilities reveal how to rationally design and control active crosslinked gels. Nat Commun 2022; 13:6465. [PMID: 36309493 PMCID: PMC9617906 DOI: 10.1038/s41467-022-34089-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
How active stresses generated by molecular motors set the large-scale mechanics of the cell cytoskeleton remains poorly understood. Here, we combine experiments and theory to demonstrate how the emergent properties of a biomimetic active crosslinked gel depend on the properties of its microscopic constituents. We show that an extensile nematic elastomer exhibits two distinct activity-driven instabilities, spontaneously bending in-plane or buckling out-of-plane depending on its composition. Molecular motors play a dual antagonistic role, fluidizing or stiffening the gel depending on the ATP concentration. We demonstrate how active and elastic stresses are set by each component, providing estimates for the active gel theory parameters. Finally, activity and elasticity were manipulated in situ with light-activable motor proteins, controlling the direction of the instability optically. These results highlight how cytoskeletal stresses regulate the self-organization of living matter and set the foundations for the rational design and optogenetic control of active materials.
Collapse
Affiliation(s)
- Bibi Najma
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lev Tsidilkovski
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Linnea Lemma
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Guillaume Duclos
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
41
|
Lamtyugina A, Qiu Y, Fodor É, Dinner AR, Vaikuntanathan S. Thermodynamic Control of Activity Patterns in Cytoskeletal Networks. PHYSICAL REVIEW LETTERS 2022; 129:128002. [PMID: 36179154 PMCID: PMC10014041 DOI: 10.1103/physrevlett.129.128002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to various external stimuli by consuming different amounts of energy. In this Letter, we use methods from large deviation theory to identify a thermodynamic control principle for structural transitions in a model cytoskeletal network. Specifically, we demonstrate that biasing the dynamics with respect to the work done by nonequilibrium components effectively renormalizes the interaction strength between such components, which can eventually result in a morphological transition. Our work demonstrates how a thermodynamic quantity can be used to renormalize effective interactions, which in turn can tune structure in a predictable manner, suggesting a thermodynamic principle for the control of cytoskeletal structure and dynamics.
Collapse
Affiliation(s)
| | - Yuqing Qiu
- Department of Chemistry, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Aaron R. Dinner
- Department of Chemistry, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
42
|
Amirifar R, Dong K, Yu A. Ordered packing of uniform spheres via random packing protocol. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
43
|
Chen X, Wu T, Huang D, Zhou J, Zhou F, Tu M, Zhang Y, Li B, Li Y, Jiang L. Optothermally Programmable Liquids with Spatiotemporal Precision and Functional Complexity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205563. [PMID: 35918709 DOI: 10.1002/adma.202205563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Due to the intrinsic lack of spatial order and self-supported shape, liquids are often incompatible with precision manufacturing/processing and are potentially limited for advanced functionality. Herein, an optothermal strategy is developed to fully command phase-separated liquids with unprecedented spatiotemporal addressability. Specifically, a laser is focused onto an Au film to create a hot spot that locally demixes a temperature-responsive solution to produce a single optothermal droplet. Spatial precision is assured by the well-defined thermal field and temporal accuracy guaranteed by the fast heating and response rate. Time-multiplexed laser foci are deployed to engineer the thermal landscape as desired, which in turn dictates the formation/dissolution, positioning, shaping, and dynamic reconfiguration of the phase-separated liquids. Further, laser foci are programmed to orchestrate the liquid patterns in a time-continuous manner to produce liquid animations on the microscale with high fidelity. While focused lasers are routinely used to manipulate solid particles or to microfabricate solid materials, the current strategy embraces the merits of liquids and features functional complexity in information encryption, payload transportation, and reaction localization. The strategy is further applicable in scenarios such as subcellular organization of biomolecular condensates and programmable modulation of non-equilibrium systems.
Collapse
Affiliation(s)
- Xixi Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Tianli Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Danmin Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fengxiang Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
44
|
Optimal transport and control of active drops. Proc Natl Acad Sci U S A 2022; 119:e2121985119. [PMID: 36001692 PMCID: PMC9436341 DOI: 10.1073/pnas.2121985119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the complex patterns in space-time exhibited by active systems has been the subject of much interest in recent times. Complementing this forward problem is the inverse problem of controlling active matter. Here, we use optimal control theory to pose the problem of transporting a slender drop of an active fluid and determine the dynamical profile of the active stresses to move it with minimal viscous dissipation. By parametrizing the position and size of the drop using a low-order description based on lubrication theory, we uncover a natural "gather-move-spread" strategy that leads to an optimal bound on the maximum achievable displacement of the drop relative to its size. In the continuum setting, the competition between passive surface tension and active controls generates richer behavior with futile oscillations and complex drop morphologies that trade internal dissipation against the transport cost to select optimal strategies. Our work combines active hydrodynamics and optimal control in a tractable and interpretable framework and begins to pave the way for the spatiotemporal manipulation of active matter.
Collapse
|
45
|
Abstract
Active cytoskeletal materials in vitro demonstrate self-organizing properties similar to those observed in their counterparts in cells. However, the search to emulate phenomena observed in living matter has fallen short of producing a cytoskeletal network that would be structurally stable yet possess adaptive plasticity. Here, we address this challenge by combining cytoskeletal polymers in a composite where self-assembling microtubules and actin filaments collectively self-organize due to the activity of microtubule-percolating molecular motors. We demonstrate that microtubules spatially organize actin filaments that in turn guide microtubules. The two networks align in an ordered fashion using this feedback loop. In this composite, actin filaments can act as structural memory and, depending on the concentration of the components, microtubules either write this memory or get guided by it. The system is sensitive to external stimuli, suggesting possible autoregulatory behavior in changing mechanochemical environments. We thus establish an artificial active actin-microtubule composite as a system demonstrating architectural stability and plasticity.
