1
|
Torrado C, Ashton NW, D'Andrea AD, Yap TA. USP1 inhibition: A journey from target discovery to clinical translation. Pharmacol Ther 2025; 271:108865. [PMID: 40274197 DOI: 10.1016/j.pharmthera.2025.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is a deubiquitinating enzyme involved in the DNA damage response. Upon DNA damage, USP1 stabilizes replication forks by removing monoubiquitin from PCNA and FANCD2-FANCI, thereby catalyzing critical final steps in translesion synthesis and interstrand crosslink (ICL) repair. This function is particularly crucial in BRCA1 mutant cancers, where the homologous recombination pathway is compromised, leading tumors to rely on USP1 for effective repair. USP1 is also overexpressed in BRCA1 mutant cancers, as well as other tumor types. Preclinical studies have demonstrated that knockout of USP1 is synthetically lethal in tumors with biallelic BRCA1 mutations, and this relationship is enhanced by combination with PARP inhibitors. Newly developed USP1 inhibitors have confirmed this synthetic lethality in BRCA1-deficient tumor cells. Moreover, these drugs have the potential for resensitizing platinum-resistant tumors. Currently, potent and specific USP1 inhibitors are undergoing evaluation in phase I clinical trials. RO7623066 (KSQ-4279) reported an acceptable safety profile during a phase I dose escalation study, with anemia being the most common side effect, and demonstrated robust pharmacokinetic, pharmacodynamic, and clinical activity. Other USP1 inhibitors, including SIM0501, XL309-101, and HSK39775, are currently in early clinical development. In this review, we provide an overview of the molecular function of USP1 and its importance as a therapeutic target in oncology, before focusing on the current state of preclinical and clinical development of USP1 inhibitors.
Collapse
Affiliation(s)
- Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Ashton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
3
|
Yang D, Bai F, Lopez Martinez D, Xu H, Johjima-Murata A, Cao LJ, Cohn MA. PP2A licenses the FANCD2/FANCI complex for chromosome loading. Cell Rep 2024; 43:114971. [PMID: 39535917 DOI: 10.1016/j.celrep.2024.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The Fanconi anemia (FA) pathway removes interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix in humans. Central to the pathway is the FANCD2/FANCI complex, which must be loaded onto chromosomes. Here, we report the identification of a PP2A phosphatase complex, which specifically dephosphorylates an inhibitory cluster in FANCD2, thereby licensing its loading in response to DNA damage. We show that PP2A is required for normal monoubiquitination of the FANCD2/FANCI complex and for its loading onto chromosomes. We have fully reconstituted a coupled dephosphorylation-ubiquitination reaction in vitro using a highly purified PP2A complex. Using super-resolution live-cell single-molecule tracking, we show how PP2A switches on the FA pathway in response to ICLs and that cells are sensitive to ICL-forming drugs in the absence of PP2A. Our work uncovers a mechanism where PP2A facilitates the activation of the FA pathway by licensing chromosome loading of the FANCD2/FANCI complex.
Collapse
Affiliation(s)
- Di Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fengxiang Bai
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Hannan Xu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ai Johjima-Murata
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lily Jiaqi Cao
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
4
|
Engel JL, Zhang X, Wu M, Wang Y, Espejo Valle-Inclán J, Hu Q, Woldehawariat KS, Sanders MA, Smogorzewska A, Chen J, Cortés-Ciriano I, Lo RS, Ly P. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 2024; 187:6055-6070.e22. [PMID: 39181133 PMCID: PMC11490392 DOI: 10.1016/j.cell.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.
Collapse
Affiliation(s)
- Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingming Wu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kidist S Woldehawariat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SD, UK; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Rennie ML, Gundogdu M, Arkinson C, Liness S, Frame S, Walden H. Structural and Biochemical Insights into the Mechanism of Action of the Clinical USP1 Inhibitor, KSQ-4279. J Med Chem 2024; 67:15557-15568. [PMID: 39190802 PMCID: PMC11403619 DOI: 10.1021/acs.jmedchem.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
DNA damage triggers cell signaling cascades that mediate repair. This signaling is frequently dysregulated in cancers. The proteins that mediate this signaling are potential targets for therapeutic intervention. Ubiquitin-specific protease 1 (USP1) is one such target, with small-molecule inhibitors already in clinical trials. Here, we use biochemical assays and cryo-electron microscopy (cryo-EM) to study the clinical USP1 inhibitor, KSQ-4279 (RO7623066), and compare this to the well-established tool compound, ML323. We find that KSQ-4279 binds to the same cryptic site of USP1 as ML323 but disrupts the protein structure in subtly different ways. Inhibitor binding drives a substantial increase in thermal stability of USP1, which may be mediated through the inhibitors filling a hydrophobic tunnel-like pocket in USP1. Our results contribute to the understanding of the mechanism of action of USP1 inhibitors at the molecular level.
Collapse
Affiliation(s)
- Martin Luke Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Mehmet Gundogdu
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Connor Arkinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Steven Liness
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Sheelagh Frame
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
6
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Alcón P, Kaczmarczyk AP, Ray KK, Liolios T, Guilbaud G, Sijacki T, Shen Y, McLaughlin SH, Sale JE, Knipscheer P, Rueda DS, Passmore LA. FANCD2-FANCI surveys DNA and recognizes double- to single-stranded junctions. Nature 2024; 632:1165-1173. [PMID: 39085614 PMCID: PMC11358013 DOI: 10.1038/s41586-024-07770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.
Collapse
Affiliation(s)
- Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Artur P Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Korak Kumar Ray
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Themistoklis Liolios
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Yichao Shen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
| | | |
Collapse
|
8
|
Ma R, Xu X. Deciphering the role of post-translational modifications in fanconi anemia proteins and their influence on tumorigenesis. Cancer Gene Ther 2024; 31:1113-1123. [PMID: 38879655 DOI: 10.1038/s41417-024-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 08/17/2024]
Abstract
Fanconi anemia (FA) is an autosomal or X-linked human disease, characterized by bone marrow failure, cancer susceptibility and various developmental abnormalities. So far, at least 22 FA genes (FANCA-W) have been identified. Germline inactivation of any one of these FA genes causes FA symptoms. Proteins encoded by FA genes are involved in the Fanconi anemia pathway, which is known for its roles in DNA inter-strand crosslinks (ICLs) repair. Besides, its roles in genome maintenance upon replication stress has also been reported. Post-translational modifications (PTMs) of FA proteins, particularly phosphorylation and ubiquitination, emerge as critical determinants in the activation of the FA pathway during ICL repair or replication stress response. Consequent inactivation of the FA pathway engenders heightened chromosomal instability, thereby constituting a genetic susceptibility conducive to cancer predisposition and the exacerbation of tumorigenesis. In this review, we have combined recent structural analysis of FA proteins and summarized knowledge on the functions of different PTMs in regulating FA pathways, and discuss potential contributions stemming from mutations at PTMs to the genesis and progression of tumorigenesis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinlin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
9
|
Chauhan AS, Jhujh SS, Stewart GS. E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease. Biochem J 2024; 481:923-944. [PMID: 38985307 PMCID: PMC11346458 DOI: 10.1042/bcj20240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.
Collapse
Affiliation(s)
- Anoop S. Chauhan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
10
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
11
|
Price NE, Gates KS. Novel Processes Associated with the Repair of Interstrand Cross-Links Derived from Abasic Sites in Duplex DNA: Roles for the Base Excision Repair Glycosylase NEIL3 and the SRAP Protein HMCES. Chem Res Toxicol 2024; 37:199-207. [PMID: 38198604 DOI: 10.1021/acs.chemrestox.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Recent studies have defined a novel pathway for the repair of interstrand cross-links derived from the reaction of an adenine residue with an apurinic/apyrimidinic (AP) site on the opposing strand of DNA (dA-AP ICL). Stalling of a replication fork at the dA-AP ICL triggers TRAIP-dependent ubiquitylation of the CMG helicase that recruits the base excision repair glycosylase NEIL3 to the lesion. NEIL3 unhooks the dA-AP ICL to regenerate the native adenine residue on one strand and an AP site on the other strand. Covalent capture of the abasic site by the SRAP protein HMCES protects against genomic instability that would result from cleavage of the abasic site in the context of single-stranded DNA at the replication fork. After repair synthesis moves the HMCES-AP adduct into the context of double-stranded DNA, the DNA-protein cross-link is resolved by a nonproteolytic mechanism involving dissociation of thiazolidine attachment. The AP site in duplex DNA is then repaired by the base excision repair pathway.
Collapse
Affiliation(s)
- Nathan E Price
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
Leung W, Baxley RM, Traband E, Chang YC, Rogers CB, Wang L, Durrett W, Bromley KS, Fiedorowicz L, Thakar T, Tella A, Sobeck A, Hendrickson EA, Moldovan GL, Shima N, Bielinsky AK. FANCD2-dependent mitotic DNA synthesis relies on PCNA K164 ubiquitination. Cell Rep 2023; 42:113523. [PMID: 38060446 PMCID: PMC10842461 DOI: 10.1016/j.celrep.2023.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) at lysine 164 (K164) activates DNA damage tolerance pathways. Currently, we lack a comprehensive understanding of how PCNA K164 ubiquitination promotes genome stability. To evaluate this, we generated stable cell lines expressing PCNAK164R from the endogenous PCNA locus. Our data reveal that the inability to ubiquitinate K164 causes perturbations in global DNA replication. Persistent replication stress generates under-replicated regions and is exacerbated by the DNA polymerase inhibitor aphidicolin. We show that these phenotypes are due, in part, to impaired Fanconi anemia group D2 protein (FANCD2)-dependent mitotic DNA synthesis (MiDAS) in PCNAK164R cells. FANCD2 mono-ubiquitination is significantly reduced in PCNAK164R mutants, leading to reduced chromatin association and foci formation, both prerequisites for FANCD2-dependent MiDAS. Furthermore, K164 ubiquitination coordinates direct PCNA/FANCD2 colocalization in mitotic nuclei. Here, we show that PCNA K164 ubiquitination maintains human genome stability by promoting FANCD2-dependent MiDAS to prevent the accumulation of under-replicated DNA.
Collapse
Affiliation(s)
- Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emma Traband
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wesley Durrett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kendall S Bromley
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lidia Fiedorowicz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Institute for Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eric A Hendrickson
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
13
|
Traband EL, Hammerlund SR, Shameem M, Narayan A, Ramana S, Tella A, Sobeck A, Shima N. Mitotic DNA Synthesis in Untransformed Human Cells Preserves Common Fragile Site Stability via a FANCD2-Driven Mechanism That Requires HELQ. J Mol Biol 2023; 435:168294. [PMID: 37777152 PMCID: PMC10839910 DOI: 10.1016/j.jmb.2023.168294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.
Collapse
Affiliation(s)
- Emma L Traband
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sarah R Hammerlund
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Mohammad Shameem
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Ananya Narayan
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sanjiv Ramana
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Brunner A, Li Q, Fisicaro S, Kourtesakis A, Viiliäinen J, Johansson HJ, Pandey V, Mayank AK, Lehtiö J, Wohlschlegel JA, Spruck C, Rantala JK, Orre LM, Sangfelt O. FBXL12 degrades FANCD2 to regulate replication recovery and promote cancer cell survival under conditions of replication stress. Mol Cell 2023; 83:3720-3739.e8. [PMID: 37591242 PMCID: PMC10592106 DOI: 10.1016/j.molcel.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.
