1
|
Nakahashi W. Relationship between trackmakers of the Laetoli footprints from gait synchronization. EVOLUTIONARY HUMAN SCIENCES 2025; 7:e13. [PMID: 40297739 PMCID: PMC12034493 DOI: 10.1017/ehs.2025.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
The parallel trails of footprints at Laetoli site G are important fossils for studying the characteristics of Australopithecus afarensis. However, the relationship between the trackmakers - i.e. whether it was that of an adult male-female pair or of parent-offspring - remains unclear. The footprints show that the two individuals walked side by side with a narrow and constant distance between them and synchronized their leg movements and step lengths (gait synchronization), although they had a large height difference. In this study, live camera videos were collected to obtain data on gait synchronization in Homo sapiens, the closest extant species to A. afarensis. The data showed that when two humans with a large height difference walked alongside each other, with (at least) one of the pair having their arm around the other's shoulder or back, adult male-female pairs (couples) frequently synchronized their gait, but parent-offspring pairs did not, whereas both couples and parent-offspring seldom synchronized when they walked side by side without connection or with handholding. Two individuals only maintained a narrow and constant distance like that between the Laetoli footprints when they walked with an arm-around connection. Therefore, assuming that A. afarensis had the same gait synchronization tendency as H. sapiens, the trackmakers were more likely to be an adult male-female pair than a parent-offspring one.
Collapse
|
2
|
Hatala KG, Roach NT, Behrensmeyer AK, Falkingham PL, Gatesy SM, Williams-Hatala EM, Feibel CS, Dalacha I, Kirinya M, Linga E, Loki R, Alkoro A, Longaye, Longaye M, Lonyericho E, Loyapan I, Nakudo N, Nyete C, Leakey LN. Footprint evidence for locomotor diversity and shared habitats among early Pleistocene hominins. Science 2024; 386:1004-1010. [PMID: 39607911 DOI: 10.1126/science.ado5275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/16/2024] [Indexed: 11/30/2024]
Abstract
For much of the Pliocene and Pleistocene, multiple hominin species coexisted in the same regions of eastern and southern Africa. Due to the limitations of the skeletal fossil record, questions regarding their interspecific interactions remain unanswered. We report the discovery of footprints (~1.5 million years old) from Koobi Fora, Kenya, that provide the first evidence of two different patterns of Pleistocene hominin bipedalism appearing on the same footprint surface. New analyses show that this is observed repeatedly across multiple contemporaneous sites in the eastern Turkana Basin. These data indicate a sympatric relationship between Homo erectus and Paranthropus boisei, suggesting that lake margin habitats were important to both species and highlighting the possible influence of varying levels of coexistence, competition, and niche partitioning in human evolution.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Neil T Roach
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Anna K Behrensmeyer
- Department of Paleobiology and Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Merseyside, UK
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI USA
| | - Erin Marie Williams-Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Craig S Feibel
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Anthropology, Rutgers University, Piscataway, NJ, USA
| | - Ibrae Dalacha
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kirinya
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Ezekiel Linga
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Richard Loki
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Longaye
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Malmalo Longaye
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Iyole Loyapan
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Nyiber Nakudo
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Cyprian Nyete
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Louise N Leakey
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Harcourt-Smith WEH. Contemporary hominin locomotor diversity. Science 2024; 386:969-970. [PMID: 39607943 DOI: 10.1126/science.adt8033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Footprints in Kenya show that hominin bipedalism had a complex evolutionary history.
Collapse
Affiliation(s)
- William E H Harcourt-Smith
- Department of Anthropology, Lehman College CUNY, Bronx, NY, USA
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
- Department of Anthropology, The Graduate Center, CUNY, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
4
|
Crompton R, Elton S, Heaton J, Pickering T, Carlson K, Jashashvili T, Beaudet A, Bruxelles L, Kuman K, Thorpe SK, Hirasaki E, Scott C, Sellers W, Pataky T, Clarke R, McClymont J. Bipedalism or bipedalisms: The os coxae of StW 573. J Anat 2024. [PMID: 39036860 DOI: 10.1111/joa.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
There has been a long debate about the possibility of multiple contemporaneous species of Australopithecus in both eastern and southern Africa, potentially exhibiting different forms of bipedal locomotion. Here, we describe the previously unreported morphology of the os coxae in the 3.67 Ma Australopithecus prometheus StW 573 from Sterkfontein Member 2, comparing it with variation in ossa coxae in living humans and apes as well as other Plio-Pleistocene hominins. Statistical comparisons indicate that StW 573 and 431 resemble humans in their anteroposteriorly great iliac crest breadth compared with many other early australopiths, whereas Homo ergaster KNM WT 15000 surprisingly also has a relatively anterioposteriorly short iliac crest. StW 573 and StW 431 appear to resemble humans in having a long ischium compared with Sts 14 and KNM WT 15000. A Quadratic Discriminant Function Analysis of morphology compared with other Plio-Pleistocene hominins and a dataset of modern humans and hominoids shows that, while Lovejoy's heuristic model of the Ardipithecus ramidus os coxae falls with Pongo or in an indeterminate group, StW 573 and StW 431 from Sterkfontein Member 4 are consistently classified together with modern humans. Although clearly exhibiting the classic "basin shaped" bipedal pelvis, Sts 14 (also from Sterkfontein), AL 288-1 Australopithecus afarensis, MH2 Australopithecus sediba and KNM-WT 15000 occupy a position more peripheral to modern humans, and in some analyses are assigned to an indeterminate outlying group. Our findings strongly support the existence of two species of Australopithecus at Sterkfontein and the variation we observe in os coxae morphology in early hominins is also likely to reflect multiple forms of bipedality.
Collapse
Affiliation(s)
- Robin Crompton
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, the W.H. Duncan Building, University of Liverpool, Liverpool, UK
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Sarah Elton
- Department of Anthropology, Dawson Building, Durham University, Durham, UK
| | - Jason Heaton
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Travis Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Kristian Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Geology and Palaeontology, Georgian National Museum, Tbilisi, Georgia
| | - Amelie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Laurent Bruxelles
- TRACES, UMR 5608 CNRS, Jean Jaurès University, Toulouse, France
- French National Institute for Preventive Archaeological Research (INRAP), Nîmes, France
| | - Kathleen Kuman
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, University of Kyoto, Kyoto, Japan
| | - Christopher Scott
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - William Sellers
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Todd Pataky
- Department of Human and Health Sciences, Kyoto University, Kyoto, Japan
| | - Ronald Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Juliet McClymont
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, the W.H. Duncan Building, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
O'Neill MC, Nagano A, Umberger BR. A three-dimensional musculoskeletal model of the pelvis and lower limb of Australopithecus afarensis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24845. [PMID: 37671481 DOI: 10.1002/ajpa.24845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/08/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Musculoskeletal modeling is a powerful approach for studying the biomechanics and energetics of locomotion. Australopithecus (A.) afarensis is among the best represented fossil hominins and provides critical information about the evolution of musculoskeletal design and locomotion in the hominin lineage. Here, we develop and evaluate a three-dimensional (3-D) musculoskeletal model of the pelvis and lower limb of A. afarensis for predicting muscle-tendon moment arms and moment-generating capacities across lower limb joint positions encompassing a range of locomotor behaviors. MATERIALS AND METHODS A 3-D musculoskeletal model of an adult A. afarensis pelvis and lower limb was developed based primarily on the A.L. 288-1 partial skeleton. The model includes geometric representations of bones, joints and 35 muscle-tendon units represented using 43 Hill-type muscle models. Two muscle parameter datasets were created from human and chimpanzee sources. 3-D muscle-tendon moment arms and isometric joint moments were predicted over a wide range of joint positions. RESULTS Predicted muscle-tendon moment arms generally agreed with skeletal metrics, and corresponded with human and chimpanzee models. Human and chimpanzee-based muscle parameterizations were similar, with some differences in maximum isometric force-producing capabilities. The model is amenable to size scaling from A.L. 288-1 to the larger KSD-VP-1/1, which subsumes a wide range of size variation in A. afarensis. DISCUSSION This model represents an important tool for studying the integrated function of the neuromusculoskeletal systems in A. afarensis. It is similar to current human and chimpanzee models in musculoskeletal detail, and will permit direct, comparative 3-D simulation studies.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Sedrati M, Morales JA, Duveau J, M'rini AE, Mayoral E, Díaz-Martínez I, Anthony EJ, Bulot G, Sedrati A, Le Gall R, Santos A, Rivera-Silva J. A Late Pleistocene hominin footprint site on the North African coast of Morocco. Sci Rep 2024; 14:1962. [PMID: 38263453 PMCID: PMC10806055 DOI: 10.1038/s41598-024-52344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Footprints represent a relevant vestige providing direct information on the biology, locomotion, and behaviour of the individuals who left them. However, the spatiotemporal distribution of hominin footprints is heterogeneous, particularly in North Africa, where no footprint sites were known before the Holocene. This region is important in the evolution of hominins. It notably includes the earliest currently known Homo sapiens (Jebel Irhoud) and the oldest and richest African Middle Stone Age hominin sites. In this fragmented ichnological record, we report the discovery of 85 human footprints on a Late Pleistocene now indurated beach surface of about 2800 m2 at Larache (Northwest coast of Morocco). The wide range of sizes of the footprints suggests that several individuals from different age groups made the tracks while moving landward and seaward across a semi-dissipative bar-trough sandy beach foreshore. A geological investigation and an optically stimulated luminescence dating of a rock sample extracted from the tracksite places this hominin footprint surface at 90.3 ± 7.6 ka (MIS 5, Late Pleistocene). The Larache footprints are, therefore, the oldest attributed to Homo sapiens in Northern Africa and the Southern Mediterranean.
Collapse
Affiliation(s)
- Mouncef Sedrati
- Geo-Ocean, Univ Bretagne Sud, Univ Brest, CNRS, Ifremer, UMR6538, F- 56000, Vannes, France.
| | - Juan A Morales
- Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, Huelva, Spain
- Centro Científico Tecnológico de Huelva, Universidad de Huelva, Huelva, Spain
| | - Jérémy Duveau
- DFG Center for Advanced Studies ''Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past'', Eberhard Karls University of Tübingen, Rümelinstrasse 23, 72070, Tübingen, Germany
- UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Muséum National d'Histoire Naturelle, Université Perpignan Via Domitia, Paris, France
| | | | - Eduardo Mayoral
- Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, Huelva, Spain
- Centro Científico Tecnológico de Huelva, Universidad de Huelva, Huelva, Spain
| | - Ignacio Díaz-Martínez
- Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cantabria, 39005, Santander, Cantabria, Spain
| | - Edward J Anthony
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix Marseille University, 13545, Aix-en-Provence, France
| | - Glen Bulot
- Geo-Ocean, Univ Bretagne Sud, Univ Brest, CNRS, Ifremer, UMR6538, F- 56000, Vannes, France
| | - Anass Sedrati
- Lixus Archaeological Site, Ministry of Youth, Culture and Communication, Larache, Morocco
| | - Romain Le Gall
- Geo-Ocean, Univ Bretagne Sud, Univ Brest, CNRS, Ifremer, UMR6538, F- 56000, Vannes, France
| | - Ana Santos
- Departamento de Geología, Facultad de Geología, Universidad de Oviedo, Campus de Llamaquique, Oviedo, Spain
| | - Jorge Rivera-Silva
- Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Alemseged Z. Reappraising the palaeobiology of Australopithecus. Nature 2023; 617:45-54. [PMID: 37138108 DOI: 10.1038/s41586-023-05957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
The naming of Australopithecus africanus in 1925, based on the Taung Child, heralded a new era in human evolutionary studies and turned the attention of the then Eurasian-centric palaeoanthropologists to Africa, albeit with reluctance. Almost one hundred years later, Africa is recognized as the cradle of humanity, where the entire evolutionary history of our lineage prior to two million years ago took place-after the Homo-Pan split. This Review examines data from diverse sources and offers a revised depiction of the genus and characterizes its role in human evolution. For a long time, our knowledge of Australopithecus came from both A. africanus and Australopithecus afarensis, and the members of this genus were portrayed as bipedal creatures that did not use stone tools, with a largely chimpanzee-like cranium, a prognathic face and a brain slightly larger than that of chimpanzees. Subsequent field and laboratory discoveries, however, have altered this portrayal, showing that Australopithecus species were habitual bipeds but also practised arboreality; that they occasionally used stone tools to supplement their diet with animal resources; and that their infants probably depended on adults to a greater extent than what is seen in apes. The genus gave rise to several taxa, including Homo, but its direct ancestor remains elusive. In sum, Australopithecus had a pivotal bridging role in our evolutionary history owing to its morphological, behavioural and temporal placement between the earliest archaic putative hominins and later hominins-including the genus Homo.
Collapse
|
8
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Hatala KG, Roach NT, Behrensmeyer AK. Fossil footprints and what they mean for hominin paleobiology. Evol Anthropol 2023; 32:39-53. [PMID: 36223539 DOI: 10.1002/evan.21963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
Hominin footprints have not traditionally played prominent roles in paleoanthropological studies, aside from the famous 3.66 Ma footprints discovered at Laetoli, Tanzania in the late 1970s. This contrasts with the importance of trace fossils (ichnology) in the broader field of paleontology. Lack of attention to hominin footprints can probably be explained by perceptions that these are exceptionally rare and "curiosities" rather than sources of data that yield insights on par with skeletal fossils or artifacts. In recent years, however, discoveries of hominin footprints have surged in frequency, shining important new light on anatomy, locomotion, behaviors, and environments from a wide variety of times and places. Here, we discuss why these data are often overlooked and consider whether they are as "rare" as previously assumed. We review new ways footprint data are being used to address questions about hominin paleobiology, and we outline key opportunities for future research in hominin ichnology.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Neil T Roach
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Hatala KG, Gatesy SM, Falkingham PL. Arched footprints preserve the motions of fossil hominin feet. Nat Ecol Evol 2023; 7:32-41. [PMID: 36604550 DOI: 10.1038/s41559-022-01929-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
The longitudinal arch of the human foot is viewed as a pivotal adaptation for bipedal walking and running. Fossil footprints from Laetoli, Tanzania, and Ileret, Kenya, are believed to provide direct evidence of longitudinally arched feet in hominins from the Pliocene and Pleistocene, respectively. We studied the dynamics of track formation using biplanar X-ray, three-dimensional animation and discrete element particle simulation. Here, we demonstrate that longitudinally arched footprints are false indicators of foot anatomy; instead they are generated through a specific pattern of foot kinematics that is characteristic of human walking. Analyses of fossil hominin tracks from Laetoli show only partial evidence of this walking style, with a similar heel strike but a different pattern of propulsion. The earliest known evidence for fully modern human-like bipedal kinematics comes from the early Pleistocene Ileret tracks, which were presumably made by members of the genus Homo. This result signals important differences in the foot kinematics recorded at Laetoli and Ileret and underscores an emerging picture of locomotor diversity within the hominin clade.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA.
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA
| | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
12
|
Komza K, Viola B, Netten T, Schroeder L. Morphological integration in the hominid midfoot. J Hum Evol 2022; 170:103231. [PMID: 35940157 DOI: 10.1016/j.jhevol.2022.103231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/15/2022]
Abstract
The calculation of morphological integration across living apes and humans may provide important insights into the potential influence of integration on evolutionary trajectories in the hominid lineage. Here, we quantify magnitudes of morphological integration among and within elements of the midfoot in great apes and humans to examine the link between locomotor differences and trait covariance. We test the hypothesis that the medial elements of the great ape foot are less morphologically integrated with one another compared to humans based on their abducted halluces, and aim to determine how adaptations for midfoot mobility/stiffness and locomotor specialization influence magnitudes of morphological integration. The study sample is composed of all cuneiforms, the navicular, the cuboid, and metatarsals 1-5 of Homo sapiens (n = 80), Pan troglodytes (n = 63), Gorilla gorilla (n = 39), and Pongo sp. (n = 41). Morphological integration was quantified using the integration coefficient of variation of interlandmark distances organized into sets of a priori-defined modules. Magnitudes of integration across these modules were then compared against sets of random traits from the whole midfoot. Results show that all nonhuman apes have less integrated medial elements, whereas humans have highly integrated medial elements, suggesting a link between hallucal abduction and reduced levels of morphological integration. However, we find considerable variation in magnitudes of morphological integration across metatarsals 2-5, the intermediate and lateral cuneiform, the cuboid, and navicular, emphasizing the influence of functional and nonfunctional factors in magnitudes of integration. Lastly, we find that humans and orangutans show the lowest overall magnitudes of integration in the midfoot, which may be related to their highly specialized functions, and suggest a link between strong diversifying selection and reduced magnitudes of morphological integration.
Collapse
Affiliation(s)
- Klara Komza
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada.
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada
| | - Teagan Netten
- Department of Anthropology, University of Toronto, Toronto, ON, M5S 2S2, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, Department of Anthropology, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
13
|
Hominin footprints at Laetoli reveal a walk on the wild side. Nature 2021; 600:388-390. [PMID: 34853420 DOI: 10.1038/d41586-021-03469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|