Collapse
|
46
|
Active transformations of topological structures in light-driven nematic disclination networks. Proc Natl Acad Sci U S A 2022; 119:e2122226119. [PMID: 35639695 DOI: 10.1073/pnas.2122226119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTopological defects are marvels of nature. Understanding their structures is important for their applications in, for example, directed self-assembly, sensing, and photonic devices. There is recent interest in active motion and transformation of topological defects in active nematics. In these nonequilibrium systems, however, the motion and transformation of disclinations are difficult to control, thereby hindering their applications. Here, we propose a surface-patterned system engendering periodic three-dimensional disclinations, which can be excited by light irradiation and undergo a programmable transformation between different topological states. Continuum simulations recapitulating these topological structures characterize the bending, breaking, and relinking events of the disclinations during the nonequilibrium process. Our work provides an alternative dynamic system in which active transformation of topological defects can be engineered.
Collapse
|
47
|
Sarfati G, Maitra A, Voituriez R, Galas JC, Estevez-Torres A. Crosslinking and depletion determine spatial instabilities in cytoskeletal active matter. SOFT MATTER 2022; 18:3793-3800. [PMID: 35521993 DOI: 10.1039/d2sm00130f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Active gels made of cytoskeletal proteins are valuable materials with attractive non-equilibrium properties such as spatial self-organization and self-propulsion. At least four typical routes to spatial patterning have been reported to date in different types of cytoskeletal active gels: bending and buckling instabilities in extensile systems, and global and local contraction instabilities in contractile gels. Here we report the observation of these four instabilities in a single type of active gel and we show that they are controlled by two parameters: the concentrations of ATP and depletion agent. We demonstrate that as the ATP concentration decreases, the concentration of passive motors increases until the gel undergoes a gelation transition. At this point, buckling is selected against bending, while global contraction is favored over local ones. Our observations are coherent with a hydrodynamic model of a viscoelastic active gel where the filaments are crosslinked with a characteristic time that diverges as the ATP concentration decreases. Our work thus provides a unified view of spatial instabilities in cytoskeletal active matter.
Collapse
Affiliation(s)
- Guillaume Sarfati
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris, Université, F-95302 Cergy-Pontoise Cedex, France
| | - Raphael Voituriez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, (LPTMC), F-75005 Paris, France
| | - Jean-Christophe Galas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
| | - André Estevez-Torres
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
| |
Collapse
|
48
|
Selmani S, Schwartz E, Mulvey JT, Wei H, Grosvirt-Dramen A, Gibson W, Hochbaum AI, Patterson JP, Ragan R, Guan Z. Electrically Fueled Active Supramolecular Materials. J Am Chem Soc 2022; 144:7844-7851. [PMID: 35446034 DOI: 10.1021/jacs.2c01884] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fuel-driven dissipative self-assemblies play essential roles in living systems, contributing both to their complex, dynamic structures and emergent functions. Several dissipative supramolecular materials have been created using chemicals or light as fuel. However, electrical energy, one of the most common energy sources, has remained unexplored for such purposes. Here, we demonstrate a new platform for creating active supramolecular materials using electrically fueled dissipative self-assembly. Through an electrochemical redox reaction network, a transient and highly active supramolecular assembly is achieved with rapid kinetics, directionality, and precise spatiotemporal control. As electronic signals are the default information carriers in modern technology, the described approach offers a potential opportunity to integrate active materials into electronic devices for bioelectronic applications.
Collapse
Affiliation(s)
- Serxho Selmani
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric Schwartz
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Hong Wei
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Adam Grosvirt-Dramen
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Wyeth Gibson
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Regina Ragan
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Zhibin Guan
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
49
|
Basaran M, Yaman YI, Yüce TC, Vetter R, Kocabas A. Large-scale orientational order in bacterial colonies during inward growth. eLife 2022; 11:72187. [PMID: 35254257 PMCID: PMC8963879 DOI: 10.7554/elife.72187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
During colony growth, complex interactions regulate the bacterial orientation, leading to the formation of large-scale ordered structures, including topological defects, microdomains, and branches. These structures may benefit bacterial strains, providing invasive advantages during colonization. Active matter dynamics of growing colonies drives the emergence of these ordered structures. However, additional biomechanical factors also play a significant role during this process. Here, we show that the velocity profile of growing colonies creates strong radial orientation during inward growth when crowded populations invade a closed area. During this process, growth geometry sets virtual confinement and dictates the velocity profile. Herein, flow-induced alignment and torque balance on the rod-shaped bacteria result in a new stable orientational equilibrium in the radial direction. Our analysis revealed that the dynamics of these radially oriented structures, also known as aster defects, depend on bacterial length and can promote the survival of the longest bacteria around localized nutritional hotspots. The present results indicate a new mechanism underlying structural order and provide mechanistic insights into the dynamics of bacterial growth on complex surfaces.
Collapse
Affiliation(s)
| | - Y Ilker Yaman
- Department of Physics, Koç University, Istanbul, Turkey
| | | | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Askin Kocabas
- Department of Physics, Koç University, Istanbul, Turkey
| |
Collapse
|
50
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|