Collapse
Affiliation(s)
- Andrä Brunner
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden.
| | - Qiuzhen Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Samuele Fisicaro
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Alexandros Kourtesakis
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Johanna Viiliäinen
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Henrik J Johansson
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Charles Spruck
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla 92037, CA, USA
| | - Juha K Rantala
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, South Yorkshire, UK; Misvik Biology, Turku 20520, Finland
| | - Lukas M Orre
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden.
| |
Collapse
|
15
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Eichman BF. Repair and tolerance of DNA damage at the replication fork: A structural perspective. Curr Opin Struct Biol 2023; 81:102618. [PMID: 37269798 PMCID: PMC10525001 DOI: 10.1016/j.sbi.2023.102618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The replication machinery frequently encounters DNA damage and other structural impediments that inhibit progression of the replication fork. Replication-coupled processes that remove or bypass the barrier and restart stalled forks are essential for completion of replication and for maintenance of genome stability. Errors in replication-repair pathways lead to mutations and aberrant genetic rearrangements and are associated with human diseases. This review highlights recent structures of enzymes involved in three replication-repair pathways: translesion synthesis, template switching and fork reversal, and interstrand crosslink repair.
Collapse
Affiliation(s)
- Brandt F Eichman
- Vanderbilt University, Department of Biological Sciences and Department of Biochemistry, 5270A MRBIII, 465 21st Ave S, Nashville, TN 37232 USA.
| |
Collapse
|
17
|
Kupculak M, Bai F, Luo Q, Yoshikawa Y, Lopez-Martinez D, Xu H, Uphoff S, Cohn MA. Phosphorylation by ATR triggers FANCD2 chromatin loading and activates the Fanconi anemia pathway. Cell Rep 2023; 42:112721. [PMID: 37392383 PMCID: PMC10933773 DOI: 10.1016/j.celrep.2023.112721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.
Collapse
Affiliation(s)
- Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fengxiang Bai
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Qiang Luo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Hannan Xu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Alghoul E, Basbous J, Constantinou A. Compartmentalization of the DNA damage response: Mechanisms and functions. DNA Repair (Amst) 2023; 128:103524. [PMID: 37320957 DOI: 10.1016/j.dnarep.2023.103524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Cells have evolved an arsenal of molecular mechanisms to respond to continuous alterations in the primary structure of DNA. At the cellular level, DNA damage response proteins accumulate at sites of DNA damage and organize into nuclear foci. As recounted by Errol Friedberg, pioneering work on DNA repair in the 1930 s was stimulated by collaborations between physicists and geneticists. In recent years, the introduction of ideas from physics on self-organizing compartments has taken the field of cell biology by storm. Percolation and phase separation theories are increasingly used to model the self-assembly of compartments, called biomolecular condensates, that selectively concentrate molecules without a surrounding membrane. In this review, we discuss these concepts in the context of the DNA damage response. We discuss how studies of DNA repair foci as condensates can link molecular mechanisms with cell physiological functions, provide new insights into regulatory mechanisms, and open new perspectives for targeting DNA damage responses for therapeutic purposes.
Collapse
Affiliation(s)
- Emile Alghoul
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
19
|
Mazouzi A, Moser SC, Abascal F, van den Broek B, Del Castillo Velasco-Herrera M, van der Heijden I, Hekkelman M, Drenth AP, van der Burg E, Kroese LJ, Jalink K, Adams DJ, Jonkers J, Brummelkamp TR. FIRRM/C1orf112 mediates resolution of homologous recombination intermediates in response to DNA interstrand crosslinks. SCIENCE ADVANCES 2023; 9:eadf4409. [PMID: 37256941 PMCID: PMC10413679 DOI: 10.1126/sciadv.adf4409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Sarah C. Moser
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Bram van den Broek
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
- BioImaging Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Ingrid van der Heijden
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Hekkelman
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anne Paulien Drenth
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline van der Burg
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lona J. Kroese
- Animal Modeling Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Jos Jonkers
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R. Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
20
|
Mantela M, Lambropoulos K, Simserides C. Charge transport properties of ideal and natural DNA segments, as mutation detectors. Phys Chem Chem Phys 2023; 25:7750-7762. [PMID: 36857625 DOI: 10.1039/d3cp00268c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
DNA sequences of ideal and natural geometries are examined, studying their charge transport properties as mutation detectors. Ideal means textbook geometry. Natural means naturally distorted sequences; geometry taken from available databases. A tight-binding (TB) wire model at the base-pair level is recruited, together with a transfer matrix technique. The relevant TB parameters are obtained using a linear combination of all valence orbitals of all atoms, using geometry, either ideal or natural, as the only input. The investigated DNA sequences contain: (i) point substitution mutations - specifically, the transitions guanine (G) ↔ adenine (A) - and (ii) sequences extracted from human chromosomes, modified by expanding the cytosine-adenine-guanine triplet [(CAG)n repeats] to mimic the following diseases: (a) Huntington's disease, (b) Kennedy's disease, (c) Spinocerebellar ataxia 6, (d) Spinocerebellar ataxia 7. Quantities such as eigenspectra, density of states, transmission coefficients, and the - more experimentally relevant - current-voltage (I-V) curves are studied, intending to find adequate features to recognize mutations. To this end, the normalised deviation of the I-V curve from the origin (NDIV) is also defined. The features of the NDIV seem to provide a clearer picture, being sensitive to the number of point mutations and allowing to characterise the degree of danger of developing the aforementioned diseases.
Collapse
Affiliation(s)
- Marilena Mantela
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece.
| | - Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece.
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece.
| |
Collapse
|
21
|
Lemonidis K, Rennie ML, Arkinson C, Chaugule VK, Clarke M, Streetley J, Walden H. Structural and biochemical basis of interdependent FANCI-FANCD2 ubiquitination. EMBO J 2023; 42:e111898. [PMID: 36385258 PMCID: PMC9890228 DOI: 10.15252/embj.2022111898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Di-monoubiquitination of the FANCI-FANCD2 (ID2) complex is a central and crucial step for the repair of DNA interstrand crosslinks via the Fanconi anaemia pathway. While FANCD2 ubiquitination precedes FANCI ubiquitination, FANCD2 is also deubiquitinated at a faster rate than FANCI, which can result in a FANCI-ubiquitinated ID2 complex (IUb D2). Here, we present a 4.1 Å cryo-EM structure of IUb D2 complex bound to double-stranded DNA. We show that this complex, like ID2Ub and IUb D2Ub , is also in the closed ID2 conformation and clamps on DNA. The target lysine of FANCD2 (K561) becomes fully exposed in the IUb D2-DNA structure and is thus primed for ubiquitination. Similarly, FANCI's target lysine (K523) is also primed for ubiquitination in the ID2Ub -DNA complex. The IUb D2-DNA complex exhibits deubiquitination resistance, conferred by the presence of DNA and FANCD2. ID2Ub -DNA, on the other hand, can be efficiently deubiquitinated by USP1-UAF1, unless further ubiquitination on FANCI occurs. Therefore, FANCI ubiquitination effectively maintains FANCD2 ubiquitination in two ways: it prevents excessive FANCD2 deubiquitination within an IUb D2Ub -DNA complex, and it enables re-ubiquitination of FANCD2 within a transient, closed-on-DNA, IUb D2 complex.
Collapse
Affiliation(s)
- Kimon Lemonidis
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Martin L Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Connor Arkinson
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Viduth K Chaugule
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Mairi Clarke
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowUK
| | - James Streetley
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowUK
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
22
|
Fierheller CT, Alenezi WM, Serruya C, Revil T, Amuzu S, Bedard K, Subramanian DN, Fewings E, Bruce JP, Prokopec S, Bouchard L, Provencher D, Foulkes WD, El Haffaf Z, Mes-Masson AM, Tischkowitz M, Campbell IG, Pugh TJ, Greenwood CMT, Ragoussis J, Tonin PN. Molecular Genetic Characteristics of FANCI, a Proposed New Ovarian Cancer Predisposing Gene. Genes (Basel) 2023; 14:genes14020277. [PMID: 36833203 PMCID: PMC9956348 DOI: 10.3390/genes14020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
FANCI was recently identified as a new candidate ovarian cancer (OC)-predisposing gene from the genetic analysis of carriers of FANCI c.1813C>T; p.L605F in OC families. Here, we aimed to investigate the molecular genetic characteristics of FANCI, as they have not been described in the context of cancer. We first investigated the germline genetic landscape of two sisters with OC from the discovery FANCI c.1813C>T; p.L605F family (F1528) to re-affirm the plausibility of this candidate. As we did not find other conclusive candidates, we then performed a candidate gene approach to identify other candidate variants in genes involved in the FANCI protein interactome in OC families negative for pathogenic variants in BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and FANCI, which identified four candidate variants. We then investigated FANCI in high-grade serous ovarian carcinoma (HGSC) from FANCI c.1813C>T carriers and found evidence of loss of the wild-type allele in tumour DNA from some of these cases. The somatic genetic landscape of OC tumours from FANCI c.1813C>T carriers was investigated for mutations in selected genes, copy number alterations, and mutational signatures, which determined that the profiles of tumours from carriers were characteristic of features exhibited by HGSC cases. As other OC-predisposing genes such as BRCA1 and BRCA2 are known to increase the risk of other cancers including breast cancer, we investigated the carrier frequency of germline FANCI c.1813C>T in various cancer types and found overall more carriers among cancer cases compared to cancer-free controls (p = 0.007). In these different tumour types, we also identified a spectrum of somatic variants in FANCI that were not restricted to any specific region within the gene. Collectively, these findings expand on the characteristics described for OC cases carrying FANCI c.1813C>T; p.L605F and suggest the possible involvement of FANCI in other cancer types at the germline and/or somatic level.
Collapse
Affiliation(s)
- Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Corinne Serruya
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Setor Amuzu
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Karine Bedard
- Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Eleanor Fewings
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jeffrey P. Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Department of Medical Biology, Centres Intégrés Universitaires de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
- Centre de Recherche du Centre Hospitalier l’Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Zaki El Haffaf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC H3A 1Y7, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Correspondence:
| |
Collapse
|
23
|
Singh DK, Gamboa RS, Singh AK, Walkemeier B, Van Leene J, De Jaeger G, Siddiqi I, Guerois R, Crismani W, Mercier R. The FANCC-FANCE-FANCF complex is evolutionarily conserved and regulates meiotic recombination. Nucleic Acids Res 2023; 51:2516-2528. [PMID: 36652992 PMCID: PMC10085685 DOI: 10.1093/nar/gkac1244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
At meiosis, programmed meiotic DNA double-strand breaks are repaired via homologous recombination, resulting in crossovers (COs). From a large excess of DNA double-strand breaks that are formed, only a small proportion gets converted into COs because of active mechanisms that restrict CO formation. The Fanconi anemia (FA) complex proteins AtFANCM, MHF1 and MHF2 were previously identified in a genetic screen as anti-CO factors that function during meiosis in Arabidopsis thaliana. Here, pursuing the same screen, we identify FANCC as a new anti-CO gene. FANCC was previously only identified in mammals because of low primary sequence conservation. We show that FANCC, and its physical interaction with FANCE-FANCF, is conserved from vertebrates to plants. Further, we show that FANCC, together with its subcomplex partners FANCE and FANCF, regulates meiotic recombination. Mutations of any of these three genes partially rescues CO-defective mutants, which is particularly marked in female meiosis. Functional loss of FANCC, FANCE, or FANCF results in synthetic meiotic catastrophe with the pro-CO factor MUS81. This work reveals that FANCC is conserved outside mammals and has an anti-CO role during meiosis together with FANCE and FANCF.
Collapse
Affiliation(s)
- Dipesh Kumar Singh
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Rigel Salinas Gamboa
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Avinash Kumar Singh
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Birgit Walkemeier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium.,Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium.,Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Imran Siddiqi
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Wayne Crismani
- The DNA Repair and Recombination Laboratory, St Vincent's Institute of Medical Research, Melbourne 3065, Australia.,The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
24
|
Rennie ML, Arkinson C, Chaugule VK, Walden H. Cryo-EM reveals a mechanism of USP1 inhibition through a cryptic binding site. SCIENCE ADVANCES 2022; 8:eabq6353. [PMID: 36170365 PMCID: PMC9519042 DOI: 10.1126/sciadv.abq6353] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Repair of DNA damage is critical to genomic integrity and frequently disrupted in cancers. Ubiquitin-specific protease 1 (USP1), a nucleus-localized deubiquitinase, lies at the interface of multiple DNA repair pathways and is a promising drug target for certain cancers. Although multiple inhibitors of this enzyme, including one in phase 1 clinical trials, have been established, their binding mode is unknown. Here, we use cryo-electron microscopy to study an assembled enzyme-substrate-inhibitor complex of USP1 and the well-established inhibitor, ML323. Achieving 2.5-Å resolution, with and without ML323, we find an unusual binding mode in which the inhibitor disrupts part of the hydrophobic core of USP1. The consequent conformational changes in the secondary structure lead to subtle rearrangements in the active site that underlie the mechanism of inhibition. These structures provide a platform for structure-based drug design targeting USP1.
Collapse
Affiliation(s)
- Martin L. Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K. Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
25
|
The key to the FANCD2-FANCI lock. Nat Struct Mol Biol 2022; 29:848-849. [PMID: 36071212 DOI: 10.1038/s41594-022-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Sijacki T, Alcón P, Chen ZA, McLaughlin SH, Shakeel S, Rappsilber J, Passmore LA. The DNA-damage kinase ATR activates the FANCD2-FANCI clamp by priming it for ubiquitination. Nat Struct Mol Biol 2022; 29:881-890. [PMID: 36050501 PMCID: PMC7613635 DOI: 10.1038/s41594-022-00820-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
DNA interstrand cross-links are tumor-inducing lesions that block DNA replication and transcription. When cross-links are detected at stalled replication forks, ATR kinase phosphorylates FANCI, which stimulates monoubiquitination of the FANCD2-FANCI clamp by the Fanconi anemia core complex. Monoubiquitinated FANCD2-FANCI is locked onto DNA and recruits nucleases that mediate DNA repair. However, it remains unclear how phosphorylation activates this pathway. Here, we report structures of FANCD2-FANCI complexes containing phosphomimetic FANCI. We observe that, unlike wild-type FANCD2-FANCI, the phosphomimetic complex closes around DNA, independent of the Fanconi anemia core complex. The phosphomimetic mutations do not substantially alter DNA binding but instead destabilize the open state of FANCD2-FANCI and alter its conformational dynamics. Overall, our results demonstrate that phosphorylation primes the FANCD2-FANCI clamp for ubiquitination, showing how multiple posttranslational modifications are coordinated to control DNA repair.
Collapse
Affiliation(s)
| | - Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zhuo A Chen
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | | | - Shabih Shakeel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | | |
Collapse
|
27
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
28
|
Kabbage M, Ben Aissa-Haj J, Othman H, Jaballah-Gabteni A, Laarayedh S, Elouej S, Medhioub M, Kettiti HT, Khsiba A, Mahmoudi M, BelFekih H, Maaloul A, Touinsi H, Hamzaoui L, Chelbi E, Abdelhak S, Boubaker MS, Azzouz MM. A Rare MSH2 Variant as a Candidate Marker for Lynch Syndrome II Screening in Tunisia: A Case of Diffuse Gastric Carcinoma. Genes (Basel) 2022; 13:genes13081355. [PMID: 36011265 PMCID: PMC9407052 DOI: 10.3390/genes13081355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Several syndromic forms of digestive cancers are known to predispose to early-onset gastric tumors such as Hereditary Diffuse Gastric Cancer (HDGC) and Lynch Syndrome (LS). LSII is an extracolonic cancer syndrome characterized by a tumor spectrum including gastric cancer (GC). In the current work, our main aim was to identify the mutational spectrum underlying the genetic predisposition to diffuse gastric tumors occurring in a Tunisian family suspected of both HDGC and LS II syndromes. We selected the index case “JI-021”, which was a woman diagnosed with a Diffuse Gastric Carcinoma and fulfilling the international guidelines for both HDGC and LSII syndromes. For DNA repair, a custom panel targeting 87 candidate genes recovering the four DNA repair pathways was used. Structural bioinformatics analysis was conducted to predict the effect of the revealed variants on the functional properties of the proteins. DNA repair genes panel screening identified two variants: a rare MSH2 c.728G>A classified as a variant with uncertain significance (VUS) and a novel FANCD2 variant c.1879G>T. The structural prediction model of the MSH2 variant and electrostatic potential calculation showed for the first time that MSH2 c.728G>A is likely pathogenic and is involved in the MSH2-MLH1 complex stability. It appears to affect the MSH2-MLH1 complex as well as DNA-complex stability. The c.1879G>T FANCD2 variant was predicted to destabilize the protein structure. Our results showed that the MSH2 p.R243Q variant is likely pathogenic and is involved in the MSH2-MLH1 complex stability, and molecular modeling analysis highlights a putative impact on the binding with MLH1 by disrupting the electrostatic potential, suggesting the revision of its status from VUS to likely pathogenic. This variant seems to be a shared variant in the Mediterranean region. These findings emphasize the importance of testing DNA repair genes for patients diagnosed with diffuse GC with suspicion of LSII and colorectal cancer allowing better clinical surveillance for more personalized medicine.
Collapse
Affiliation(s)
- Maria Kabbage
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Correspondence:
| | - Jihenne Ben Aissa-Haj
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Amira Jaballah-Gabteni
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Sarra Laarayedh
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Sahar Elouej
- Marseille Medical Genetics, Aix Marseille University, INSERM, 13007 Marseille, France;
| | - Mouna Medhioub
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Haifa Tounsi Kettiti
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Amal Khsiba
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Moufida Mahmoudi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Houda BelFekih
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Department of Oncology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Afifa Maaloul
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
| | - Hassen Touinsi
- Department of Surgery, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia;
| | - Lamine Hamzaoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Emna Chelbi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Department of Pathology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Mohamed Samir Boubaker
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Mohamed Mousaddak Azzouz
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| |
Collapse
|
29
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
30
|
Guervilly JH, Blin M, Laureti L, Baudelet E, Audebert S, Gaillard PH. SLX4 dampens MutSα-dependent mismatch repair. Nucleic Acids Res 2022; 50:2667-2680. [PMID: 35166826 PMCID: PMC8934664 DOI: 10.1093/nar/gkac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor SLX4 plays multiple roles in the maintenance of genome stability, acting as a scaffold for structure-specific endonucleases and other DNA repair proteins. It directly interacts with the mismatch repair (MMR) protein MSH2 but the significance of this interaction remained unknown until recent findings showing that MutSβ (MSH2-MSH3) stimulates in vitro the SLX4-dependent Holliday junction resolvase activity. Here, we characterize the mode of interaction between SLX4 and MSH2, which relies on an MSH2-interacting peptide (SHIP box) that drives interaction of SLX4 with both MutSβ and MutSα (MSH2-MSH6). While we show that this MSH2 binding domain is dispensable for the well-established role of SLX4 in interstrand crosslink repair, we find that it mediates inhibition of MutSα-dependent MMR by SLX4, unravelling an unanticipated function of SLX4.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Marion Blin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Luisa Laureti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Pierre-Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
31
|
Magits W, Sablina AA. The regulation of the protein interaction network by monoubiquitination. Curr Opin Struct Biol 2022; 73:102333. [PMID: 35176591 DOI: 10.1016/j.sbi.2022.102333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
The conjugation of a single ubiquitin or monoubiquitination acts as a versatile signal that can have both degradative and non-degradative functions. The latter is of particular interest as emerging evidence indicates that ubiquitin-driven alterations of the protein interaction landscape play a key role in multiple signaling pathways. Whereas early studies were focused on how monoubiquitination alters the interactions of proteins containing ubiquitin-binding domains, more recent reports demonstrate that ubiquitin conjugation can also affect the binding mode by changing the surface of the ubiquitinated substrate. Furthermore, monoubiquitination modulates the interactions with other macromolecules, such as DNA or lipids, underscoring the diverse role of monoubiquitination in cellular processes. In this review, we discussed how monoubiquitination achieves its function by modulating the interaction landscape.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Structural Analysis of the Outer Membrane Lipoprotein BBA14 (OrfD) and the Corresponding Paralogous Gene Family 143 (PFam143) from Borrelia burgdorferi. Pathogens 2022; 11:pathogens11020154. [PMID: 35215098 PMCID: PMC8877311 DOI: 10.3390/pathogens11020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Lyme disease is caused by the spirochete Borrelia burgdorferi, which can be transmitted to a mammalian host when infected Ixodes ticks feed. B. burgdorferi has many unique characteristics, such as the presence of at least 130 different lipoproteins, which is considerably more than any other known bacterium. Moreover, the B. burgdorferi genome is relatively small (1.5 Mbp) but at the same time it is quite complicated because it comprises a chromosome and 21 linear and circular plasmids. B. burgdorferi is also rich in paralogous proteins; in total, there are approximately 150 paralogous gene families. Equally important is the fact that there is still no vaccine against the Lyme disease. To better understand the role of lipoproteins in this unique bacterium, we solved the crystal structure of the outer membrane lipoprotein BBA14, which is coded on the relatively stable linear plasmid 54 (lp54). BBA14 does not share sequence identity with any other known proteins, and it is one of the ten members of the paralogous gene family 143 (PFam143). PFam143 members are known as orfD proteins from a genetic locus, designated 2.9. The obtained crystal structure revealed similarity to the antitoxin from the epsilon/zeta toxin-antitoxin system. The results of this study help to characterize BBA14 and to clarify the role of PFam143 in the lifecycle of B. burgdorferi.
Collapse
|
33
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2022; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
34
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Payliss BJ, Patel A, Sheppard AC, Wyatt HDM. Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Front Genet 2021; 12:784167. [PMID: 34804132 PMCID: PMC8599992 DOI: 10.3389/fgene.2021.784167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.
Collapse
Affiliation(s)
- Brandon J Payliss
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ayushi Patel
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anneka C Sheppard
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Ishiai M. Regulation of the Fanconi Anemia DNA Repair Pathway by Phosphorylation and Monoubiquitination. Genes (Basel) 2021; 12:genes12111763. [PMID: 34828369 PMCID: PMC8624177 DOI: 10.3390/genes12111763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The Fanconi anemia (FA) DNA repair pathway coordinates a faithful repair mechanism for stalled DNA replication forks caused by factors such as DNA interstrand crosslinks (ICLs) or replication stress. An important role of FA pathway activation is initiated by monoubiquitination of FANCD2 and its binding partner of FANCI, which is regulated by the ATM-related kinase, ATR. Therefore, regulation of the FA pathway is a good example of the contribution of ATR to genome stability. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via phosphorylation and monoubiquitination.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
37
|
Yoshida K, Fujita M. DNA damage responses that enhance resilience to replication stress. Cell Mol Life Sci 2021; 78:6763-6773. [PMID: 34463774 PMCID: PMC11072782 DOI: 10.1007/s00018-021-03926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
During duplication of the genome, eukaryotic cells may experience various exogenous and endogenous replication stresses that impede progression of DNA replication along chromosomes. Chemical alterations in template DNA, imbalances of deoxynucleotide pools, repetitive sequences, tight DNA-protein complexes, and conflict with transcription can negatively affect the replication machineries. If not properly resolved, stalled replication forks can cause chromosome breaks leading to genomic instability and tumor development. Replication stress is enhanced in cancer cells due, for example, to the loss of DNA repair genes or replication-transcription conflict caused by activation of oncogenic pathways. To prevent these serious consequences, cells are equipped with diverse mechanisms that enhance the resilience of replication machineries to replication stresses. This review describes DNA damage responses activated at stressed replication forks and summarizes current knowledge on the pathways that promote faithful chromosome replication and protect chromosome integrity, including ATR-dependent replication checkpoint signaling, DNA cross-link repair, and SLX4-mediated responses to tight DNA-protein complexes that act as barriers. This review also focuses on the relevance of replication stress responses to selective cancer chemotherapies.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
38
|
Katsuki Y, Abe M, Park SY, Wu W, Yabe H, Yabe M, van Attikum H, Nakada S, Ohta T, Seidman MM, Kim Y, Takata M. RNF168 E3 ligase participates in ubiquitin signaling and recruitment of SLX4 during DNA crosslink repair. Cell Rep 2021; 37:109879. [PMID: 34706224 PMCID: PMC11388903 DOI: 10.1016/j.celrep.2021.109879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/24/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
SLX4/FANCP is a key Fanconi anemia (FA) protein and a DNA repair scaffold for incision around a DNA interstrand crosslink (ICL) by its partner XPF nuclease. The tandem UBZ4 ubiquitin-binding domains of SLX4 are critical for the recruitment of SLX4 to damage sites, likely by binding to K63-linked polyubiquitin chains. However, the identity of the ubiquitin E3 ligase that mediates SLX4 recruitment remains unknown. Using small interfering RNA (siRNA) screening with a GFP-tagged N-terminal half of SLX4 (termed SLX4-N), we identify the RNF168 E3 ligase as a critical factor for mitomycin C (MMC)-induced SLX4 foci formation. RNF168 and GFP-SLX4-N colocalize in MMC-induced ubiquitin foci. Accumulation of SLX4-N at psoralen-laser ICL tracks or of endogenous SLX4 at Digoxigenin-psoralen/UVA ICL is dependent on RNF168. Finally, we find that RNF168 is epistatic with SLX4 in promoting MMC tolerance. We conclude that RNF168 is a critical component of the signal transduction that recruits SLX4 to ICL damage.
Collapse
Affiliation(s)
- Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Masako Abe
- The Core Facility, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
39
|
Kolinjivadi AM, Crismani W, Ngeow J. Emerging functions of Fanconi anemia genes in replication fork protection pathways. Hum Mol Genet 2021; 29:R158-R164. [PMID: 32420592 DOI: 10.1093/hmg/ddaa087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Germline mutations in Fanconi anemia (FA) genes predispose to chromosome instability syndromes, such as FA and cancers. FA gene products have traditionally been studied for their role in interstrand cross link (ICL) repair. A fraction of FA gene products are classical homologous recombination (HR) factors that are involved in repairing DNA double-strand breaks (DSBs) in an error-free manner. Emerging evidence suggests that, independent of ICL and HR repair, FA genes protect DNA replication forks in the presence of replication stress. Therefore, understanding the precise function of FA genes and their role in promoting genome stability in response to DNA replication stress is crucial for diagnosing FA and FA-associated cancers. Moreover, molecular understanding of the FA pathway will greatly help to establish proper functional assays for variants of unknown significance (VUS), often encountered in clinics. In this short review, we discuss the recently uncovered molecular details of FA genes in replication fork protection pathways. Finally, we examine how novel FA variants predispose to FA and cancer, due to defective replication fork protection activity.
Collapse
Affiliation(s)
- Arun Mouli Kolinjivadi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Department of Medicine (St. Vincent's Health), The University of Melbourne, Victoria 3010, Australia
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 169610, Singapore
| |
Collapse
|
40
|
Scully R, Elango R, Panday A, Willis NA. Recombination and restart at blocked replication forks. Curr Opin Genet Dev 2021; 71:154-162. [PMID: 34464818 DOI: 10.1016/j.gde.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression. Many alternative pathways have evolved to respond to these different types of replication stress. Among these, the homologous recombination (HR) pathway plays an important role, protecting the stalled fork and processing it for repair. Here, we review recent advances in our understanding of how blocked replication forks in vertebrate cells can be processed for recombination and for replication restart.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Cyclin-Dependent Kinase-Mediated Phosphorylation of FANCD2 Promotes Mitotic Fidelity. Mol Cell Biol 2021; 41:e0023421. [PMID: 34096775 DOI: 10.1128/mcb.00234-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by increased risk for bone marrow failure and cancer. The FA proteins function together to repair damaged DNA. A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs upon exposure to DNA-damaging agents and during the S phase of the cell cycle. The regulatory mechanisms governing S-phase monoubiquitination, in particular, are poorly understood. In this study, we have identified a cyclin-dependent kinase (CDK) regulatory phosphosite (S592) proximal to the site of FANCD2 monoubiquitination. FANCD2 S592 phosphorylation was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and by immunoblotting with an S592 phospho-specific antibody. Mutation of S592 leads to abrogated monoubiquitination of FANCD2 during the S phase. Furthermore, FA-D2 (FANCD2-/-) patient cells expressing S592 mutants display reduced proliferation under conditions of replication stress and increased mitotic aberrations, including micronuclei and multinucleated cells. Our findings describe a novel cell cycle-specific regulatory mechanism for the FANCD2 protein that promotes mitotic fidelity.
Collapse
|
42
|
Shah RB, Kernan JL, van Hoogstraten A, Ando K, Li Y, Belcher AL, Mininger I, Bussenault AM, Raman R, Ramanagoudr-Bhojappa R, Huang TT, D'Andrea AD, Chandrasekharappa SC, Aggarwal AK, Thompson R, Sidi S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev Cell 2021; 56:2207-2222.e7. [PMID: 34256011 DOI: 10.1016/j.devcel.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer L Kernan
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anya van Hoogstraten
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyohiro Ando
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicia L Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivy Mininger
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrei M Bussenault
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Renuka Raman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Thompson
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
43
|
Li Q, Dudás K, Tick G, Haracska L. Coordinated Cut and Bypass: Replication of Interstrand Crosslink-Containing DNA. Front Cell Dev Biol 2021; 9:699966. [PMID: 34262911 PMCID: PMC8275186 DOI: 10.3389/fcell.2021.699966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are covalently bound DNA lesions, which are commonly induced by chemotherapeutic drugs, such as cisplatin and mitomycin C or endogenous byproducts of metabolic processes. This type of DNA lesion can block ongoing RNA transcription and DNA replication and thus cause genome instability and cancer. Several cellular defense mechanism, such as the Fanconi anemia pathway have developed to ensure accurate repair and DNA replication when ICLs are present. Various structure-specific nucleases and translesion synthesis (TLS) polymerases have come into focus in relation to ICL bypass. Current models propose that a structure-specific nuclease incision is needed to unhook the ICL from the replication fork, followed by the activity of a low-fidelity TLS polymerase enabling replication through the unhooked ICL adduct. This review focuses on how, in parallel with the Fanconi anemia pathway, PCNA interactions and ICL-induced PCNA ubiquitylation regulate the recruitment, substrate specificity, activity, and coordinated action of certain nucleases and TLS polymerases in the execution of stalled replication fork rescue via ICL bypass.
Collapse
Affiliation(s)
- Qiuzhen Li
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Kata Dudás
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
44
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
45
|
Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nat Struct Mol Biol 2021; 28:487-500. [PMID: 34117478 DOI: 10.1038/s41594-021-00602-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary disease characterized by bone marrow failure (BMF) and acute myeloid leukemia (AML). As FA-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), ICLs are widely assumed to be the lesions responsible for FA symptoms. Here, we show that FA-mutated cells are hypersensitive to persistent replication stress and that FA proteins play a role in the break-induced-replication (BIR)-like pathway for fork restart. Both the BIR-like pathway and ICL repair share almost identical molecular mechanisms of 53BP1-BRCA1-controlled signaling response, SLX4- and FAN1-mediated fork cleavage and POLD3-dependent DNA synthesis, suggesting that the FA pathway is intrinsically one of the BIR-like pathways. Replication stress not only triggers BMF in FA-deficient mice, but also specifically induces monosomy 7, which is associated with progression to AML in patients with FA, in FA-deficient cells.
Collapse
|
46
|
Structural insight into FANCI-FANCD2 monoubiquitination. Essays Biochem 2021; 64:807-817. [PMID: 32725171 PMCID: PMC7588663 DOI: 10.1042/ebc20200001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) pathway coordinates a faithful repair mechanism for DNA damage that blocks DNA replication, such as interstrand cross-links. A key step in the FA pathway is the conjugation of ubiquitin on to FANCD2 and FANCI, which is facilitated by a large E3 ubiquitin ligase complex called the FA core complex. Mutations in FANCD2, FANCI or FA core complex components cause the FA bone marrow failure syndrome. Despite the importance of these proteins to DNA repair and human disease, our molecular understanding of the FA pathway has been limited due to a deficit in structural studies. With the recent development in cryo-electron microscopy (EM), significant advances have been made in structural characterization of these proteins in the last 6 months. These structures, combined with new biochemical studies, now provide a more detailed understanding of how FANCD2 and FANCI are monoubiquitinated and how DNA repair may occur. In this review, we summarize these recent advances in the structural and molecular understanding of these key components in the FA pathway, compare the activation steps of FANCD2 and FANCI monoubiquitination and suggest molecular steps that are likely to be involved in regulating its activity.
Collapse
|
47
|
Mondal S, Reddy S, Mukhopadhyay SS. Optimized structure of monoubiquitinated FANCD2 (human) at Lys 561: a theoretical approach. J Biomol Struct Dyn 2021; 40:9374-9388. [PMID: 34014148 DOI: 10.1080/07391102.2021.1929490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fanconi anaemia pathway repairs inter-strand cross linking damage (ICL) of the DNA. Monoubiquitination of FANCD2 and FANCI is very crucial for ICL repairing. In this work we have tried to understand the monoubiquitinated FANCD2 structure, which facilitates the FANCD2 for binding the damage part of the chromatin. Crystal structure of the monoubiquitinated FANCD2 alone is not available, therefore we have modelled the optimized structure of the human monoubiquitinated (Lys 561) FANCD2. As there is no suitable software or web server we have developed a method for building up monoubiquitinated product and validated on simplest monoubiquitinated protein, diubiquitin. We have predicted the structure of human monoubiquitinated FANCD2 by using our method and studied the interaction with DNA by docking studies. Molecular Dynamics (MD) simulation has been used to understand the stability of the structure. Large structural differences have been observed between FANCD2 and monoubiquitinated FANCD2. Docking studies with DNA suggest that the binding site varies for the FANCD2 and monoubiquitinated FANCD2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudipa Mondal
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Subba Reddy
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
48
|
Sharp MF, Bythell-Douglas R, Deans AJ, Crismani W. The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Mol Cell 2021; 81:2278-2289. [PMID: 33984284 DOI: 10.1016/j.molcel.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.
Collapse
Affiliation(s)
- Michael F Sharp
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
49
|
Ashour ME, Mosammaparast N. Mechanisms of damage tolerance and repair during DNA replication. Nucleic Acids Res 2021; 49:3033-3047. [PMID: 33693881 PMCID: PMC8034635 DOI: 10.1093/nar/gkab101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 01/05/2023] Open
Abstract
Accurate duplication of chromosomal DNA is essential for the transmission of genetic information. The DNA replication fork encounters template lesions, physical barriers, transcriptional machinery, and topological barriers that challenge the faithful completion of the replication process. The flexibility of replisomes coupled with tolerance and repair mechanisms counteract these replication fork obstacles. The cell possesses several universal mechanisms that may be activated in response to various replication fork impediments, but it has also evolved ways to counter specific obstacles. In this review, we will discuss these general and specific strategies to counteract different forms of replication associated damage to maintain genomic stability.
Collapse
Affiliation(s)
- Mohamed Elsaid Ashour
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Yang Z, Wu XS, Wei Y, Polyanskaya SA, Iyer SV, Jung M, Lach FP, Adelman ER, Klingbeil O, Milazzo JP, Kramer M, Demerdash OE, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Smogorzewska A, Vakoc CR. Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discov 2021; 11:2300-2315. [PMID: 33893150 DOI: 10.1158/2159-8290.cd-20-1542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | | |
Collapse
|