1
|
Aloryi KD, Okpala NE, Amenyogbe MK, Bimpong D, Karikari B, Guo H, Bello SF, Akaba S, Yeboah A, Ahmed AR, Ngegba PM, Kamara N, Anyanwu JN, Essandoh DA, Qiu X, Tian X, Wang G, An T. Whole-genome meta-analysis coupled with haplotype analysis reveal new genes and functional haplotypes conferring pre-harvest sprouting in rice. BMC PLANT BIOLOGY 2025; 25:527. [PMID: 40275165 DOI: 10.1186/s12870-025-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Pre-harvest sprouting (PHS), which adversely impacts grain yield and quality, is controlled by seed dormancy genes. However, only a few dormancy-related genes have been characterized, and the effects of allelic variation in genes and the genetic basis of seed dormancy in rice remain largely unknown. Here, we performed a whole-genome meta-quantitative trait loci study to elucidate the genetic basis of seed dormancy in rice. RESULT One hundred and sixty-seven QTL were identified for PHS from which 134 were successfully projected onto the reference map yielding 20 consensus regions, meta-QTL (mQTL). The mean confidence interval of the mQTL was narrower (9.56-fold reduction) than that of the initial QTL. Six of the 20 identified mQTL were designated as breeders' mQTL based on their small confidence intervals, large phenotypic variance explained, and the involvement of high number of QTL. Further, we retrieved 559 high-confidence genes from breeders' mQTL regions conferring resistance to PHS. Comparative analysis of genes found in breeders' mQTL loci and an RNA-seq-based transcriptomic dataset discovered 34 common genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed a significant enrichment of the common genes in amino sugar and nucleotide sugar metabolism, carbon metabolism, and carbon fixation in photosynthetic organs. Combined in silico expression profiling and qRT-PCR validation showed that LOC_Os10g18364, LOC_Os10g21940, LOC_Os10g22590, and LOC_Os10g25140 exhibited high fold-change expression in PHS resistant cultivar (23xS-261) than PHS susceptible cultivar (23xS-262). Association analysis of these genes with germination rate index demonstrated that LOC_Os10g18364Hap1, LOC_Os10g21940Hap1, LOC_Os10g22590Hap1, and LOC_Os10g25140Hap1/Hap3 exhibited low germination rate (GR) in cultivars carrying these haplotypes. CONCLUSION In summary, this study delineates the genetic basis of PHS and provides a new set of target genes for improving PHS resistance. The natural variants identified in these genes and markers associated with breeders' mQTL serve as potential resources for incorporating PHS resistance in rice.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nnaemeka Emmanuel Okpala
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mawuli Korsi Amenyogbe
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Daniel Bimpong
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Benjamin Karikari
- Département de phytologie, Université Laval, Québec, QC, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hong Guo
- Zhejiang Industry Polytechnic College, Shaoxing, China
| | - Semiu Folaniyi Bello
- Agriculture Research Group, Organization of African Academic Doctors (OAAD), P. O. Box 25305-00100, Langata, Nairobi, Kenya
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Akwasi Yeboah
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Abdul Razak Ahmed
- Department of Plant Protection, Akdeniz University Dumlupinar Bulvari, Antalya, 07058, Türkiye
| | - Patrick Maada Ngegba
- Sierra Leone Agricultural Research Institute, P.M.B 1313, Tower Hill, Freetown, 47235, Sierra Leone
| | - Nabieu Kamara
- Sierra Leone Agricultural Research Institute, P.M.B 1313, Tower Hill, Freetown, 47235, Sierra Leone
| | | | - Danielle Ama Essandoh
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, 30602, USA
| | - Xianjin Qiu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Guo D, Li Y, Lu H, Zhao Y, Kurata N, Wei X, Wang A, Wang Y, Zhan Q, Fan D, Zhou C, Lu Y, Tian Q, Weng Q, Feng Q, Huang T, Zhang L, Gu Z, Wang C, Wang Z, Wang Z, Huang X, Zhao Q, Han B. A pangenome reference of wild and cultivated rice. Nature 2025:10.1038/s41586-025-08883-6. [PMID: 40240605 DOI: 10.1038/s41586-025-08883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Oryza rufipogon, the wild progenitor of Asian cultivated rice Oryza sativa, is an important resource for rice breeding1. Here we present a wild-cultivated rice pangenome based on 145 chromosome-level assemblies, comprising 129 genetically diverse O. rufipogon accessions and 16 diverse varieties of O. sativa. This pangenome contains 3.87 Gb of sequences that are absent from the O. sativa ssp. japonica cv. Nipponbare reference genome. We captured alternate assemblies that include heterozygous information missing in the primary assemblies, and identified a total of 69,531 pan-genes, with 28,907 core genes and 13,728 wild-rice-specific genes. We observed a higher abundance and a significantly greater diversity of resistance-gene analogues in wild rice than in cultivars. Our analysis indicates that two cultivated subpopulations, intro-indica and basmati, were generated through gene flows among cultivars in South Asia. We also provide strong evidence to support the theory that the initial domestication of all Asian cultivated rice occurred only once. Furthermore, we captured 855,122 differentiated single-nucleotide polymorphisms and 13,853 differentiated presence-absence variations between indica and japonica, which could be traced to the divergence of their respective ancestors and the existence of a larger genetic bottleneck in japonica. This study provides reference resources for enhancing rice breeding, and enriches our understanding of the origins and domestication process of rice.
Collapse
Affiliation(s)
- Dongling Guo
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hengyun Lu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nori Kurata
- Plant Genetics Laboratory and Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhoulin Gu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zixuan Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Patil AS, Oak MD, Gijare S, Gobade A, Jaybhay S, Surve VD, G SP, Salunkhe D, Waghmare BN, Idhol B, Patil RM, Pawar D. Genome-wide exploration of soybean domestication traits: integrating association mapping and SNP × SNP interaction analyses. PLANT MOLECULAR BIOLOGY 2025; 115:55. [PMID: 40178675 DOI: 10.1007/s11103-025-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Soybean domestication has been essential for crop evolution, adaptation, and modern breeding. Despite advancements in understanding soybean genetics, the genetic basis of DRTs has yet to be fully explored, particularly in the context of genome-wide association studies (GWASs) and gene interaction analyses (epistasis). This study evaluated 198 diverse soybean accessions using 23,574 high-quality SNPs obtained via ddRAD-seq. Nine key DRTs-including those related to seed size (length, width, and thickness), seed coat color, cotyledon color, hypocotyl color, stem growth habit, flower color, pod color, pubescence, and pod-shattering-were phenotyped in two environments. A GWASs conducted via the FarmCPU and BLINK models identified 78 significant SNPs, 14 consistently detected across both environments and models, demonstrating stability. Notably, the SNP rs.Gm16.29778273 linked to pod-shattering resistance. The functional annotation linked three known quantitative trait loci /genes and revealed 11 novel candidate genes associated with DRTs, providing insights into their roles via Gene Ontology (GO) terms. The main effect SNP × SNP interaction analysis revealed that the significant SNP rs.Gm13.16695800 exhibits a pleiotropic effect, controlling both hypocotyl and flower color. Furthermore, 324 epistatic interactions were identified, influencing the expression of DRTs, thereby highlighting the complex genetic architecture underlying these traits. These findings offer valuable insights into domestication and the traits linked to higher yield. They provide a solid foundation for developing marker-assisted selection (MAS) strategies and functional studies to improve soybean breeding for resilient, high-yielding varieties.
Collapse
Affiliation(s)
- Abhinandan S Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| | - Manoj D Oak
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreyash Gijare
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Aditya Gobade
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Santosh Jaybhay
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Vilas D Surve
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Suresha P G
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Dattatraya Salunkhe
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Balasaheb N Waghmare
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Bhanudas Idhol
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Ravindra M Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Deepak Pawar
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| |
Collapse
|
4
|
Zhu L, Lv Y, Shi T, Huang J, Du Q, Tang G, Sun G, Prince O, Chen Q. Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3483-3494. [PMID: 39821414 DOI: 10.1002/jsfa.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent). Key traits, including germination percentage, germination energy, germination index, field PHS (PHS-F) and simulated PHS (PHS-S), were evaluated, and a quantitative trait locus (QTL) mapping analysis was performed. RESULTS (i) PHS-S was strongly and significantly correlated with PHS-F. (ii) A total of 11 QTLs associated with seed germination and 14 QTLs related to PHS were identified. Notably, the major QTL cluster qPHS8-1 was consistently detected and mapped within the interval of 8.53-9.65 Mbp on chromosome Ft8. (iii) Genotyping of 221 XJ-RILs across eight chromosomes revealed five residual heterozygous lines carrying a heterozygous interval of qPHS8-1 cluster, with inbred line R56 being particularly suited for the fine mapping of qPHS8-1. CONCLUSION The PHS-S test, conducted on entire Tartary buckwheat spikes, is an effective and comprehensive method for assessing PHS resistance in this crop. QTL mapping identified qPHS8-1 as a major locus for PHS resistance, and inbred line R56 offers a promising resource for further fine mapping of this cluster. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yong Lv
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Qianqian Du
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Guohong Tang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Genlou Sun
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Odika Prince
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| |
Collapse
|
5
|
Li Q, An W, Ma J, Zhang H, Luo M, Qi Y, Meurer J, Ji D, Chi W. The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70060. [PMID: 40026239 DOI: 10.1111/tpj.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Photosystem II (PSII) is one of the most thermosensitive components of photosynthetic apparatus in higher plants. Heat-inactivation of PSII may be followed by dissociation of antenna proteins, however, the fate and regulation mechanism of detached antenna proteins during this process remains unclear. Here, we investigate the regulation mechanism of two minor antenna proteins CP24 and CP29 during heat acclimation via the study on a thylakoid protein BCM1. BCM1 is distributed in both grana cores (GC) and stroma lamellae of thylakoids. However, heat stress induced its accumulation in grana cores but not stroma lamellae. Deficiency of BCM1 leads to the decline of plant resilience to heat stress, which results from the accelerated degradation of CP24 and CP29 in vivo. Heat stress induces a redistribution of CP24 and CP29 from the grana cores to the stroma lamellae, a shift that is exacerbated in bcm1 mutants, suggesting that migration of detached antennae proteins between thylakoid subcompartments may contribute to their degradation during heat acclimation. As an integral thylakoid protein, BCM1 physically interacts with CP24 and CP29. We propose that BCM1 serves as a stabilizing "anchor", effectively sequestering CP24 and CP29 within the grana cores thereby reducing their exposure to degradation in the stroma lamellae.
Collapse
Affiliation(s)
- Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing An
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongmei Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152, Planegg-Martinsried, Germany
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
6
|
Krüger T, Brandt D, Sodenkamp J, Gasper M, Romera-Branchat M, Ahloumessou F, Gehring E, Drotleff J, Bell C, Kramer K, Eirich J, Soppe WJJ, Finkemeier I, Née G. DOG1 controls dormancy independently of ABA core signaling kinases regulation by preventing AFP dephosphorylation through AHG1. SCIENCE ADVANCES 2025; 11:eadr8502. [PMID: 40020062 PMCID: PMC11870083 DOI: 10.1126/sciadv.adr8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Seed dormancy determines germination timing, influencing seed plant adaptation and overall fitness. DELAY OF GERMINATION 1 (DOG1) is a conserved central regulator of dormancy cooperating with the phytohormone abscisic acid (ABA) through negative regulation of ABA HYPERSENSITIVE GERMINATION (AHG) 1 and AHG3 phosphatases. The current molecular mechanism of DOG1 signaling proposes it regulates the activation of central ABA-related SnRK2 kinases. Here, we unveil DOG1's functional autonomy from the regulation of ABA core signaling components and unravel its pivotal control over the activation of ABSCISIC ACID INSENSITIVE FIVE BINDING PROTEINs (AFPs). Our data revealed a molecular relay in which AFPs' genuine activation by AHG1 is contained by DOG1 to prevent the breakdown of maturation-imposed ABA responses independently of ABA-related kinase activation status. This work offers a molecular understanding of how plants fine-tune germination timing, while preserving seed responsiveness to adverse environmental cues, and thus represents a milestone in the realm of conservation and breeding programs.
Collapse
Affiliation(s)
- Thorben Krüger
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Dennis Brandt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Johanna Sodenkamp
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Michael Gasper
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Maida Romera-Branchat
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Florian Ahloumessou
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
| | - Elena Gehring
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Julia Drotleff
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Wim J. J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Rijk Zwaan, De Lier, 2678 ZG, Netherlands
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Guillaume Née
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
7
|
Zhang W, Li S, Xu W, Wang Q, Zhang H, Liu X, Chen X, Xu D, Chen H. Knocking out artificially selected gene GmAOC4 H8 improves germination in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:54. [PMID: 39992407 DOI: 10.1007/s00122-025-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Seed germination is an essential stage in the life cycle of flowering plants, influencing the field emergence rates of seeds. Consequently, the role of GmAOC4 in soybean seed germination was investigated in the present study. Results suggested that the chloroplast-localized GmAOC4 exhibited high expression levels in the roots and young pods and during the seed germination stage in soybeans. It was found that GmAOC4 has been artificially selected during soybean domestication and improvement and that GmAOC4H8 showed repressed seed germination, of which the frequency in landraces and cultivars decreased when compared with wild soybean. Knocking out GmAOC4H8 via CRISPR/Cas9 led to enhanced germination in gmaoc4 mutants, suggesting its negative regulation on seed germination in soybeans. Additionally, decreased endogenous jasmonic acid (JA) and JA precursor, 12-oxo-phytodienoic acid, were found in gmaoc4 mutants. RNA-seq analyses revealed that 91 and 269 differentially expressed genes (DEGs) were up-regulated and down-regulated in gmaoc4 mutants, respectively. Among these DEGs, three genes were involved in JA biosynthetic and signaling pathways. Our results offer new insights into the mechanism of soybean seed germination regulation by GmAOC4.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Songsong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenjing Xu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Qiong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Donghe Xu
- Japan International Research Center for Agricultural Science, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu Province, China.
| |
Collapse
|
8
|
Duan Z, Xu L, Zhou G, Zhu Z, Wang X, Shen Y, Ma X, Tian Z, Fang C. Unlocking soybean potential: genetic resources and omics for breeding. J Genet Genomics 2025:S1673-8527(25)00041-4. [PMID: 39984157 DOI: 10.1016/j.jgg.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Soybean (Glycine max) is a vital foundation of global food security, providing a primary source of high-quality protein and oil for human consumption and animal feed. The rising global population has significantly increased the demand for soybeans, emphasizing the urgency of developing high-yield, stress-tolerant, and nutritionally superior cultivars. The extensive collection of soybean germplasm resources-including wild relatives, landraces, and cultivars-represents a valuable reservoir of genetic diversity critical for breeding advancements. Recent breakthroughs in genomic technologies, particularly high-throughput sequencing and multi-omics approaches, have revolutionized the identification of key genes associated with essential agronomic traits within these resources. These innovations enable precise and strategic utilization of genetic diversity, empowering breeders to integrate traits that improve yield potential, resilience to biotic and abiotic stresses, and nutritional quality. This review highlights the critical role of genetic resources and omics-driven innovations in soybean breeding. It also offers insights into strategies for accelerating the development of elite soybean cultivars to meet the growing demands of global soybean production.
Collapse
Affiliation(s)
- Zongbiao Duan
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Liangwei Xu
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Guoan Zhou
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Zhu
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Xudong Wang
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Yanting Shen
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chao Fang
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China.
| |
Collapse
|
9
|
Tian Z, Nepomuceno AL, Song Q, Stupar RM, Liu B, Kong F, Ma J, Lee SH, Jackson SA. Soybean2035: A decadal vision for soybean functional genomics and breeding. MOLECULAR PLANT 2025; 18:245-271. [PMID: 39772289 DOI: 10.1016/j.molp.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025]
Abstract
Soybean, the fourth most important crop in the world, uniquely serves as a source of both plant oil and plant protein for the world's food and animal feed. Although soybean production has increased approximately 13-fold over the past 60 years, the continually growing global population necessitates further increases in soybean production. In the past, especially in the last decade, significant progress has been made in both functional genomics and molecular breeding. However, many more challenges should be overcome to meet the anticipated future demand. Here, we summarize past achievements in the areas of soybean omics, functional genomics, and molecular breeding. Furthermore, we analyze trends in these areas, including shortages and challenges, and propose new directions, potential approaches, and possible outputs toward 2035. Our views and perspectives provide insight into accelerating the development of elite soybean varieties to meet the increasing demands of soybean production.
Collapse
Affiliation(s)
- Zhixi Tian
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | | | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Soybean Biology (Beijing) (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Fu D, Zhou H, Grimm B, Wang P. The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants. MOLECULAR PLANT 2025; 18:76-94. [PMID: 39628053 DOI: 10.1016/j.molp.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.
Collapse
Affiliation(s)
- Dali Fu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanlin Zhou
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany.
| | - Peng Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China; Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
11
|
Burbano‐Erazo E, Ezquerro M, Sanchez‐Bel P, Rodriguez‐Concepcion M. Specific sets of geranylgeranyl diphosphate synthases and phytoene synthases control the production of carotenoids and ABA in different tomato tissues. PHYSIOLOGIA PLANTARUM 2025; 177:e70052. [PMID: 39821357 PMCID: PMC11738847 DOI: 10.1111/ppl.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes. Three plastid-localized GGPPS isoforms (referred to as SlG1-3) and three PSY enzymes (PSY1-3) are present in tomato (Solanum lycopersicum). Our previous work showed that SlG1 and PSY3 function together in the roots, whereas the rest of the isoforms are required in aerial tissues. Here we generated and analyzed combinations of double mutants lacking PSY1 or PSY2 and SlG2 or SlG3 to investigate the contribution of specific GGPPS and PSY pairs to the production of carotenoids and ABA in different tissues of the tomato plant. Despite that the loss of individual enzymes was found to trigger compensatory mechanisms that complicate interpretation of the results, the results confirm a major role for SlG3 in providing GGPP to PSY2 for housekeeping carotenoid biosynthesis in leaves, whereas SlG2 and PSY1 become most relevant when a more active production is required in flowers and breaker fruits, i.e., at the onset of ripening. We could also confirm that ABA production in the fruit pericarp is more dependent on PSY1 activity than on total carotenoid levels and that fruit size correlates with ABA levels accumulated in ripe rather than breaker fruits.
Collapse
Affiliation(s)
- Esteban Burbano‐Erazo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC‐Universitat Politècnica de ValènciaValènciaSpain
- Facultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
| | - Miguel Ezquerro
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC‐Universitat Politècnica de ValènciaValènciaSpain
| | - Paloma Sanchez‐Bel
- Department of Biology, Biochemistry and Natural SciencesUniversitat Jaume ICastellóSpain
| | - Manuel Rodriguez‐Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC‐Universitat Politècnica de ValènciaValènciaSpain
| |
Collapse
|
12
|
Cheng X, Zhang S, E Z, Yang Z, Cao S, Zhang R, Niu B, Li QF, Zhou Y, Huang XY, Liu QQ, Chen C. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. THE PLANT CELL 2024; 37:koae304. [PMID: 39549266 DOI: 10.1093/plcell/koae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Su Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311499, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Sijia Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572022, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Li J, Liu Z, You C, Qi Z, You J, Grover CE, Long Y, Huang X, Lu S, Wang Y, Zhang S, Wang Y, Bai R, Zhang M, Jin S, Nie X, Wendel JF, Zhang X, Wang M. Convergence and divergence of diploid and tetraploid cotton genomes. Nat Genet 2024; 56:2562-2573. [PMID: 39472693 DOI: 10.1038/s41588-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/10/2024]
Abstract
Polyploidy is an important driving force in speciation and evolution; however, the genomic basis for parallel selection of a particular trait between polyploids and ancestral diploids remains unexplored. Here we construct graph-based pan-genomes for diploid (A2) and allotetraploid (AD1) cotton species, enabled by an assembly of 50 genomes of genetically diverse accessions. We delineate a mosaic genome map of tetraploid cultivars that illustrates genomic contributions from semi-wild forms into modern cultivars. Pan-genome comparisons identify syntenic and hyper-divergent regions of continued variation between diploid and tetraploid cottons, and suggest an ongoing process of sequence evolution potentially linked to the contrasting genome size change in two subgenomes. We highlight 43% of genetic regulatory relationships for gene expression in diploid encompassing sequence divergence after polyploidy, and specifically characterize six underexplored convergent genetic loci contributing to parallel selection of fiber quality. This study offers a framework for pan-genomic dissection of genetic regulatory components underlying parallel selection of desirable traits in organisms.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yawen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhe Bai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengke Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Cheng F, Wang X, Qian W. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3102-3117. [PMID: 39095952 PMCID: PMC11501001 DOI: 10.1111/pbi.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Helong Zhang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng Cheng
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wei Qian
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
- Zhongyuan Research Center, Chinese Academy of Agricultural SciencesXinxiangChina
| |
Collapse
|
15
|
Yin X, Ren Z, Jia R, Wang X, Yu Q, Zhang L, Liu L, Shen W, Fang Z, Liang J, Liu B. Metabolic profiling and spatial metabolite distribution in wild soybean ( G. soja) and cultivated soybean ( G. max) seeds. Food Chem X 2024; 23:101717. [PMID: 39229612 PMCID: PMC11369396 DOI: 10.1016/j.fochx.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Wild soybeans retain many substances significantly reduced or lost in cultivars during domestication. This study utilized LC-MS to analyze metabolites in the seed coats and embryos of wild and cultivated soybeans. 866 and 815 metabolites were identified in the seed extracts of both soybean types, with 35 and 10 significantly differing metabolites in the seed coat and embryos, respectively. The upregulated metabolites in wild soybeans are linked to plant defense, stress responses, and nitrogen cycling. MALDI-MSI results further elucidated the distribution of these differential metabolites in the cotyledons, hypocotyls, and radicles. In addition to their role in physiological processes like growth and response to environmental stimuli, the prevalent terpenoids, lipids, and flavonoids present in wild soybeans exhibit beneficial bioactivities, including anti-inflammatory, antibacterial, anticancer, and cardiovascular disease prevention properties. These findings underscore the potential of wild soybeans as a valuable resource for enhancing the nutritional and ecological adaptability of cultivated soybeans.
Collapse
Affiliation(s)
- Xin Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhentao Ren
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qi Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenjing Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhixiang Fang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
16
|
Zhao X, Liu M, Li C, Zhang J, Li T, Sun F, Lu P, Xu Y. Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet ( Panicum miliaceum L.). Int J Mol Sci 2024; 25:11012. [PMID: 39456795 PMCID: PMC11507134 DOI: 10.3390/ijms252011012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest crops, domesticated nearly 8000 years ago in northern China. It gradually spread across the entire Eurasian continent, as well as to America and Africa, with recent improvement in various reproductive and vegetative traits. To identify the genes that were selected during the domestication and improvement processes, we performed a comparative transcriptome analysis based on wild types, landraces, and improved cultivars of broomcorn millet at both seeding and filling stages. The variations in gene expression patterns between wild types and landraces and between landraces and improved cultivars were further evaluated to explore the molecular mechanisms underlying the domestication and improvement of broomcorn millet. A total of 2155 and 3033 candidate genes involved in domestication and a total of 84 and 180 candidate genes related to improvement were identified at seedling and filling stages of broomcorn millet, respectively. The annotation results suggested that the genes related to metabolites, stress resistance, and plant hormones were widely selected during both domestication and improvement processes, while some genes were exclusively selected in either domestication or improvement stages, with higher selection pressure detected in the domestication process. Furthermore, some domestication- and improvement-related genes involved in stress resistance either lost their functions or reduced their expression levels due to the trade-offs between stress resistance and productivity. This study provided novel genetic materials for further molecular breeding of broomcorn millet varieties with improved agronomic traits.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
- School of Life Sciences, Northeast Normal University, Changchun 130021, China
| | - Minxuan Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.L.); (P.L.)
| | - Chunxiang Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
| | - Jingyi Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
| | - Tianshu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Ping Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.L.); (P.L.)
| | - Yue Xu
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (C.L.); (J.Z.); (T.L.)
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Li H, Liao C, Yang H, Kong L, Liu S, Wei J, Chen H, Zhao X, Liu B, Kong F, Chen L. AP1c and SOC1 Form a Regulatory Feedback Loop to Regulate Flowering Time in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370759 DOI: 10.1111/pce.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Flowering time is a key agronomic trait that directly affects soybean yield. Both APETALA1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) regulate flowering time in soybean, but their genetic and regulatory relationships have not been clarified. Here, we report that AP1c physically interacted with two SOC1 proteins, SOC1a and SOC1b, and that these SOC1s upregulated the expression of AP1c, promoting flowering. Moreover, AP1c repressed the expression of the SOC1s by directly binding to their promoters, thus preventing plants from flowering too early. These findings indicate that AP1c and SOC1s form a regulatory feedback loop that regulates flowering time. Importantly, we identified an exceptional allele, AP1cG, that was selected for during soybean domestication and promotes the early-flowering phenotype in cultivated soybean. Collectively, our work identifies a previously unknown allelic combination potentially useful for both classical and molecular soybean breeding.
Collapse
Affiliation(s)
- Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chunmei Liao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shuangrong Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin Wei
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haili Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
18
|
Liu T, Liu H, Xian W, Liu Z, Yuan Y, Fan J, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Shen Y, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Duplication and sub-functionalization of flavonoid biosynthesis genes plays important role in Leguminosae root nodule symbiosis evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2191-2207. [PMID: 39092779 DOI: 10.1111/jipb.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon-intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyue Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-jiazhuang, 050035, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanting Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuannian Jiao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, 14853, New York, USA
| | - Fang Xie
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Yang Z, Bai T, E Z, Niu B, Chen C. OsNF-YB7 inactivates OsGLK1 to inhibit chlorophyll biosynthesis in rice embryo. eLife 2024; 13:RP96553. [PMID: 39288070 PMCID: PMC11407766 DOI: 10.7554/elife.96553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in Arabidopsis, but the mechanism underlying this remains poorly understood. Here, we found that loss of function of OsNF-YB7, a LEC1 homolog of rice, leads to chlorophyllous embryo, indicating that OsNF-YB7 plays an opposite role in Chl biosynthesis in rice compared with that in Arabidopsis. OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress OsGLK1 expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.
Collapse
Affiliation(s)
- Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Tianqi Bai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research InstituteHangzhouChina
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| |
Collapse
|
20
|
Matilla AJ. Current Insights into Weak Seed Dormancy and Pre-Harvest Sprouting in Crop Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2559. [PMID: 39339534 PMCID: PMC11434978 DOI: 10.3390/plants13182559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive rainfall or high humidity. Consequently, some seeds may bypass the normal dormancy period and begin to germinate while still attached to the mother plant before harvest. Grains affected by pre-harvest sprouting are characterized by increased levels of α-amylase activity, resulting in poor processing quality and immediate grain downgrading. In the agriculture industry, pre-harvest sprouting causes annual economic losses exceeding USD 1 billion worldwide. This premature germination is influenced by a complex interplay of genetic, biochemical, and molecular factors closely linked to environmental conditions like rainfall. However, the exact mechanism behind this process is still unclear. Unlike pre-harvest sprouting, vivipary refers to the germination process and the activation of α-amylase during the soft dough stage, when the grains are still immature. Mature seeds with reduced levels of ABA or impaired ABA signaling (weak dormancy) are more susceptible to pre-harvest sprouting. While high seed dormancy can enhance resistance to pre-harvest sprouting, it can lead to undesirable outcomes for most crops, such as non-uniform seedling establishment after sowing. Thus, resistance to pre-harvest sprouting is crucial to ensuring productivity and sustainability and is an agronomically important trait affecting yield and grain quality. On the other hand, seed color is linked to sprouting resistance; however, the genetic relationship between both characteristics remains unresolved. The identification of mitogen-activated protein kinase kinase-3 (MKK3) as the gene responsible for pre-harvest sprouting-1 (Phs-1) represents a significant advancement in our understanding of how sprouting in wheat is controlled at the molecular and genetic levels. In seed maturation, Viviparous-1 (Vp-1) plays a crucial role in managing pre-harvest sprouting by regulating seed maturation and inhibiting germination through the suppression of α-amylase and proteases. Vp-1 is a key player in ABA signaling and is essential for the activation of the seed maturation program. Mutants of Vp-1 exhibit an unpigmented aleurone cell layer and exhibit precocious germination due to decreased sensitivity to ABA. Recent research has also revealed that TaSRO-1 interacts with TaVp-1, contributing to the regulation of seed dormancy and resistance to pre-harvest sprouting in wheat. The goal of this review is to emphasize the latest research on pre-harvest sprouting in crops and to suggest possible directions for future studies.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Sun Y, Gong Y. Research advances on the hard seededness trait of soybean and the underlying regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1419962. [PMID: 38988633 PMCID: PMC11233808 DOI: 10.3389/fpls.2024.1419962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Soybean is one of the world's most economically significant crops and is widely utilized as an essential source of vegetable protein and edible oil. Cultivated soybean is domesticated from its annual counterpart, wild soybean, which is considered valuable germplasm for soybean breeding. However, wild soybean accessions generally produce seeds with impermeable coats, a trait known as hard seededness (HS), which is beneficial for long-term seed survival but is undesirable for the uniform water absorption and germination of seeds, thus limiting the utilization of wild soybeans in breeding. In addition, moderate HS can isolate the embryo from the surrounding environment and is thus beneficial for long-term seed storage and germplasm preservation. The HS trait is primarily associated with the structure and chemical composition of the seed coat. Moreover, its development is also influenced by various environmental conditions, such as water and temperature. Genetic analysis has revealed that HS of soybean is a complex quantitative trait controlled by multiple genes or minor quantitative trait loci (QTL), with many QTLs and several causal genes currently identified. Investigating the physiological and molecular mechanisms underlying this trait is crucial for soybean breeding, production, and food processing. For this article, the literature was reviewed and condensed to create a well-rounded picture of the current understanding of internal and external factors, QTLs, causal genes, and the regulatory mechanisms related to the HS of soybean, with the aim of providing reference for future research and utilization of this trait.
Collapse
Affiliation(s)
- Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yujie Gong
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
22
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
23
|
Laosatit K, Amkul K, