1
|
Gober JG, Capietto AH, Hoshyar R, Darwish M, Vandlen R, Linehan JL, Delamarre L, ElSohly AM. MHC2-SCALE enhances identification of immunogenic neoantigens. iScience 2025; 28:112212. [PMID: 40235585 PMCID: PMC11999303 DOI: 10.1016/j.isci.2025.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/13/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Recent studies suggest that CD4+ T cells can exert potent anti-tumor effects and improve immunotherapy efficacy by aiding CD8+ T cells. However, characterizing the mechanism of CD4+ T cells' anti-tumor activity has been challenging due to inaccurate major histocompatibility complex class II (MHC-II) peptide prediction algorithms and the lack of high-quality reagents for immune monitoring. To address this, we developed MHC2-substitution of CLIP and analytical LCMS evaluation (MHC2-SCALE), a streamlined approach combining affinity optimized class II-associated invariant chain peptide (CLIP) exchange technology, high throughput 2D-LCMS analysis, and rapid generation of peptide-bound MHC-II monomers for subsequent multimer assembly. We validated MHC-II peptide candidates predicted by the immune epitope database (IEDB) algorithm, as well as uncovered many true and immunogenic MHC-II binders that were not predicted by IEDB. Thus, MHC2-SCALE expands the opportunities for discovering, tracking, and phenotyping antigen-specific CD4+ T cells in preclinical and clinical settings, thereby improving therapies for cancer, autoimmunity, or infectious diseases.
Collapse
Affiliation(s)
- Joshua G. Gober
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
| | | | - Reyhane Hoshyar
- Cancer Immunology Department, Genentech Inc, South San Francisco, CA, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
| | - Richard Vandlen
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Cancer Immunology Department, Genentech Inc, South San Francisco, CA, USA
| | - Adel M. ElSohly
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
- Department of Immunology Discovery, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
2
|
Shi Y, Strasser A, Green DR, Latz E, Mantovani A, Melino G. Legacy of the discovery of the T-cell receptor: 40 years of shaping basic immunology and translational work to develop novel therapies. Cell Mol Immunol 2024; 21:790-797. [PMID: 38822079 PMCID: PMC11214623 DOI: 10.1038/s41423-024-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024] Open
Affiliation(s)
- Yufang Shi
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53175, Germany
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
3
|
Jin H, Chen Y, Zhang D, Lin J, Huang S, Wu X, Deng W, Huang J, Yao Y. YTHDF2 favors protumoral macrophage polarization and implies poor survival outcomes in triple negative breast cancer. iScience 2024; 27:109902. [PMID: 38812540 PMCID: PMC11134561 DOI: 10.1016/j.isci.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with triple-negative breast cancer (TNBC) frequently experience resistance to chemotherapy, leading to recurrence. The approach of optimizing anti-tumoral immunological effect is promising in overcoming such resistance, given the heterogeneity and lack of biomarkers in TNBC. In this study, we focused on YTHDF2, an N6-methyladenosine (m6A) RNA-reader protein, in macrophages, one of the most abundant intra-tumoral immune cells. Using single-cell sequencing and ex vivo experiments, we discovered that YTHDF2 significantly promotes pro-tumoral phenotype polarization of macrophages and is closely associated with down-regulated antigen-presentation signaling to other immune cells in TNBC. The in vitro deprivation of YTHDF2 favors anti-tumoral effect. Expressions of multiple transcription factors, especially SPI1, were consistently observed in YTHDF2-high macrophages, providing potential therapeutic targets for new strategies. In conclusion, YTHDF2 in macrophages appears to promote pro-tumoral effects while suppressing immune activity, indicating the treatment targeting YTHDF2 or its transcription factors could be a promising strategy for chemoresistant TNBC.
Collapse
Affiliation(s)
- Hao Jin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Yue Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Dongbo Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Junfan Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Songyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Xiaohua Wu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wen Deng
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong Province 516621, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong Province 516621, China
| |
Collapse
|
4
|
Pan YG, Bartolo L, Xu R, Patel BV, Zarnitsyna VI, Su LF. Preservation of naive-phenotype CD4+ T cells after vaccination contributes to durable immunity. JCI Insight 2024; 9:e180667. [PMID: 38861490 PMCID: PMC11383171 DOI: 10.1172/jci.insight.180667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Memory T cells are conventionally associated with durable recall responses. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found CD45RO-CCR7+ virus-specific CD4+ T cells that expanded shortly after vaccination and persisted months to years after immunization. Further phenotypic analyses revealed the presence of stem cell-like memory T cells within this subset. In addition, after vaccination T cells lacking known memory markers and functionally resembling genuine naive T cells were identified, referred to herein as marker-negative T (TMN) cells. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified TMN TCRs shared with memory and effector T cells. Longitudinal tracking of YFV-specific responses over subsequent years revealed superior stability of TMN cells, which correlated with the longevity of the overall tetramer+ population. These findings uncover additional complexity within the post-immune T cell compartment and implicate TMN cells in durable immune responses.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Bijal V Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | - Laura F Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Pan YG, Bartolo L, Xu R, Patel B, Zarnitsyna V, Su L. Differentiation marker-negative CD4 + T cells persist after yellow fever virus vaccination and contribute to durable memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584523. [PMID: 38559113 PMCID: PMC10979963 DOI: 10.1101/2024.03.11.584523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Bijal Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Laura Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Ishina IA, Kurbatskaia IN, Mamedov AE, Shramova EI, Deyev SM, Nurbaeva KS, Rubtsov YP, Belogurov AA, Gabibov AG, Zakharova MY. Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 + T-cell engagement. Front Bioeng Biotechnol 2024; 11:1341685. [PMID: 38304104 PMCID: PMC10833362 DOI: 10.3389/fbioe.2023.1341685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
7
|
Jiang N, Malone M, Chizari S. Antigen-specific and cross-reactive T cells in protection and disease. Immunol Rev 2023; 316:120-135. [PMID: 37209375 PMCID: PMC10524458 DOI: 10.1111/imr.13217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
8
|
Vyasamneni R, Kohler V, Karki B, Mahimkar G, Esaulova E, McGee J, Kallin D, Sheen JH, Harjanto D, Kirsch M, Poran A, Dong J, Srinivasan L, Gaynor RB, Bushway ME, Srouji JR. A universal MHCII technology platform to characterize antigen-specific CD4 + T cells. CELL REPORTS METHODS 2023; 3:100388. [PMID: 36814840 PMCID: PMC9939426 DOI: 10.1016/j.crmeth.2022.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
CD4+ T cells are critical to the immune system and perform multiple functions; therefore, their identification and characterization are crucial to better understanding the immune system in both health and disease states. However, current methods rarely preserve their ex vivo phenotype, thus limiting our understanding of their in vivo functions. Here we introduce a flexible, rapid, and robust platform for ex vivo CD4+ T cell identification. By combining MHCII allele purification, allele-independent peptide loading, and multiplexed flow cytometry technologies, we can enable high-throughput personalized CD4+ T cell identification, immunophenotyping, and sorting. Using this platform in combination with single-cell sorting and multimodal analyses, we identified and characterized antigen-specific CD4+ T cells relevant to COVID-19 and cancer neoantigen immunotherapy. Overall, our platform can be used to detect and characterize CD4+ T cells across multiple diseases, with potential to guide CD4+ T cell epitope design for any disease-specific immunization strategy.
Collapse
Affiliation(s)
| | | | - Binisha Karki
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Gauri Mahimkar
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Jonathan McGee
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Daniel Kallin
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Dewi Harjanto
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Miles Kirsch
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Asaf Poran
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Jesse Dong
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | - John R. Srouji
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Murata K, Ly D, Saijo H, Matsunaga Y, Sugata K, Ihara F, Oryoji D, Ohashi Y, Saso K, Wang CH, Zheng EY, Burt BD, Butler MO, Hirano N. Modification of the HLA-A*24:02 Peptide Binding Pocket Enhances Cognate Peptide-Binding Capacity and Antigen-Specific T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2022; 209:1481-1491. [DOI: 10.4049/jimmunol.2200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The immunogenicity of a T cell Ag is correlated with the ability of its antigenic epitope to bind HLA and be stably presented to T cells. This presents a challenge for the development of effective cancer immunotherapies, as many self-derived tumor-associated epitopes elicit weak T cell responses, in part due to weak binding affinity to HLA. Traditional methods to increase peptide–HLA binding affinity involve modifying the peptide to reflect HLA allele binding preferences. Using a different approach, we sought to analyze whether the immunogenicity of wild-type peptides could be altered through modification of the HLA binding pocket. After analyzing HLA class I peptide binding pocket alignments, we identified an alanine 81 to leucine (A81L) modification within the F binding pocket of HLA-A*24:02 that was found to heighten the ability of artificial APCs to retain and present HLA-A*24:02–restricted peptides, resulting in increased T cell responses while retaining Ag specificity. This modification led to increased peptide exchange efficiencies for enhanced detection of low-avidity T cells and, when expressed on artificial APCs, resulted in greater expansion of Ag-specific T cells from melanoma-derived tumor-infiltrating lymphocytes. Our study provides an example of how modifications to the HLA binding pocket can enhance wild-type cognate peptide presentation to heighten T cell activation.
Collapse
Affiliation(s)
- Kenji Murata
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dalam Ly
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hiroshi Saijo
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yukiko Matsunaga
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kenji Sugata
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fumie Ihara
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daisuke Oryoji
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yota Ohashi
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Kayoko Saso
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chung-Hsi Wang
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Evey Y.F. Zheng
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| | - Brian D. Burt
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus O. Butler
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
- ‡Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- *Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
10
|
Isser A, Silver AB, Pruitt HC, Mass M, Elias EH, Aihara G, Kang SS, Bachmann N, Chen YY, Leonard EK, Bieler JG, Chaisawangwong W, Choy J, Shannon SR, Gerecht S, Weber JS, Spangler JB, Schneck JP. Nanoparticle-based modulation of CD4 + T cell effector and helper functions enhances adoptive immunotherapy. Nat Commun 2022; 13:6086. [PMID: 36241639 PMCID: PMC9568616 DOI: 10.1038/s41467-022-33597-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Helper (CD4+) T cells perform direct therapeutic functions and augment responses of cells such as cytotoxic (CD8+) T cells against a wide variety of diseases and pathogens. Nevertheless, inefficient synthetic technologies for expansion of antigen-specific CD4+ T cells hinders consistency and scalability of CD4+ T cell-based therapies, and complicates mechanistic studies. Here we describe a nanoparticle platform for ex vivo CD4+ T cell culture that mimics antigen presenting cells (APC) through display of major histocompatibility class II (MHC II) molecules. When combined with soluble co-stimulation signals, MHC II artificial APCs (aAPCs) expand cognate murine CD4+ T cells, including rare endogenous subsets, to induce potent effector functions in vitro and in vivo. Moreover, MHC II aAPCs provide help signals that enhance antitumor function of aAPC-activated CD8+ T cells in a mouse tumor model. Lastly, human leukocyte antigen class II-based aAPCs expand rare subsets of functional, antigen-specific human CD4+ T cells. Overall, MHC II aAPCs provide a promising approach for harnessing targeted CD4+ T cell responses.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Aliyah B Silver
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hawley C Pruitt
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
| | - Michal Mass
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emma H Elias
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, 21287, USA
| | - Gohta Aihara
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Si-Sim Kang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Niklas Bachmann
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ying-Yu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elissa K Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joan G Bieler
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Worarat Chaisawangwong
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joseph Choy
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jonathan P Schneck
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
11
|
Su FY, Zhao QH, Dahotre SN, Gamboa L, Bawage SS, Silva Trenkle AD, Zamat A, Phuengkham H, Ahmed R, Santangelo PJ, Kwong GA. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. SCIENCE ADVANCES 2022; 8:eabm7950. [PMID: 35196075 PMCID: PMC8865765 DOI: 10.1126/sciadv.abm7950] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 05/06/2023]
Abstract
Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Qingyang Henry Zhao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shreyas N. Dahotre
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Swapnil Subhash Bawage
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Aaron D. Silva Trenkle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Philip J. Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Tan BJ, Sugata K, Reda O, Matsuo M, Uchiyama K, Miyazato P, Hahaut V, Yamagishi M, Uchimaru K, Suzuki Y, Ueno T, Suzushima H, Katsuya H, Tokunaga M, Uchiyama Y, Nakamura H, Sueoka E, Utsunomiya A, Ono M, Satou Y. HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma. J Clin Invest 2021; 131:e150472. [PMID: 34907908 PMCID: PMC8670839 DOI: 10.1172/jci150472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and induces chronic, persistent infection in infected individuals, with some developing adult T cell leukemia/lymphoma (ATL). HTLV-1 alters cellular differentiation, activation, and survival; however, it is unknown whether and how these changes contribute to the malignant transformation of infected cells. In this study, we used single-cell RNA-sequencing and T cell receptor-sequencing to investigate the differentiation and HTLV-1-mediated transformation of T cells. We analyzed 87,742 PBMCs from 12 infected and 3 uninfected individuals. Using multiple independent bioinformatics methods, we demonstrated the seamless transition of naive T cells into activated T cells, whereby HTLV-1-infected cells in an activated state further transformed into ATL cells, which are characterized as clonally expanded, highly activated T cells. Notably, the greater the activation state of ATL cells, the more they acquire Treg signatures. Intriguingly, the expression of HLA class II genes in HTLV-1-infected cells was uniquely induced by the viral protein Tax and further upregulated in ATL cells. Functional assays revealed that HTLV-1-infected cells upregulated HLA class II molecules and acted as tolerogenic antigen-presenting cells to induce anergy of antigen-specific T cells. In conclusion, our study revealed the in vivo mechanisms of HTLV-1-mediated transformation and immune escape at the single-cell level.
Collapse
Affiliation(s)
- Benjy J.Y. Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
| | - Omnia Reda
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
| | | | - Paola Miyazato
- International Research Center for Medical Sciences (IRCMS), and
| | - Vincent Hahaut
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences and
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences and
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Suzushima
- Department of Hematology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Hiroo Katsuya
- International Research Center for Medical Sciences (IRCMS), and
- Division of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yoshikazu Uchiyama
- Division of Informative Clinical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ono
- International Research Center for Medical Sciences (IRCMS), and
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
| |
Collapse
|
14
|
van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Advances in allergen-specific immune cell measurements for improved detection of allergic sensitization and immunotherapy responses. Allergy 2021; 76:3374-3382. [PMID: 34355403 DOI: 10.1111/all.15036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Over the past two decades, precision medicine has advanced diagnostics and treatment of allergic diseases. Component-resolved analysis of allergen sensitization facilitates stratification of patients. Furthermore, new formulations of allergen immunotherapy (AIT) products can more effectively deliver the relevant components. Molecular insights from the identification of allergen component sensitization and clinical outcomes of treatment with new AIT formulations can now be utilized for a deeper understanding of the nature of the pathogenic immune response in allergy and how this can be corrected by AIT. Fundamental in these processes are the allergen-specific B and T cells. Within the large B- and T-cell compartments, only those that specifically recognize the allergen with their immunoglobulin (Ig) or T-cell receptor (TCR), respectively, are of clinical relevance. With peripheral blood allergen-specific B- and T-cell frequencies below 1%, bulk cell analysis is typically insufficiently sensitive. We here review the latest technologies to detect allergen-specific B and T cells, as well as new developments in utilizing these tools for diagnostics and therapy monitoring to advance precision medicine for allergic diseases.
Collapse
Affiliation(s)
- Menno C. van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
15
|
Sun Q, Melino G, Amelio I, Jiang J, Wang Y, Shi Y. Recent advances in cancer immunotherapy. Discov Oncol 2021; 12:27. [PMID: 35201440 PMCID: PMC8777500 DOI: 10.1007/s12672-021-00422-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy represents a major advance in the cure of cancer following the dramatic advancements in the development and refinement of chemotherapies and radiotherapies. In the recent decades, together with the development of early diagnostic techniques, immunotherapy has significantly contributed to improving the survival of cancer patients. The immune-checkpoint blockade agents have been proven effective in a significant fraction of standard therapy refractory patients. Importantly, recent advances are providing alternative immunotherapeutic tools that could help overcome their limitations. In this mini review, we provide an overview on the main steps of the discovery of classic immune-checkpoint blockade agents and summarise the most recent development of novel immunotherapeutic strategies, such as tumour antigens, bispecific antibodies and TCR-engineered T cells.
Collapse
Affiliation(s)
- Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jingting Jiang
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yufang Shi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
16
|
Ambite I, Butler D, Wan MLY, Rosenblad T, Tran TH, Chao SM, Svanborg C. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol 2021; 18:468-486. [PMID: 34131331 PMCID: PMC8204302 DOI: 10.1038/s41585-021-00477-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ines Ambite
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Therese Rosenblad
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Nephrology Service, Department of Paediatrics, KK Hospital, Singapore, Singapore
| | - Catharina Svanborg
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|