1
|
Wu F, Li M, Zhou X, Wang Q, Wu Y. The abnormal splicing regulation network caused by synonymous mutations in FBN1 exon 39 leads to Marfan syndrome. Genes Dis 2025; 12:101371. [PMID: 39877462 PMCID: PMC11772951 DOI: 10.1016/j.gendis.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2024] [Indexed: 01/31/2025] Open
Affiliation(s)
- Fudan Wu
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingjie Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Xuan Zhou
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Qianyun Wang
- Department of Clinical Laboratory, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Yan'an Wu
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Liao S, Zhang X, Chen L, Zhang J, Lu W, Rao M, Zhang Y, Ye Z, Ivanova D, Li F, Chen X, Wang Y, Song A, Xie B, Wang M. KRT14 is a promising prognostic biomarker of breast cancer related to immune infiltration. Mol Immunol 2025; 180:55-73. [PMID: 40014952 DOI: 10.1016/j.molimm.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Breast cancer (BC) is the leading cancer among women globally, which has the highest incidence and mortality rate in over a hundred countries. This study was intended to discover a new prognostic biomarker, facilitating personalized treatment approaches. METHODS RNA sequencing data from The Cancer Genome Atlas database and Gene Expression Omnibus database were utilized to download to evaluate expression levels and prognostic significance of Keratin 14 (KRT14). Methylation of KRT14 was also assessed. The CIBERSORT and single-sample gene set enrichment analysis algorithms were applied to explore the connection between KRT14 and the tumor microenvironment. Primary drugs' sensitivity and potential small molecule therapeutic compounds were analyzed through the "pRRophetic" R package and the Connectivity Map. The prognostic value of KRT14 was additionally corroborated through a comparison of protein levels in peritumoral and cancerous tissues via immunohistochemistry. Moreover, an immune-related prognostic model based on KRT14 was designed to enhance the prediction accuracy for the prognosis of BC patients. RESULTS The study found that KRT14 expression was generally downregulated in BC, correlating strongly with poor prognosis. Compared to normal tissues, the methylation level of KRT14 was higher in BC tissues. Lower expression of KRT14 was linked to decreased anti-tumoral immune cells infiltration and increased immunosuppressive cells infiltration. Sensitivity to various key therapeutic drugs was lower in groups with diminished KRT14 expression. In addition, several potential anti-BC small molecule compounds were identified. The model designed in this study significantly enhanced the predictive capability for BC patients compared to predictions based solely on KRT14 expression levels. CONCLUSION Overall, KRT14 was closely correlated with the prognosis in BC, making it a reliable biomarker.
Collapse
Affiliation(s)
- Siqi Liao
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lanhui Chen
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianning Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Mengou Rao
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yifan Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zijian Ye
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Deyana Ivanova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston MA02115, USA
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Meijiao Wang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Ning H, Liang C, Mei H, Yuan D, Wei X, Huang X, Tan D, Tan J. A Novel Homozygous Synonymous Variant in CCDC134 as a Cause of Osteogenesis Imperfecta Type XXII. Clin Genet 2025; 107:446-452. [PMID: 39623602 DOI: 10.1111/cge.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 03/04/2025]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous group of rare, inherited connective tissue disorders. It includes over 20 defined subtypes, each of which is associated with distinct causative genes that are listed in the Online Mendelian Inheritance in Man (OMIM) database. Type XXII OI (OI 22) is caused by a homozygous variant in the coiled-coil domain containing 134 (CCDC134) gene, which is located on chromosome 22q13. OI, which is associated with CCDC134, is extremely rare with only five cases reported worldwide. All known cases involve the c.2 T > C (p. Met1Thr) homozygous missense variant in the CCDC134 gene. We present the case of a 13-year-old Chinese girl with non-union fracture, short stature and specific radiographic findings, which include scoliosis, pelvic tilt, thin clavicles, ribs, and limbs. Whole exome sequencing revealed a novel, homozygous c.492G > C (p. Leu164=) variation in the CCDC134 gene. RNA sequencing (RNA-seq) analysis identified this variant as an abnormal splicing variant that causes the deletion of Exon 5, which result in the observed disease phenotype. This case demonstrates the clinical phenotype of OI 22 associated with the c.492G > C (p. Leu164=) novel synonymous variation in the coding region of the CCDC134 gene in a female patient. This is the first reported case of OI 22 in the Chinese population, the sixth reported worldwide and the fourth reported genotype for diseases associated with a CCDC134 variant. It also enriches the global clinical phenotype spectrum of OI 22 patients.
Collapse
Affiliation(s)
- Haiping Ning
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dejian Yuan
- Department of Medical Genetics, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Xiaobao Wei
- Department of Medical Genetics, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Xiao Huang
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Dongdong Tan
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| | - Jianqiang Tan
- Department of Paediatric Endocrinology, Genetics and Rare Diseases, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, China
| |
Collapse
|
4
|
Chen Q, Sun Y, Yao J, Lu Y, Qiu R, Zhou F, Deng Z, Sun Y. Engineering of Peptide-Inserted Base Editors with Enhanced Accuracy and Security. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411583. [PMID: 39995348 PMCID: PMC11983243 DOI: 10.1002/smll.202411583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Indexed: 02/26/2025]
Abstract
Base editors are effective tools for introducing base conversions without double-strand breaks, showing broad applications in biotechnological and clinical areas. However, their non-negligible bystander mutations and off-target effects have raised extensive safety concerns. To address these issues, a novel method is developed by inserting specific peptide fragments into the substrate binding pocket of deaminases in base editors to modify these outcomes. It is validated that the composition and position of the inserted peptide can significantly impact the performance of A3A-based cytosine base editor and TadA-8e-based adenine base editor, leading to improved editing activity and precision in human HEK293T cells. Importantly, the TadA-8e variant with DPLVLRRRQ peptide inserted behind S116 residue showed a strong motif preference of Y4A5N6, which can accurately edit the A5 base in targeted protospacer with minimized bystander and off-target effects in DNA and RNA-level. By summarizing the regularity during engineering, a set of systematic procedures is established, which can potentially be used to modify other types of base editors and make them more accurate and secure. In addition, the peptide insertion strategy is also proven to be compatible with traditional amino acid changes which have been reported, exhibiting excellent compatibility.
Collapse
Affiliation(s)
- Qi Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yangning Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Jia Yao
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yingfan Lu
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Ruikang Qiu
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Zixin Deng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yuhui Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- School of PharmacyHuazhong University of Science and TechnologyWuhan430030China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| |
Collapse
|
5
|
Zhao J, Liu S, Ren H, Afriyie OE, Zhang M, Xu D, Huang X. Genome-wide identification and comparative evolution of 14-3-3 gene family members in five Brassicaceae species. BMC Genomics 2025; 26:309. [PMID: 40155852 PMCID: PMC11954322 DOI: 10.1186/s12864-025-11513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The 14-3-3 proteins are highly conserved regulatory eukaryotic proteins, which are crucial in growth, development, and stress responses. However, systematic characterization of the 14-3-3 gene family in Brassicaceae species and their evolutionary relationships have not been comprehensively reported. RESULTS This study conducted genome-wide identification, structural characteristics, and comparative evolutionary analysis of 14-3-3 gene family members in Arabidopsis thaliana, A. lyrata, A. pumila, Camelina sativa, and Brassica oleracea using comparative genomics. Overall, a total of 108 14-3-3 genes, which were phylogenetically classified into ε and non-ε groups were identified in the five species, with the non-ε members exhibiting more similar exon-intron structures and conserved motif patterns. Collinearity analysis revealed that the Brassicaceae 14-3-3 gene family members underwent varying degrees of expansion following whole-genome duplication (WGD) events. Notably, the number of 14-3-3 gene family members between A. lyrata and A. thaliana remained similar despite the former having approximately 1.66-fold larger genome size. In contrast, the number of 14-3-3 gene family members in A. pumila and C. sativa increased in proportionately to their genome size, while gene members in the more distantly related species to A. thaliana, B. oleracea, showed irregular expansion patterns. Selection pressure analysis revealed that 14-3-3 homologs in all the five species underwent purifying selection, with the group ε members experiencing relatively weaker purifying selection. Cloning of ApGRF6-2 gene from A. pumila indicated that the ApGRF6-2 protein was localized in the cell membrane and cytoplasm, while ectopic overexpression of ApGRF6-2 in A. thaliana could promote early flowering by upregulating the expression of floral meristem identity genes. CONCLUSION This study provides a comprehensive and systematic identification of the 14-3-3 gene family members in five Brassicaceae species using updated genome sequences, and the results could form a basis for further validation of functional and molecular mechanisms of 14-3-3 genes in plant growth, development, abiotic stress responses, as well as flowering regulation.
Collapse
Affiliation(s)
- Jingya Zhao
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Shengqin Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Hui Ren
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Owusu Edwin Afriyie
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Mengzhu Zhang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Dachao Xu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China.
| |
Collapse
|
6
|
Zaman R, Ullah I, Arif A. Role of ERG3 mutation and expression in azole resistant Candida albicans isolated from vulvovaginal candidiasis patients. Pak J Med Sci 2025; 41:861-866. [PMID: 40103883 PMCID: PMC11911723 DOI: 10.12669/pjms.41.3.9325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 03/20/2025] Open
Abstract
Objective The study aimed to investigate mutations and mRNA expression of the ERG3 gene in resistant Candida albicans isolates. Methods This cross-sectional study was conducted from October 2018 to June 2019. High vaginal swab samples were collected from Hayatabad Medical Complex and transported to Khyber Medical University. Samples were inoculated on different media and identified by 20C AUX strips. Antifungal susceptibility was determined using the disc diffusion and broth microdilution methods. The ERG3 gene was amplified and sequenced to find amino acid polymorphisms. Real-time PCR was performed to study level of ERG3 expression. Results A total of seventy-three (n=73) Candida albicans out of 369 samples were isolated. Among the isolates 49.3%, 54.8%, 53.4%, 47.9%, 30.1% were resistant to fluconazole, Clotrimazole, Miconazole, Voriconazole and Itraconazole, respectively. Sanger sequencing of ERG3 gene of isolates revealed six synonymous mutations. Expression level of mRNA of ERG3 gene in azoles sensitive stains (3.72±2.22) was higher than those in the resistant Candida albican strains (1.74±0.96). Conclusion This study revealed synonymous mutations and low expression of ERG3 gene in azole-resistant C. albican.
Collapse
Affiliation(s)
- Ronaq Zaman
- Ronaq Zaman, MBBS, MPhil, PhD Scholar Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| | - Ihsan Ullah
- Ihsan Ullah, MBBS, DFM, PGD EBM & HPE, PhD Associate Professor, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Ambreen Arif
- Ambreen Arif, MPhil, PhD Scholar Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
7
|
Zhao Y, Zhang Y, Feng J, He Z, Li T. Codon Usage Bias: A Potential Factor Affecting VGLUT Developmental Expression and Protein Evolution. Mol Neurobiol 2025; 62:3508-3522. [PMID: 39305444 DOI: 10.1007/s12035-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 02/04/2025]
Abstract
More and more attention has been paid to the role of synonymous substitution in evolution, in which codon usage preference can affect gene expression distribution and protein structure and function. Vesicular glutamate transporter (VGLUT) consists of three isoforms, among which VGLUT3 is significantly different from other VGLUTs in functional importance, expression level, and distribution range, whose reason is still unclear. This study sought to analyze the role of codon preference in VGLUT differentiation. To conduct an evolutionary analysis of the three VGLUTs, this paper uses bioinformatics research methods to analyze the coding sequences of the three VGLUTs in different species and compare the codon usage patterns. Furthermore, the differences among the three VGLUTs were analyzed by combining functional importance, expression level, distribution range, gene structure, protein relationship network, expression at specific developmental stages, and phylogenetic tree, and the influence of codon usage pattern was explored. The results showed that the VGLUT with greater codon preference had less functional importance, lower expression levels, more peripheral distribution away from the CNS, smaller exon density of gene, less conserved and farther away from the CDS region miRNA regulatory sites, simpler and less tight protein interaction networks, delayed developmental expression, and more distant evolutionary relationships. Codon usage preference is a potential factor affecting VGLUT developmental expression and protein evolution.
Collapse
Affiliation(s)
- Yiran Zhao
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Yu Zhang
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Jiaxing Feng
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Zixian He
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Ting Li
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China.
| |
Collapse
|
8
|
Fu Y, Yin M, Cao L, Lu Y, Li Y, Zhang L. Capsule mutations serve as a key strategy of phage resistance evolution of K54 hypervirulent Klebsiella pneumoniae. Commun Biol 2025; 8:257. [PMID: 39966630 PMCID: PMC11836320 DOI: 10.1038/s42003-025-07687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Phage therapy is a promising antibacterial strategy against the antibiotic resistance crisis. The evolved phage resistance could pose a big challenge to clinical phage therapy. Therefore, it is necessary to conduct a comprehensive analysis of phage resistance mechanisms during treatment. Here, we characterize 37 phage-resistant mutants of hypervirulent K. pneumoniae strain SCNJ1 under phage-imposed selection in both in vitro and in vivo experiments. We show that 97.3% (36/37) of phage-resistant clones possessed at least one mutation in genes related to the CPS biosynthesis. Notably, the wcaJ gene emerges as a mutation hotspot, as mutations in this gene are detected at a high frequency under both conditions. In contrast, mutations in wzc exhibit more association with in vivo samples. These CPS-related mutants all exhibit compromised bacterial fitness and attenuated virulence in mice. Strain CM8 is the only non-CPS-related mutant, which has a bglA mutation that confers phage resistance and retains full fitness and virulence. This study highlights that laboratory characterization of phage resistance evolution can give useful insights for clinical phage therapy.
Collapse
Affiliation(s)
- Yu Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Cao
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanjun Lu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Luhua Zhang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Lu J, Zhou C, Pan F, Liu H, Jiang H, Zhong H, Han B. Role of silent mutations in KRAS -mutant tumors. Chin Med J (Engl) 2025; 138:278-288. [PMID: 39654099 PMCID: PMC11771717 DOI: 10.1097/cm9.0000000000003405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Silent mutations within the RAS gene have garnered increasing attention for their potential roles in tumorigenesis and therapeutic strategies. Kirsten-RAS ( KRAS ) mutations, predominantly oncogenic, are pivotal drivers in various cancers. While extensive research has elucidated the molecular mechanisms and biological consequences of active KRAS mutations, the functional significance of silent mutations remains relatively understudied. This review synthesizes current knowledge on KRAS silent mutations, highlighting their impact on cancer development. Silent mutations, which do not alter protein sequences but can affect RNA stability and translational efficiency, pose intriguing questions regarding their contribution to tumor biology. Understanding these mutations is crucial for comprehensively unraveling KRAS -driven oncogenesis and exploring novel therapeutic avenues. Moreover, investigations into the clinical implications of silent mutations in KRAS -mutant tumors suggest potential diagnostic and therapeutic strategies. Despite being in early stages, research on KRAS silent mutations holds promise for uncovering novel insights that could inform personalized cancer treatments. In conclusion, this review underscores the evolving landscape of KRAS silent mutations, advocating for further exploration to bridge fundamental biology with clinical applications in oncology.
Collapse
Affiliation(s)
- Jun Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Feng Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haohua Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
10
|
Knaga S, Kasperek K, Zięba G. Ovalbumin gene polymorphism: Implications for hatchability and egg quality changes during storage in Japanese quail. Poult Sci 2025; 104:104788. [PMID: 39823844 PMCID: PMC11786070 DOI: 10.1016/j.psj.2025.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
The aim of the study was to identify polymorphisms in the ovalbumin gene - SERPINB14 gene and evaluate their effect on hatchability traits and egg quality changes during storage in two strains of Japanese quails: meat-type (F33) and laying-type (S22). To individually determine hatchability traits for each female, eggs were collected and incubated. To determine egg quality traits, 10 eggs were collected from each female and stored for 14 weeks. Egg quality was analyzed 10 times during storage. All exons and the 3'UTR of the SERPINB14 gene were sequenced. A total of 17 SNPs were identified in both strains: 4 in exons, 5 in the 3'UTR, and 8 in intron regions. Association analysis showed significant effects of SNP14 and SNP16 on the percentage of late died embryos. Fresh egg weight in F33 females was influenced by eight SNPs: SNP6, SNP7, SNP9, SNP11, SNP14, SNP15, SNP16, and SNP17, with significant diplotype effects observed. Individuals with H3H3 and H7H7 diplotypes showed the highest egg weight. SNPs 6, 7, and 11 influenced eggshell thickness on the laying day and at 2, 4, and 14 weeks of storage. The effects of haplotypes on this trait were also observed. Significant SNP effects were also found on albumen weight and albumen percentage at different storage times. Moreover, diplotypes from block 1 influenced albumen traits during storage. These studies provide new information on the SERPINB14 gene polymorphism in Japanese quail, and some of the markers merit further validation as useful tools for selection to improve hatchability and egg quality in poultry breeding programs.
Collapse
Affiliation(s)
- S Knaga
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, 28 Mazowiecka St., 85-084 Bydgoszcz, Poland.
| | - K Kasperek
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland
| | - G Zięba
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland
| |
Collapse
|
11
|
Esterio M, Osorio-Navarro C, Rubilar M, Copier C, Azócar M, Estrada V, Valdes S, Gattini F, Scalliet G, Auger J. Control of Botrytis cinerea from Chilean Grapevines by Pydiflumetofen: Baseline and Carboxamide-Mutant Sensitivity. PLANT DISEASE 2025; 109:445-453. [PMID: 39320375 DOI: 10.1094/pdis-06-24-1338-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The gray mold (Botrytis cinerea; Botrytis) is the main disease affecting grapevine production in Chile. Succinate dehydrogenase inhibitors belonging to the carboxamide fungicide family are a key tool for the control of Botrytis in grapevines from the Chilean Central Valley. This study aimed to determine the sensitivity of the Chilean Botrytis population to the new generation carboxamide pydiflumetofen. Conidial germination (CG) and germ-tube elongation (GTE) sensitivity assays were conducted on 200 single-spore isolates collected during the 2016 to 2017 season. The mean effective concentration that inhibited 50% (EC50) of CG in the Botrytis population was 0.0545 μg/ml, with mean values of 0.066 and 0.042 μg/ml for table and wine grapes, respectively. The mean EC50 value of GTE was 0.000245, 0.0003, and 0.0019 μg/ml for the total, table grape, and wine grape populations, respectively. The comparison between pydiflumetofen and fludioxonil, a highly efficient fungicide carrying a different mode of action, showed 87.5 and 97.5% of Botrytis control with an EC50 threshold of 0.1 μg/ml in table grape and wine grape populations, respectively. No cross-resistance between pydiflumetofen and fludioxonil was detected. For nine isolates with reduced pydiflumetofen sensitivity, we evaluated SdhB mutations using a qPCR-HRM diagnostic system. Two isolates carried the sdhBP225/H272R genotype, and two isolates carried the sdhBP225/H272Y genotype. Additional analysis of SdhB mutant isolates determined that pydiflumetofen controls wild-type as well as sdhBP225/H272R and sdhBP225H/H272 mutants. Pydiflumetofen does not control CG in the sdhBP225/H272Y mutant but is effective in the GTE control. Pydiflumetofen significantly controls Botrytis independently of the SdhB genotype in wounded berry assays. This condition resembles the berry cracking due to heavy rainfall right before harvest, as seen in recent years in the Chilean Central Valley. The findings demonstrate that pydiflumetofen effectively controls the grapevine Botrytis population, suggest a moderate risk of pydiflumetofen resistance, and highlight the significance of incorporating genetic data into the design of control programs.
Collapse
Affiliation(s)
- Marcela Esterio
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
- Centre of Molecular Biology in Plants, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Rubilar
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Charleen Copier
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Madelaine Azócar
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Verónica Estrada
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | | | | | | | - Jaime Auger
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
López ME, Ozerov M, Pukk L, Noreikiene K, Gross R, Vasemägi A. Dynamic Outlier Slicing Allows Broader Exploration of Adaptive Divergence: A Comparison of Individual Genome and Pool-Seq Data Linked to Humic Adaptation in Perch. Mol Ecol 2025; 34:e17659. [PMID: 39846218 DOI: 10.1111/mec.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis). By using whole-genome sequencing (WGS) on a large population dataset (n = 42 populations) and analysing 873,788 SNPs, our primary aim was to uncover novel and confirm known footprints of selection. We compared individual and pooled WGS, and developed a novel approach, termed dynamic outlier slicing, to assess how the choice of outlier-calling stringency influences functional and Gene Ontology (GO) enrichment. By integrating genome-environment association (GEA) analysis with allele frequency-based approaches, we estimated composite selection signals (CSS) and identified 2679 outlier SNPs distributed across 324 genomic regions, involving 468 genes. Dynamic outlier slicing identified robust enrichment signals in five annotation categories (upstream, downstream, synonymous, 5'UTR and 3'UTR) highlighting the crucial role of regulatory elements in adaptive evolution. Furthermore, GO analyses revealed strong enrichment of molecular functions associated with gated channel activity, transmembrane transporter activity and ion channel activity, emphasising the importance of osmoregulation and ion balance maintenance. Our findings demonstrate that despite substantial random drift and divergence, WGS of high number of population pools enabled the identification of strong selection signals associated with adaptation to both humic and clear water environments, providing robust evidence of widespread adaptation. We anticipate that the dynamic outlier slicing method we developed will enable a more thorough exploration of adaptive divergence across a diverse range of species.
Collapse
Affiliation(s)
- María-Eugenia López
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Lilian Pukk
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
13
|
Wang X, Shen Y, Teng Y, Wu R, Liu S, Zhao J, Hu C, Li M, Pan H, Qi J. Successful Traceability of Wildlife Samples Contributes to Wildlife Conservation: A Case Study of Tracing the Snub-Nosed Monkey ( Rhinopithecus spp.). Animals (Basel) 2025; 15:174. [PMID: 39858174 PMCID: PMC11758607 DOI: 10.3390/ani15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Rapid and effective methods for tracing the geographic origin of wildlife samples are essential for tackling the illegal wildlife trade. Traditional morphological categorization methods are often inadequate as relying on the mitochondrial COXI barcode is insufficient for determining geographic populations. To address these limitations, we developed a bioinformatics-based pipeline for the rapid identification of traceable nuclear genome loci. This pipeline has been applied to the whole-genome sequence (WGS) data of China's flagship species, the snub-nosed monkey (Rhinopithecus spp.). These species are known for sex-biased dispersal and hybrid speciation, which complicates genealogy tracing. Using phylogenetic principles, we employed the Robinson and Foulds (RF) distance and scanned over 1,850,726 population-specific loci, identifying five pairs that can trace genealogy origins rapidly and cost-effectively using PCR. Additionally, we found that relying only on mitochondrial genetic information is insufficient for rapid and accurate traceability to subspecies-level geographic populations. Our pipeline efficiently identifies loci and traces the geographic origin of snub-nosed monkey individuals, providing a valuable tool for species preservation and combating the wildlife trade. This approach can be extended to other species, aiding in the conservation of endangered wildlife and tracing criminal evidence.
Collapse
Affiliation(s)
- Xibo Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhao Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Jilai Zhao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Can Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| |
Collapse
|
14
|
Qi C, Wei Q, Ye Y, Liu J, Li G, Liang JW, Huang H, Wu G. Fixation of Expression Divergences by Natural Selection in Arabidopsis Coding Genes. Int J Mol Sci 2024; 25:13710. [PMID: 39769472 PMCID: PMC11678068 DOI: 10.3390/ijms252413710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Functional divergences of coding genes can be caused by divergences in their coding sequences and expression. However, whether and how expression divergences and coding sequence divergences coevolve is not clear. Gene expression divergences in differentiated cells and tissues recapitulate developmental models within a species, while gene expression divergences between analogous cells and tissues resemble traditional phylogenies in different species, suggesting that gene expression divergences are molecular traits that can be used for evolutionary studies. Using transcriptomes and evolutionary proxies to study gene expression divergences among differentiated cells and tissues in Arabidopsis, expression divergences of coding genes are shown to be strongly anti-correlated with phylostrata (gene ages), indicators of selective constraint Ka/Ks (nonsynonymous replacement rate/synonymous substitution rate) and indicators of positive selection (frequency of loci with Ka/Ks > 1), but only weakly or not correlated with indicators of neutral selection (Ks). Our results thus suggest that expression divergences largely coevolve with coding sequence divergences, suggesting that expression divergences of coding genes are selectively fixed by natural selection but not neutral selection, which provides a molecular framework for trait diversification, functional adaptation and speciation. Our findings therefore support that positive selection rather than negative or neutral selection is a major driver for the origin and evolution of Arabidopsis genes, supporting the Darwinian theory at molecular levels.
Collapse
Affiliation(s)
- Cheng Qi
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Qiang Wei
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Yuting Ye
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Jing Liu
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Guishuang Li
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| | - Jane W. Liang
- Department of Statistics, University of California, Berkeley, CA 94720, USA; (J.W.L.); (H.H.)
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, CA 94720, USA; (J.W.L.); (H.H.)
| | - Guang Wu
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China; (C.Q.); (Y.Y.); (J.L.); (G.L.)
| |
Collapse
|
15
|
Wang Y, Wang H, Yang W, Guo H, Zhang M, Gao Y, Kang B, Liao S. A novel de novo synonymous variant in GREB1L impacts the mRNA splicing associated with aplasia of the urogenital system. Am J Med Genet A 2024; 194:e63823. [PMID: 39091162 DOI: 10.1002/ajmg.a.63823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
GREB1-like retinoic acid receptor coactivator (GREB1L) gene is associated with autosomal dominant renal hypodysplasia/aplasia 3 (RHDA3) and deafness, autosomal dominant 80 (DFNA80). Among the GREB1L variants reported, most of them are missense or frameshift, while no pathogenic synonymous variants have been recorded. Classical theory paid little attention to synonymous variants and classified it as nonpathogenic; however, recent studies suggest that the variants might be equally important. Here, we report a 7-year-old girl with new symptoms of clitoromegaly, uterovaginal, and ovarian agenesis as well as right kidney missing. A novel de novo GREB1L synonymous variant (NM_001142966: c.4731C>T, p.G1577=) was identified via whole exome sequencing. The variant was predicted to be disease-causing through in silico analysis and was classified as likely pathogenic. Minigene splicing assays confirmed a 6 bp deletion in mutant cDNA comparing with the wild type, leading to two amino acids lost in GREB1L protein. Secondary and tertiary structure modeling showed alterations in protein structure. Our finding reveals a novel GREB1L variant with a new phenotype of urogenital system and is the first to report a pathogenic synonymous variant in GREB1L which affects mRNA splicing, suggesting synonymous variants cannot be ignored in prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Yaoping Wang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongdan Wang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Wenke Yang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Han Guo
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Mengting Zhang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Kang
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Liu J, Wei Q, Zhao Z, Qiang F, Li G, Wu G. Bona Fide Plant Steroid Receptors are Innovated in Seed Plants and Angiosperms through Successive Whole-Genome Duplication Events. PLANT & CELL PHYSIOLOGY 2024; 65:1655-1673. [PMID: 38757845 DOI: 10.1093/pcp/pcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Whole-genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR INSENSITIVE 1) and BRL1/3 (BRI1-LIKES 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants, while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Qiang Wei
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Zhen Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Fanqi Qiang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guishuang Li
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guang Wu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| |
Collapse
|
17
|
Li L, Fu H, Altaf MA, Wang Z, Lu X. The complete mitochondrial genome assembly of Capsicum pubescens reveals key evolutionary characteristics of mitochondrial genes of two Capsicum subspecies. BMC Genomics 2024; 25:1064. [PMID: 39528932 PMCID: PMC11552386 DOI: 10.1186/s12864-024-10985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pepper (Capsicum pubescens), one of five domesticated pepper species, has unique characteristics, such as numerous hairs on the epidermis of its leaves and stems, black seeds, and vibrant purple flowers. To date, no studies have reported on the complete assembly of the mitochondrial genome (mitogenome) of C. pubescens. Understanding the mitogenome is crucial for further research on C. pubescens. RESULTS In our study, we successfully assembled the first mitogenome of C. pubescens, which was assigned the GenBank accession number OP957066. This mitogenome has a length of 454,165 bp and exhibits the typical circular structure observed in most mitogenomes. We annotated a total of 70 genes, including 35 protein-coding genes (PCGs), 30 tRNA genes, 3 rRNA genes, and 2 pseudogenes. Compared to the other three pepper mitogenomes (KJ865409, KJ865410, and MN196478), C. pubescens OP957066 exhibited four unique PCGs (atp4, atp8, mttB, and rps1), while two PCGs (rpl10 and rps3) were absent. Notably, each of the three pepper mitogenomes from C. annuum (KJ865409, KJ865410, and MN196478) experienced the loss of four PCGs (atp4, atp8, mttB, and rps1). To further explore the evolutionary relationships, we reconstructed a phylogenetic tree using the mitogenomes of C. pubescens and fourteen other species. Structural comparison and synteny analysis of the above four pepper mitogenomes revealed that C. pubescens shares high sequence similarity with KJ865409 and that C. pubescens has rearranged with the other three pepper mitogenomes. Interestingly, we observed 72 similar sequences between the mitochondrial and chloroplast genomes, which accounted for 12.60% of the mitogenome, with a total length of 57,207 bp. These sequences encompassed 12 tRNA genes and the rRNA gene (rrn18). Remarkably, selective pressure analysis suggested that the nad5 gene underwent obvious positive selection. Furthermore, a single-base mutation in three genes (nad1, nad2, and nad4) resulted in an amino acid change. CONCLUSION This study provides a high-quality mitogenome of pepper, providing valuable molecular data for future investigations into the exchange of genetic information between pepper organelle genomes.
Collapse
Affiliation(s)
- Lin Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Huizhen Fu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Muhammad Ahsan Altaf
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
18
|
Lin P, Xu J, Miao A, Lu Y, Jiang Y, Zheng T. Novel compound heterozygous variants in LTBP2 associated with relative anterior microphthalmos. Eur J Ophthalmol 2024; 34:1750-1760. [PMID: 38545692 DOI: 10.1177/11206721241240503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE Relative anterior microphthalmos (RAM) is a rare congenital defect associated with severe vision impairment that is primarily caused by genetic alterations. The purpose of this study was to identify the causative genetic variants in two Chinese families with RAM with an autosomal recessive inheritance pattern. METHODS DNA samples were obtained from two probands and their family members. Targeted next-generation sequencing (NGS) was used to screen 425 genes associated with inherited eye diseases to identify possible disease-causing variants in the two patients. Sanger sequencing was subsequently used to validate the results in both families. RESULTS The targeted NGS panel identified potentially causative novel variants of the latent transforming growth factor beta binding protein 2 (LTBP2) gene in the two RAM families: a missense variant (c.2771C > T; p.Ala924Val) and an intronic variant (c.4582 + 9A > G) in Family A and a different missense variant (c.5239C > A; p.Arg1747Ser) and a synonymous variant (c.951G > A; p.Pro317Pro) in Family B. These four novel variants all cosegregated with the disease phenotype. CONCLUSION To our knowledge, this is the first study to report novel LTBP2 gene variants related to RAM. Considering the importance of LTBP2 in ocular development, we provide initial insights into the potential pathogenic mechanisms of LTBP2 in RAM.
Collapse
Affiliation(s)
- Peimin Lin
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jie Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ao Miao
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianyu Zheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
19
|
Shen X, Song S, Li C, Zhang J. Further Evidence for Strong Nonneutrality of Yeast Synonymous Mutations. Mol Biol Evol 2024; 41:msae224. [PMID: 39467337 PMCID: PMC11562845 DOI: 10.1093/molbev/msae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024] Open
Abstract
Although synonymous mutations are commonly assumed neutral or nearly so, recent years have seen reports of fitness effects of synonymous mutations detected under laboratory conditions. In a previous study, we used genome editing to construct thousands of yeast mutants each carrying a synonymous or nonsynonymous mutation in one of 21 genes, and discovered that most synonymous and most nonsynonymous mutations are deleterious. A concern was raised that this observation could be caused by the fitness effects of potential CRISPR/Cas9 off-target edits and/or secondary mutations, and an experiment that would be refractory to such effects was proposed. Using genome sequencing, we here show that no CRISPR/Cas9 off-target editing occurred, although some mutants did carry secondary mutations. Analysis of mutants with negligible effects from secondary mutations and new data collected from the proposed experiment confirms the original conclusion. These findings, along with other reports of fitness effects of synonymous mutations from both case and systematic studies, necessitate a paradigm shift from assuming (near) neutrality of synonymous mutations.
Collapse
Affiliation(s)
- Xukang Shen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siliang Song
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chuan Li
- Microsoft Research, Microsoft, Redmond, WA 98052, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Crombie TA, Rajaei M, Saxena AS, Johnson LM, Saber S, Tanny RE, Ponciano JM, Andersen EC, Zhou J, Baer CF. Direct inference of the distribution of fitness effects of spontaneous mutations from recombinant inbred Caenorhabditis elegans mutation accumulation lines. Genetics 2024; 228:iyae136. [PMID: 39139098 DOI: 10.1093/genetics/iyae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The distribution of fitness effects of new mutations plays a central role in evolutionary biology. Estimates of the distribution of fitness effect from experimental mutation accumulation lines are compromised by the complete linkage disequilibrium between mutations in different lines. To reduce the linkage disequilibrium, we constructed 2 sets of recombinant inbred lines from a cross of 2 Caenorhabditis elegans mutation accumulation lines. One set of lines ("RIAILs") was intercrossed for 10 generations prior to 10 generations of selfing; the second set of lines ("RILs") omitted the intercrossing. Residual linkage disequilibrium in the RIAILs is much less than in the RILs, which affects the inferred distribution of fitness effect when the sets of lines are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (∼40%); models that constrain mutations to have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high linkage disequilibrium are pooled into haplotypes, the inferred distribution of fitness effect becomes increasingly negative-skewed and leptokurtic. We conclude that the conventional wisdom-most mutations have effects near 0, a handful of mutations have effects that are substantially negative, and mutations with positive effects are very rare-is likely correct, and that unless it can be shown otherwise, estimates of the distribution of fitness effect that infer a substantial fraction of mutations with positive effects are likely confounded by linkage disequilibrium.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Moein Rajaei
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sayran Saber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juannan Zhou
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Wu X, Xu M, Yang JR, Lu J. Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster. Nat Commun 2024; 15:8329. [PMID: 39333102 PMCID: PMC11437122 DOI: 10.1038/s41467-024-52660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Accuracy and efficiency are fundamental to mRNA translation. Codon usage bias is widespread across species. Despite the long-standing association between optimized codon usage and improved translation, our understanding of its evolutionary basis and functional effects remains limited. Drosophila is widely used to study codon usage bias, but genome-scale experimental data are scarce. Using high-resolution mass spectrometry data from Drosophila melanogaster, we show that optimal codons have lower translation errors than nonoptimal codons after accounting for these biases. Genomic-scale analysis of ribosome profiling data shows that optimal codons are translated more rapidly than nonoptimal codons. Although we find no long-term selection favoring synonymous mutations in D. melanogaster after diverging from D. simulans, we identify signatures of positive selection driving codon optimization in the D. melanogaster population. These findings expand our understanding of the functional consequences of codon optimization and serve as a foundation for future investigations.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Mengze Xu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
22
|
Boon WX, Sia BZ, Ng CH. Prediction of the effects of the top 10 synonymous mutations from 26645 SARS-CoV-2 genomes of early pandemic phase. F1000Res 2024; 10:1053. [PMID: 39268187 PMCID: PMC11391198 DOI: 10.12688/f1000research.72896.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple works had been done to study nonsynonymous mutations, which change protein sequences. However, there is little study on the effects of SARS-CoV-2 synonymous mutations, which may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome. Methods A total of 26645 SARS-CoV-2 genomic sequences retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database were aligned using MAFFT. Then, the mutations and their respective frequency were identified. Multiple RNA secondary structures prediction tools, namely RNAfold, IPknot++ and MXfold2 were applied to predict the effect of the mutations on RNA secondary structure and their base pair probabilities was estimated using MutaRNA. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2. Results A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a. Of these top 10 highest frequency synonymous mutations, C913U, C3037U, U16176C and C18877U mutants show pronounced changes between wild type and mutant in all 3 RNA secondary structure prediction tools, suggesting these mutations may have some biological impact on viral fitness. These four mutations show changes in base pair probabilities. All mutations except U16176C change the codon to a more preferred codon, which may result in higher translation efficiency. Conclusion Synonymous mutations in SARS-CoV-2 genome may affect RNA secondary structure, changing base pair probabilities and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.
Collapse
Affiliation(s)
- Wan Xin Boon
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Boon Zhan Sia
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Chong Han Ng
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| |
Collapse
|
23
|
Stemwedel K, Haase N, Christ S, Bogdanova N, Rudorf S. Synonymous rpsH variants: the common denominator in Escherichia coli adapting to ionizing radiation. NAR Genom Bioinform 2024; 6:lqae110. [PMID: 39184377 PMCID: PMC11344242 DOI: 10.1093/nargab/lqae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Ionizing radiation (IR) in high doses is generally lethal to most organisms. Investigating mechanisms of radiation resistance is crucial for gaining insights into the underlying cellular responses and understanding the damaging effects of IR. In this study, we conducted a comprehensive analysis of sequencing data from an evolutionary experiment aimed at understanding the genetic adaptations to ionizing radiation in Escherichia coli. By including previously neglected synonymous mutations, we identified the rpsH c.294T > G variant, which emerged in all 17 examined isolates across four subpopulations. The identified variant is a synonymous mutation affecting the 30S ribosomal protein S8, and consistently exhibited high detection and low allele frequencies in all subpopulations. This variant, along with two additional rpsH variants, potentially influences translational control of the ribosomal spc operon. The early emergence and stability of these variants suggest their role in adapting to environmental stress, possibly contributing to radiation resistance. Our findings shed light on the dynamics of ribosomal variants during the evolutionary process and their potential role in stress adaptation, providing valuable implications for understanding clinical radiation sensitivity and improving radiotherapy.
Collapse
Affiliation(s)
- Katharina Stemwedel
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| | - Nadin Haase
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| | - Simon Christ
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| | | | - Sophia Rudorf
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| |
Collapse
|
24
|
Li Y, Li Y, Liu Y, Kong X, Tao N, Hou Y, Wang T, Han Q, Zhang Y, Long F, Li H. Association of mutations in Mycobacterium tuberculosis complex (MTBC) respiration chain genes with hyper-transmission. BMC Genomics 2024; 25:810. [PMID: 39198760 PMCID: PMC11350932 DOI: 10.1186/s12864-024-10726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The respiratory chain plays a key role in the growth of Mycobacterium tuberculosis complex (MTBC). However, the exact regulatory mechanisms of this system still need to be elucidated, and only a few studies have investigated the impact of genetic mutations within the respiratory chain on MTBC transmission. This study aims to explore the impact of respiratory chain gene mutations on the global spread of MTBC. RESULTS A total of 13,402 isolates of MTBC were included in this study. The majority of the isolates (n = 6,382, 47.62%) belonged to lineage 4, followed by lineage 2 (n = 5,123, 38.23%). Our findings revealed significant associations between Single Nucleotide Polymorphisms (SNPs) of specific genes and transmission clusters. These SNPs include Rv0087 (hycE, G178T), Rv1307 (atpH, C650T), Rv2195 (qcrA, G181C), Rv2196 (qcrB, G1250T), Rv3145 (nuoA, C35T), Rv3149 (nuoE, G121C), Rv3150 (nuoF, G700A), Rv3151 (nuoG, A1810G), Rv3152 (nuoH, G493A), and Rv3157 (nuoM, A1243G). Furthermore, our results showed that the SNPs of atpH C73G, atpA G271C, qcrA G181C, nuoJ G115A, nuoM G772A, and nuoN G1084T were positively correlated with cross-country transmission clades and cross-regional transmission clades. CONCLUSIONS Our study uncovered an association between mutations in respiratory chain genes and the transmission of MTBC. This important finding provides new insights for future research and will help to further explore new mechanisms of MTBC pathogenicity. By uncovering this association, we gain a more complete understanding of the processes by which MTBC increases virulence and spread, providing potential targets and strategies for preventing and treating tuberculosis.
Collapse
Affiliation(s)
- Yameng Li
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Clinical Department of Integrated Traditional Chinese and Western Medicine , The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Yifan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, 250031, China
| | - Yao Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250011, China
| | - Ningning Tao
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yawei Hou
- Institute of Chinese Medical Literature and Culture of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Tingting Wang
- Clinical Department of Integrated Traditional Chinese and Western Medicine , The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Qilin Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuzhen Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Fei Long
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, 250031, China.
| | - Huaichen Li
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Clinical Department of Integrated Traditional Chinese and Western Medicine , The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| |
Collapse
|
25
|
Khalid B, Farukh S, Kumar A, Baig S, Shahid MA. Synonymous variant of TLR7 at restriction site rs864058 identified in Covid 19 Pakistani patients. AMERICAN JOURNAL OF BLOOD RESEARCH 2024; 14:6-13. [PMID: 39309756 PMCID: PMC11411202 DOI: 10.62347/yskn6673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND TLR7, the receptor accountable for immune response to RNA viruses, has been studied extensively to identify its variants related to the severity of Covid-19 in different populations worldwide. However, the genotype of Pakistani population is still unknown. This study aimed to determine the TLR7 genotypes and their relation with severity in our population. METHODS This cross sectional study collected data on 151 Covid-19 positive patients (aged 18-80 years), from June 2022 to May 2023, after an informed consent, from Ziauddin University and Hospital. Prior to that approval from ethics review committee was taken. The demographic variables and comorbidities were recorded along with health status till LAMA (Leave Against Medical Advise), recovery or death. The DNA was extracted from collected blood samples, PCR and Sanger sequencing was done for identification of TLR7 variants. SPSS was used for data analyses and Chi-Square for categorical variables. P-values of <0.05 was considered significant. RESULTS Out of 151 patients' sequencing was done for 59 samples. The restriction site, rs864058 of TLR7 gene, identified G/A and G/G variants. This missense variant of TLR7 identified at rs864058 of TLR7 gene, has not been previously reported in population control databases. The genotype G/G was main variant of 49 (83%) patients, whereas, G/A was found in 10 (17%). Majority, 25 (51%) of patients with mild covid-19 had GG genotype but results were not significant (P=0.684). Among female patients the main genotype was GA 8 (80%) while male had G/G 29 (59.2%) with significant results (P=0.024). Since G/G genotype was the major genotype, high percentage was found in hypertensives [20 (40.8%)], Diabetics [13 (26.5%)], depression [24 (49%)] and pneumonia patients [20 (40.8%)]. However, significant association (P=0.023) was only found with pneumonia. Males, in majority had severe [17 (68%)] infection and death [40 (26.4%)], whereas, females had mild [14 (25%)] with [12 (7.9%)] deaths. CONCLUSION A variant rs864058 "G/A" of TLR7, in relation to covid-19 were found in our population. Males were found more at risk of morbidity and mortality due to covid-19. Larger studies are required to further confirm these results.
Collapse
Affiliation(s)
- Beenish Khalid
- Department of Biochemistry, Hamdard UniversityKarachi, Pakistan
| | - Sadia Farukh
- Department of Community Health Sciences, Aga Khan UniversityKarachi, Pakistan
| | - Ashokh Kumar
- Department of Pulmonologist, Ziauddin HospitalKarachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin UniversityKarachi, Pakistan
| | | |
Collapse
|
26
|
Song Z, Jiang Y, Chen C, Ding C, Chen H. Effect of Plasma-Activated Water on the Cellulase-Producing Strain Aspergillus niger A32. J Fungi (Basel) 2024; 10:568. [PMID: 39194894 DOI: 10.3390/jof10080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effect and mechanism of plasma-activated water (PAW) on Aspergillus niger, PAW was prepared using a needle array-plate dielectric barrier discharge plasma system. The concentrations of long-lived reactive oxygen and nitrogen species (RONS), namely, H2O2, NO2-, and NO3-, in the PAW were 48.76 mg/L, 0.046 mg/L, and 172.36 mg/L, respectively. Chemically activated water (CAW) with the same concentration of long-lived RONS was also prepared for comparison. A. niger A32 was treated with PAW and CAW. After treatment, the treated strains were observed and analyzed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to screen probable mutants. The results indicated that the pH, conductivity, and ORP values of PAW were 2.42, 1935 μS/cm, and 517.07 mV, respectively. In contrast, the pH and ORP values of CAW were 6.15 and 301.73 mV, respectively, which differed significantly from those of PAW. In addition, the conductivity of CAW showed no change. SEM and TEM analyses revealed that A. niger A32 treated with CAW exhibited less damage compared with the control. In contrast, A. niger A32 treated with PAW showed significant shrinkage, deformation, and exudate attachment over time. Following PAW treatment, after four passages, a high cellulase-producing stable mutant strain A-WW5 was screened, exhibiting a filter paper enzyme activity of 29.66 U/mL, a cellulose endonuclease activity of 13.79 U/mL, and a β-glucosidase activity of 27.13 U/mL. These values were found to be 33%, 38%, and 2.1% higher than those of the original fungus sample, respectively. In total, 116 SNPs and 61 InDels were present in the genome of the mutant strain A-WW5. The above findings indicate that the impact of PAW on A. niger is not only attributed to long-lasting H2O2, NO2-, and NO3- particles but also to other short-lived active particles; PAW is expected to become a new microbial breeding mutagen.
Collapse
Affiliation(s)
- Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yingwei Jiang
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Chan Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Changjiang Ding
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
27
|
Zhang Y, Dong X, Zhang J, Zhao M, Wang J, Chu J, Yang Z, Ma S, Lin K, Sun H, Luo Z. FLT4 gene polymorphisms influence isolated ventricular septal defect predisposition in a Southwest China population. BMC Med Genomics 2024; 17:197. [PMID: 39107825 PMCID: PMC11302092 DOI: 10.1186/s12920-024-01971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from Southwest China. METHODS Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated the correlation between mRNA secondary structure changes and ventricular septal defects. RESULTS The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the secondary structure of mRNA and reduce the free energy. CONCLUSIONS These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants investigation in future studies.
Collapse
Affiliation(s)
- Yunhan Zhang
- The Department of Ultrasound Imaging, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Xiaoli Dong
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jun Zhang
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Miao Zhao
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jiang Wang
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jiayou Chu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Hao Sun
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Zhiling Luo
- The Department of Ultrasound Imaging, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China.
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
28
|
Qiao X, Kong N, Sun S, Li X, Jiang C, Luo C, Wang L, Song L. Polymorphisms in the cysteine dioxygenase gene and their association with taurine content in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110981. [PMID: 38642610 DOI: 10.1016/j.cbpb.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.
Collapse
Affiliation(s)
- Xin Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Shiqing Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiang Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chunyu Jiang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Cong Luo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
29
|
Zhao Y, Zhang S. Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes. Int J Mol Sci 2024; 25:8398. [PMID: 39125967 PMCID: PMC11313453 DOI: 10.3390/ijms25158398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The codon usage bias (CUB) of genes encoded by different species' genomes varies greatly. The analysis of codon usage patterns enriches our comprehension of genetic and evolutionary characteristics across diverse species. In this study, we performed a genome-wide analysis of CUB and its influencing factors in six sequenced Eimeria species that cause coccidiosis in poultry: Eimeria acervulina, Eimeria necatrix, Eimeria brunetti, Eimeria tenella, Eimeria praecox, and Eimeria maxima. The GC content of protein-coding genes varies between 52.67% and 58.24% among the six Eimeria species. The distribution trend of GC content at different codon positions follows GC1 > GC3 > GC2. Most high-frequency codons tend to end with C/G, except in E. maxima. Additionally, there is a positive correlation between GC3 content and GC3s/C3s, but a significantly negative correlation with A3s. Analysis of the ENC-Plot, neutrality plot, and PR2-bias plot suggests that selection pressure has a stronger influence than mutational pressure on CUB in the six Eimeria genomes. Finally, we identified from 11 to 15 optimal codons, with GCA, CAG, and AGC being the most commonly used optimal codons across these species. This study offers a thorough exploration of the relationships between CUB and selection pressures within the protein-coding genes of Eimeria species. Genetic evolution in these species appears to be influenced by mutations and selection pressures. Additionally, the findings shed light on unique characteristics and evolutionary traits specific to the six Eimeria species.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | | |
Collapse
|
30
|
Starosta E, Jamruszka T, Szwarc J, Bocianowski J, Jędryczka M, Grynia M, Niemann J. DArTseq-Based, High-Throughput Identification of Novel Molecular Markers for the Detection of Blackleg ( Leptosphaeria Spp.) Resistance in Rapeseed. Int J Mol Sci 2024; 25:8415. [PMID: 39125985 PMCID: PMC11313370 DOI: 10.3390/ijms25158415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Blackleg disease, caused by Leptosphaeria spp. fungi, is one of the most important diseases of Brassica napus, responsible for severe yield losses worldwide. Blackleg resistance is controlled by major R genes and minor quantitative trait loci (QTL). Due to the high adaptation ability of the pathogen, R-mediated resistance can be easily broken, while the resistance mediated via QTL is believed to be more durable. Thus, the identification of novel molecular markers linked to blackleg resistance for B. napus breeding programs is essential. In this study, 183 doubled haploid (DH) rapeseed lines were assessed in field conditions for resistance to Leptosphaeria spp. Subsequently, DArTseq-based Genome-Wide Association Study (GWAS) was performed to identify molecular markers linked to blackleg resistance. A total of 133,764 markers (96,121 SilicoDArT and 37,643 SNP) were obtained. Finally, nine SilicoDArT and six SNP molecular markers were associated with plant resistance to Leptosphaeria spp. at the highest significance level, p < 0.001. Importantly, eleven of these fifteen markers were found within ten genes located on chromosomes A06, A07, A08, C02, C03, C06 and C08. Given the immune-related functions of the orthologues of these genes in Arabidopsis thaliana, the identified markers hold great promise for application in rapeseed breeding programs.
Collapse
Affiliation(s)
- Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-627 Poznań, Poland;
| | - Małgorzata Jędryczka
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Magdalena Grynia
- IHAR Group, Borowo Department, Strzelce Plant Breeding Ltd., Borowo 35, 64-020 Czempiń, Poland;
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| |
Collapse
|
31
|
Hou Y, Li Y, Tao N, Kong X, Li Y, Liu Y, Li H, Wang Z. Toxin-antitoxin system gene mutations driving Mycobacterium tuberculosis transmission revealed by whole genome sequencing. Front Microbiol 2024; 15:1398886. [PMID: 39144214 PMCID: PMC11322068 DOI: 10.3389/fmicb.2024.1398886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The toxin-antitoxin (TA) system plays a vital role in the virulence and pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). However, the regulatory mechanisms and the impact of gene mutations on M. tuberculosis transmission remain poorly understood. Objective To investigate the influence of gene mutations in the toxin-antitoxin system on M. tuberculosis transmission dynamics. Method We performed whole-genome sequencing on the analyzed strains of M. tuberculosis. The genes associated with the toxin-antitoxin system were obtained from the National Center for Biotechnology Information (NCBI) Gene database. Mutations correlating with enhanced transmission within the genes were identified by using random forest, gradient boosting decision tree, and generalized linear mixed models. Results A total of 13,518 M. tuberculosis isolates were analyzed, with 42.29% (n = 5,717) found to be part of genomic clusters. Lineage 4 accounted for the majority of isolates (n = 6488, 48%), followed by lineage 2 (n = 5133, 37.97%). 23 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, including vapB1 G34A, vapB24 A76C, vapB2 T171C, mazF2 C85T, mazE2 G104A, vapB31 T112C, relB T226A, vapB11 C54T, mazE5 T344C, vapB14 A29G, parE1 (C103T, C88T), and parD1 C134T. Six SNPs, including vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and vapB22 C167T, were associated with transmission clades across different countries. Notably, our findings highlighted the positive association of vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, and Rv2653c A80C with transmission clades across diverse regions. Furthermore, our analysis identified 32 SNPs that exhibited significant associations with clade size. Conclusion Our study presents potential associations between mutations in genes related to the toxin-antitoxin system and the transmission dynamics of M. tuberculosis. However, it is important to acknowledge the presence of confounding factors and limitations in our study. Further research is required to establish causation and assess the functional significance of these mutations. These findings provide a foundation for future investigations and the formulation of strategies aimed at controlling TB transmission.
Collapse
Affiliation(s)
- Yawei Hou
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yameng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaichen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenguo Wang
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
32
|
Hallee L, Rafailidis N, Horger C, Hong D, Gleghorn JP. Annotation Vocabulary (Might Be) All You Need. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605924. [PMID: 39131267 PMCID: PMC11312613 DOI: 10.1101/2024.07.30.605924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Protein Language Models (pLMs) have revolutionized the computational modeling of protein systems, building numerical embeddings that are centered around structural features. To enhance the breadth of biochemically relevant properties available in protein embeddings, we engineered the Annotation Vocabulary, a transformer readable language of protein properties defined by structured ontologies. We trained Annotation Transformers (AT) from the ground up to recover masked protein property inputs without reference to amino acid sequences, building a new numerical feature space on protein descriptions alone. We leverage AT representations in various model architectures, for both protein representation and generation. To showcase the merit of Annotation Vocabulary integration, we performed 515 diverse downstream experiments. Using a novel loss function and only $3 in commercial compute, our premier representation model CAMP produces state-of-the-art embeddings for five out of 15 common datasets with competitive performance on the rest; highlighting the computational efficiency of latent space curation with Annotation Vocabulary. To standardize the comparison of de novo generated protein sequences, we suggest a new sequence alignment-based score that is more flexible and biologically relevant than traditional language modeling metrics. Our generative model, GSM, produces high alignment scores from annotation-only prompts with a BERT-like generation scheme. Of particular note, many GSM hallucinations return statistically significant BLAST hits, where enrichment analysis shows properties matching the annotation prompt - even when the ground truth has low sequence identity to the entire training set. Overall, the Annotation Vocabulary toolbox presents a promising pathway to replace traditional tokens with members of ontologies and knowledge graphs, enhancing transformer models in specific domains. The concise, accurate, and efficient descriptions of proteins by the Annotation Vocabulary offers a novel way to build numerical representations of proteins for protein annotation and design.
Collapse
Affiliation(s)
- Logan Hallee
- Center for Bioinformatics and Computational Biology, University of Delaware
| | - Niko Rafailidis
- Center for Bioinformatics and Computational Biology, University of Delaware
| | - Colin Horger
- Department of Biomedical Engineering, University of Delaware
| | - David Hong
- Department of Electrical and Computer Engineering, University of Delaware
| | - Jason P Gleghorn
- Center for Bioinformatics and Computational Biology, University of Delaware
- Department of Biomedical Engineering, University of Delaware
| |
Collapse
|
33
|
Wu K, Qin D, Qian Y, Liu H. A new era of mutation rate analyses: Concepts and methods. Zool Res 2024; 45:767-780. [PMID: 38894520 PMCID: PMC11298668 DOI: 10.24272/j.issn.2095-8137.2024.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The mutation rate is a pivotal biological characteristic, intricately governed by natural selection and historically garnering considerable attention. Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain, ushering in an unprecedented era of mutation rate research. This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates. It examines various types of mutations, explores the evolutionary dynamics and associated theories, and synthesizes both classical and contemporary hypotheses. Furthermore, this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies, mutational patterns, molecular mechanisms, and driving forces influencing variations in mutation rates across species and tissues. Finally, it proposes several potential research directions and pressing questions for future investigations.
Collapse
Affiliation(s)
- Kun Wu
- Center for Evolutionary & Organismal Biology and the Fourth Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danqi Qin
- Center for Evolutionary & Organismal Biology and the Fourth Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yang Qian
- Center for Evolutionary & Organismal Biology and the Fourth Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haoxuan Liu
- Center for Evolutionary & Organismal Biology and the Fourth Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China. E-mail:
| |
Collapse
|
34
|
Chen P, Zhang J. The loci of environmental adaptation in a model eukaryote. Nat Commun 2024; 15:5672. [PMID: 38971805 PMCID: PMC11227561 DOI: 10.1038/s41467-024-50002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
35
|
Abe K, Maunze B, Lopez PA, Xu J, Muhammad N, Yang GY, Katz D, Liu Y, Lauberth SM. Downstream-of-gene (DoG) transcripts contribute to an imbalance in the cancer cell transcriptome. SCIENCE ADVANCES 2024; 10:eadh9613. [PMID: 38959318 PMCID: PMC11221514 DOI: 10.1126/sciadv.adh9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.
Collapse
Affiliation(s)
- Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Maunze
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pedro-Avila Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Xu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David Katz
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yaping Liu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Osugi A, Tamaru A, Yoshiyama T, Iwamoto T, Mitarai S, Murase Y. Mycobacterium tuberculosis is less likely to acquire pathogenic mutations during latent infection than during active disease. Microbiol Spectr 2024; 12:e0428923. [PMID: 38786200 PMCID: PMC11218478 DOI: 10.1128/spectrum.04289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Most people infected with Mycobacterium tuberculosis (Mtb) are believed to be in a state of latent tuberculosis (TB) infection (LTBI). Although LTBI is asymptomatic and not infectious, there is a risk of developing active disease even decades after infection. Here, to characterize mutations acquired during LTBI, we collected and analyzed Mtb genomes from seven Japanese patient pairs, each pair consisting of two active TB patients whose starting dates of developing active disease were >3 years apart; one had a high suspicion of LTBI before developing active disease, whereas the other did not. Thereafter, we compared these genomes with those of longitudinal sample pairs within a host of chronic active TB infections combined with public data. The bacterial populations in patients with LTBI were genetically more homogeneous and accumulated single nucleotide polymorphisms (SNPs) slower than those from active disease. Moreover, the lower proportion of nonsynonymous SNPs indicated weaker selective pressures during LTBI than active disease. Finally, the different mutation spectrums indicated different mutators between LTBI and active disease. These results suggest that the likelihood of the acquisition of mutations responsible for antibiotic resistance and increased virulence was lower in the Mtb population from LTBI than active disease.IMPORTANCEControlling latent tuberculosis (TB) infection (LTBI) activation is an effective strategy for TB elimination, where understanding Mycobacterium tuberculosis (Mtb) dynamics within the host plays an important role. Previous studies on chronic active disease reported that Mtb accumulated genomic mutations within the host, possibly resulting in acquired drug resistance and increased virulence. However, several reports suggest that fewer mutations accumulate during LTBI than during the active disease, but the associated risk is largely unknown. Here, we analyzed the genomic dynamics of Mtb within the host during LTBI. Our results statistically suggest that Mtb accumulates mutations during LTBI, but most mutations are under low selective pressures, which induce mutations responsible for drug resistance and virulence. Thus, we propose that LTBI acts as a source for new TB disease rather than as a period for in-host genome evolution.
Collapse
Affiliation(s)
- Asami Osugi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Aki Tamaru
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Takashi Yoshiyama
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | | | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- Basic Mycobacteriology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
37
|
Knaga S, Kasperek K, Luchowska A, Drabik K, Próchniak T, Zięba G, Batkowska J. The relationship between lysozyme gene polymorphism and quality changes during the storage of eggs derived from 2 commercial strains of Japanese quail. Poult Sci 2024; 103:103792. [PMID: 38729073 PMCID: PMC11103425 DOI: 10.1016/j.psj.2024.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
During the storage irreversible changes occur in eggs that result in a deterioration of their quality. The most significant changes affect the albumen. One of the major proteins of albumen present in egg white is lysozyme, which protects the embryo from microorganisms. This enzyme also contributes to the qualitative characteristics of albumen. It is possible that its polymorphism also affects the quality and stability of the obtained raw material that is, table eggs. Therefore, the aim of this study was to assess the potential effect of polymorphism in the lysozyme gene and protein on the quality changes during the storage of eggs derived from 2 genetic strains of Japanese quail belonging to various utility types. Eggs from selected females of laying and meat-type breeds were stored for 14 wk. During this period the egg quality traits were evaluated 10 times. DNA was isolated from each female and all exons of the lysozyme gene had been sequenced. In total, fourteen SNPs' and one 4-bp indel mutation were identified in exons and adjacent intronic sequences, among which SNP1 (1:32140723) resulted in a substitution of lysine with glutamine (Q21K). The results showed that SNP1 (strain S22), as well as the SNP2, SNP5, SNP7, SNP8, SNP10, SNP11, SNP12 and SNP13 were significantly associated with breaking strength during egg storage in both investigated Japanese quail strains. Furthermore, a 3 haplotype blocks containing nine SNPs (2, 5, 6, 7, 8, 10, 11, 12 and 13) were identified. These blocks displayed 8 distinct haplotypes that had significant association with breaking strength at all storage time points where egg quality analyses were performed. The study also revealed significant effects of breed and storage time on the egg quality traits. These results provide new insights into the genetic basis of egg quality during storage and could be incorporated into the breeding programs involving these strains.
Collapse
Affiliation(s)
- S Knaga
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland
| | - K Kasperek
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - A Luchowska
- Student Research Circle of Dentofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poznan 60-812, Poland
| | - K Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - T Próchniak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - G Zięba
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - J Batkowska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland.
| |
Collapse
|
38
|
Moss MJ, Chamness LM, Clark PL. The Effects of Codon Usage on Protein Structure and Folding. Annu Rev Biophys 2024; 53:87-108. [PMID: 38134335 PMCID: PMC11227313 DOI: 10.1146/annurev-biophys-030722-020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding.
Collapse
Affiliation(s)
- McKenze J Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Laura M Chamness
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| |
Collapse
|
39
|
Pu B, Feng S, Gu L, Smerin D, Jian Z, Xiong X, Wei L. Exploring MAP2K3 as a prognostic biomarker and potential immunotherapy target in glioma treatment. Front Neurol 2024; 15:1387743. [PMID: 38938778 PMCID: PMC11210523 DOI: 10.3389/fneur.2024.1387743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Glioma, the most prevalent primary brain tumor in adults, is characterized by significant invasiveness and resistance. Current glioma treatments include surgery, radiation, chemotherapy, and targeted therapy, but these methods often fail to eliminate the tumor completely, leading to recurrence and poor prognosis. Immune checkpoint inhibitors, a class of commonly used immunotherapeutic drugs, have demonstrated excellent efficacy in treating various solid malignancies. Recent research has indicated that unconventional levels of expression of the MAP2K3 gene closely correlates with glioma malignancy, hinting it could be a potential immunotherapy target. Our study unveiled substantial involvement of MAP2K3 in gliomas, indicating the potential of the enzyme to serve as a prognostic biomarker related to immunity. Through the regulation of the infiltration of immune cells, MAP2K3 can affect the prognosis of patients with glioma. These discoveries establish a theoretical foundation for exploring the biological mechanisms underlying MAP2K3 and its potential applications in glioma treatment.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Transplantation Health Management Center, Sichuan Taikang Hospital, Chengdu, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Wei
- Transplantation Health Management Center, Sichuan Taikang Hospital, Chengdu, China
| |
Collapse
|
40
|
Fang WW, Kong XL, Yang JY, Tao NN, Li YM, Wang TT, Li YY, Han QL, Zhang YZ, Hu JJ, Li HC, Liu Y. PE/PPE mutations in the transmission of Mycobacterium tuberculosis in China revealed by whole genome sequencing. BMC Microbiol 2024; 24:206. [PMID: 38858614 PMCID: PMC11163795 DOI: 10.1186/s12866-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.
Collapse
Affiliation(s)
- Wei-Wei Fang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute, Qilu University of Technology & Shandong Academy of Sciences, Jinan, Shandong, PR China
| | - Jie-Yu Yang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ya-Meng Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ting-Ting Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ying-Ying Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Qi-Lin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yu-Zhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jin-Jiang Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
41
|
Diniz CHDP, Henrique T, Stefanini ACB, De Castro TB, Tajara EH. Cetuximab chemotherapy resistance: Insight into the homeostatic evolution of head and neck cancer (Review). Oncol Rep 2024; 51:80. [PMID: 38639184 PMCID: PMC11056821 DOI: 10.3892/or.2024.8739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
The complex evolution of genetic alterations in cancer that occurs in vivo is a selective process involving numerous factors and mechanisms. Chemotherapeutic agents that prevent the growth and spread of cancer cells induce selective pressure, leading to rapid artificial selection of resistant subclones. This rapid evolution is possible because antineoplastic drugs promote alterations in tumor‑cell metabolism, thus creating a bottleneck event. The few resistant cells that survive in this new environment obtain differential reproductive success that enables them to pass down the newly selected resistant gene pool. The present review aims to summarize key findings of tumor evolution, epithelial‑mesenchymal transition and resistance to cetuximab therapy in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Carlos Henrique De Paula Diniz
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
| | - Ana Carolina B. Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Department of Experimental Research, Albert Einstein Education and Research Israeli Institute, IIEPAE, São Paulo, SP 05652-900, Brazil
| | - Tialfi Bergamin De Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Microbial Pathogenesis Department, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Eloiza H. Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
42
|
Li M, Zhang Y, Zhou P, Miao Y, Li S, Jiang L. Mutational analysis of pulmonary large cell neuroendocrine carcinoma: APC gene mutations identify a good prognostic factor. Lung Cancer 2024; 192:107825. [PMID: 38795461 DOI: 10.1016/j.lungcan.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive neoplasm with biological heterogeneity. Mutations in multiple genes have been identified in LCNEC. However, associations between gene alterations, histopathological characteristics, and prognosis remain ambiguous. Here, we investigated the clinicopathologic, immunohistochemical, and genomic characteristics of 19 patients with LCNEC and 9 patients with atypical carcinoid (AC). We revealed high mutation frequencies of TP53 (89.5 %), RB1 (42.1 %), APC (31.6 %), and MCL1 (31.6 %) in LCNEC, while genetic alterations were rarely found in AC. APC alterations mainly occurred to the exon 16 and were only identified in LCNEC with wild-type RB1. The 19 LCNEC were further subgrouped into APC wild-type (LCNEC-APCMT, 6/19) and APC-mutated (LCNEC-APCWT, 13/19) subgroups. In comparison with LCNEC-APCWT, LCNEC-APCMT displayed lower TMB (median: 12.64 vs 4.20, P = 0.045), and relatively mild cytologic atypia. In addition, LCNEC-APCMT distinguished itself from AC and LCNEC-APCWT by obviously downregulated expression of neuroendocrine markers (CD56 and Syn, P < 0.01) and significantly altered expression of genes downstream of APC (β-catenin migrating into the cytoplasm and nucleus, P < 0.001; c-Myc upregulating, P = 0.005). The OS of LCNEC-APCMT was numerically intermediate between AC and LCNEC-APCWT. We first proposed that APC alterations were common in LCNEC with wild-type RB1 and that LCNEC-APCMT was associated with lower TMB and better OS in comparison with LCNEC-APCWT.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuqing Miao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Shuang Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Xiao Y, Wang N, Jin X, Liu A, Zhang Z. Clinical relevance of SCN and CyN induced by ELANE mutations: a systematic review. Front Immunol 2024; 15:1349919. [PMID: 38840904 PMCID: PMC11150597 DOI: 10.3389/fimmu.2024.1349919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction According to the PRISMA criteria, a systematic review has been conducted to investigate the clinical relevance between patients with severe congenital neutropenia (SCN) and cyclic congenital neutropenia (CyN) induced by ELANE mutations. Methods We have searched PubMed, EMBASE, Web of Science, Scopus, Cochrane, CNKI, Wanfang Medicine, and VIP for ELANE mutation related literature published from 1997 to 2022. Using Microsoft Excel collect and organize data, SPSS 25, GraphPad Prism 8.0.1, and Omap analyze and plot statistical. Compare the gender, age, geography, mutation sites, infection characteristics, treatment, and other factors of SCN and CyN patients induced by ELANE mutations, with a focus on exploring the relationship between genotype and clinical characteristics, genotype and prognosis. Results This study has included a total of 467 patients with SCN and 90 patients with CyN. The onset age of SCN and CyN are both less than 1 year old, and the onset and diagnosis age of SCN are both younger than CyN. The mutation of ELANE gene is mainly missense mutation, and hot spot mutations include S126L, P139L, G214R, c.597+1G>A. The high-frequency mutations with severe outcomes are A57V, L121H, L121P, c.597+1G>A, c.597+1G>T, S126L, C151Y, C151S, G214R, C223X. Respiratory tract, skin and mucosa are the most common infection sites, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli are the most common. Discussion Patients with refractory G-CSF are more likely to develop severe outcomes. The commonly used pre-treatment schemes for transplantation are Bu-Cy-ATG and Flu-Bu-ATG. The prognosis of transplantation is mostly good, but the risk of GVHD is high. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/. PROSPERO, identifier CRD42023434656.
Collapse
Affiliation(s)
- Yufan Xiao
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nandi Wang
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xinghao Jin
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Anna Liu
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Zhong T, Wu H, Hu J, Liu Y, Zheng Y, Li N, Sun Z, Yin XF, He QY, Sun X. Two synonymous single-nucleotide polymorphisms promoting fluoroquinolone resistance of Escherichia coli in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133849. [PMID: 38432089 DOI: 10.1016/j.jhazmat.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Single-nucleotide polymorphism (SNP) is one of the core mechanisms that respond to antibiotic resistance of Escherichia coli (E. coli), which is a major issue in environmental pollution. A specific type of SNPs, synonymous SNPs, have been generally considered as the "silent" SNPs since they do not change the encoded amino acid. However, the impact of synonymous SNPs on mRNA splicing, nucleo-cytoplasmic export, stability, and translation was gradually discovered in the last decades. Figuring out the mechanism of synonymous SNPs in regulating antibiotic resistance is critical to improve antimicrobial therapy strategies in clinics and biological treatment strategies of antibiotic-resistant E. coli-polluted materials. With our newly designed antibiotic resistant SNPs prediction algorithm, Multilocus Sequence Type based Identification for Phenotype-single nucleotide polymorphism Analysis (MIPHA), and in vivo validation, we identified 2 important synonymous SNPs 522 G>A and 972 C>T, located at hisD gene, which was previously predicted as a fluoroquinolone resistance-related gene without a detailed mechanism in the E. coli samples with environmental backgrounds. We first discovered that hisD causes gyrA mutation via the upregulation of sbmC and its downstream gene umuD. Moreover, those 2 synonymous SNPs of hisD cause its own translational slowdown and further reduce the expression levels of sbmC and its downstream gene umuD, making the fluoroquinolone resistance determining region of gyrA remains unmutated, ultimately causing the bacteria to lose their ability to resist drugs. This study provided valuable insight into the role of synonymous SNPs in mediating antibiotic resistance of bacteria and a new perspective for the treatment of environmental pollution caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haiming Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiehua Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yundan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
45
|
Ślesak I, Ślesak H. From cyanobacteria and cyanophages to chloroplasts: the fate of the genomes of oxyphototrophs and the genes encoding photosystem II proteins. THE NEW PHYTOLOGIST 2024; 242:1055-1067. [PMID: 38439684 DOI: 10.1111/nph.19633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Chloroplasts are the result of endosymbiosis of cyanobacterial organisms with proto-eukaryotes. The psbA, psbD and psbO genes are present in all oxyphototrophs and encode the D1/D2 proteins of photosystem II (PSII) and PsbO, respectively. PsbO is a peripheral protein that stabilizes the O2-evolving complex in PSII. Of these genes, psbA and psbD remained in the chloroplastic genome, while psbO was transferred to the nucleus. The genomes of selected cyanobacteria, chloroplasts and cyanophages carrying psbA and psbD, respectively, were analysed. The highest density of genes and coding sequences (CDSs) was estimated for the genomes of cyanophages, cyanobacteria and chloroplasts. The synonymous mutation rate (rS) of psbA and psbD in chloroplasts remained almost unchanged and is lower than that of psbO. The results indicate that the decreasing genome size in chloroplasts is more similar to the genome reduction observed in contemporary endosymbiotic organisms than in streamlined genomes of free-living cyanobacteria. The rS of atpA, which encodes the α-subunit of ATP synthase in chloroplasts, suggests that psbA and psbD, and to a lesser extent psbO, are ancient and conservative and arose early in the evolution of oxygenic photosynthesis. The role of cyanophages in the evolution of oxyphototrophs and chloroplastic genomes is discussed.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
46
|
Serra Moncadas L, Hofer C, Bulzu PA, Pernthaler J, Andrei AS. Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis. Nat Commun 2024; 15:3421. [PMID: 38653968 PMCID: PMC11039613 DOI: 10.1038/s41467-024-47767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of bacterial species is rooted in their inherent potential for continuous evolution and adaptation to an ever-changing ecological landscape. The adaptive capacity of most species frequently resides within the repertoire of genes encoding the secreted proteome (SP), as it serves as a primary interface used to regulate survival/reproduction strategies. Here, by applying evolutionary genomics approaches to metagenomics data, we show that abundant freshwater bacteria exhibit biphasic adaptation states linked to the eco-evolutionary processes governing their genome sizes. While species with average to large genomes adhere to the dominant paradigm of evolution through niche adaptation by reducing the evolutionary pressure on their SPs (via the augmentation of functionally redundant genes that buffer mutational fitness loss) and increasing the phylogenetic distance of recombination events, most of the genome-reduced species exhibit a nonconforming state. In contrast, their SPs reflect a combination of low functional redundancy and high selection pressure, resulting in significantly higher levels of conservation and invariance. Our findings indicate that although niche adaptation is the principal mechanism driving speciation, freshwater genome-reduced bacteria often experience extended periods of adaptive stasis. Understanding the adaptive state of microbial species will lead to a better comprehension of their spatiotemporal dynamics, biogeography, and resilience to global change.
Collapse
Affiliation(s)
- Lucas Serra Moncadas
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Cyrill Hofer
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
| |
Collapse
|
47
|
Sun J, Li M, Sun H, Lin Z, Shi B, Jia Z. Genetic association and functional validation of ZFP36L2 in non-syndromic orofacial cleft subtypes. J Hum Genet 2024; 69:139-144. [PMID: 38321215 DOI: 10.1038/s10038-024-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Non-syndromic orofacial cleft (NSOC) is one of the most common craniofacial malformations with complex etiology. This study aimed to explore the role of specific SNPs in ZFP36L2 and its functional relevance in zebrafish models. METHODS We analyzed genetic data of the Chinese Han population from two previous GWAS, comprising of 2512 cases and 2255 controls. Based on the Hardy-Weinberg Equilibrium (HWE) and minor allele frequency (MAF), SNPs in the ZFP36L2 were selected for association analysis. In addition, zebrafish models were used to clarify the in-situ expression pattern of zfp36l2 and the impact of its Morpholino-induced knockdown. RESULTS Via association analysis, rs7933 in ZFP36L2 was significantly associated with various non-syndromic cleft lip-only subtypes, potentially conferring a protective effect. Zebrafish embryos showed elevated expression of zfp36l2 in the craniofacial region during critical stages of oral cavity formation. Furthermore, Morpholino-induced knockdown of zfp36l2 led to craniofacial abnormalities, including cleft lip, which was partially rescued by the addition of zfp36l2 mRNA. CONCLUSION Our findings highlight the significance of ZFP36L2 in the etiology of NSOC, supported by both human genetic association data and functional studies in zebrafish. These results pave the way for further exploration of targeted interventions for craniofacial malformations.
Collapse
Affiliation(s)
- Jialin Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mujia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Huaqin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyuan Lin
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
48
|
Chen S, Navickas A, Goodarzi H. Translational adaptation in breast cancer metastasis and emerging therapeutic opportunities. Trends Pharmacol Sci 2024; 45:304-318. [PMID: 38453522 DOI: 10.1016/j.tips.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Albertas Navickas
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
49
|
Chen Y, Ma S, Ku H, Huangfu B, Wang K, Du C, Zhang M. Contiguous identity between entire coding regions of transgenic and native genes rather than special regions is essential for a strong co-suppression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112016. [PMID: 38311253 DOI: 10.1016/j.plantsci.2024.112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The discovery of co-suppression in plants has greatly boosted the study of gene silencing mechanisms, but its triggering mechanism has remained a mystery. In this study, we explored its possible trigger mechanism by using Fatty acid desaturase 2 (FAD2) and Fatty acid elongase 1 (FAE1) strong co-suppression systems. Analysis of small RNAs in FAD2 co-suppression lines showed that siRNAs distributed throughout the coding region of FAD2 with an accumulated peak. However, mutations of the peak siRNA-matched site and siRNA derived site had not alleviated the co-suppression of its transgenic lines. Synthetic FAD2 (AtFAD2sm), which has synonymous mutations in the entire coding region, failed to trigger any co-suppression. Furthermore, 5' and 3' portions of AtFAD2 and AtFAD2sm were swapped to form two hybrid genes, AtFAD2-3sm and AtFAD2-5sm. 80 % and 92 % of their transgenic lines exhibited co-suppression, respectively. Finally, FAE1s with different degrees of the continuous sequence identity compared with AtFAE1 were tested in their Arabidopsis transgenic lines, and the results showed the co-suppression frequency was reduced as their continuous sequence identity stepped down. This work suggests that contiguous identity between the entire coding regions of transgenic and native genes rather than a special region is essential for a strong co-suppression.
Collapse
Affiliation(s)
- Yangyang Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shijie Ma
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China.
| | - Hangkai Ku
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bingyuan Huangfu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chang Du
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, South China Normal University, Guangzhou, Guangdong 610631, China.
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Jiang Y, Li H, Li Z, Du S, Zhang R, Zhao Y, Christiani DC, Shen S, Chen F. A cross-trait study of lung cancer and its related respiratory diseases based on large-scale exome sequencing population. Transl Lung Cancer Res 2024; 13:512-525. [PMID: 38601445 PMCID: PMC11002514 DOI: 10.21037/tlcr-24-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Background Genome-wide association studies (GWASs) explain the genetic susceptibility between diseases and common variants. Nevertheless, with the appearance of large-scale sequencing profiles, we could explore the rare coding variants in disease pathogenesis. Methods We estimated the genetic correlation of nine respiratory diseases and lung cancer in the UK Biobank (UKB) by linkage disequilibrium score regression (LDSC). Then, we performed exome-wide association studies at single-variant level and gene-level for lung cancer and lung cancer-related respiratory diseases using the whole-exome sequencing (WES) data of 427,934 European participants. Cross-trait meta-analysis was conducted by association analysis based on subsets (ASSET) to identify the pleiotropic variants, while in-silico functional analysis was performed to explore their function. Causal mediation analysis was used to explore whether these pleiotropic variants lead to lung cancer is mediated by affecting the chronic respiratory diseases. Results Five respiratory diseases [emphysema, pneumonia, asthma, chronic obstructive pulmonary disease (COPD), and fibrosis] were genetically correlated with lung cancer. We identified 102 significant independent variants at single-variant levels for lung cancer and five lung cancer-related diseases. 15:78590583:G>A (missense variant in CHRNA5) was shared in lung cancer, emphysema, and COPD. Meanwhile, 14 significant genes and 87 suggestive genes were identified in gene-based association tests, including HSD3B7 (lung cancer), SRSF2 (pneumonia), TNXB (asthma), TERT (fibrosis), MOSPD3 (emphysema). Based on the cross-trait meta-analysis, we detected 145 independent pleiotropic variants. We further identified abundant pathways with significant enrichment effects, demonstrating that these pleiotropic genes were functional. Meanwhile, the proportion of mediation effects of these variants ranged from 6 to 23 (emphysema: 23%; COPD: 20%; pneumonia: 20%; fibrosis: 7%; asthma: 6%) through these five respiratory diseases to the incidence of lung cancer. Conclusions The identified shared genetic variants, genes, biological pathways, and potential intermediate causal pathways provide a basis for further exploration of the relationship between lung cancer and respiratory diseases.
Collapse
Affiliation(s)
- Yunke Jiang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongru Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zaiming Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sha Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing, China
| | - David C. Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing, China
| |
Collapse
|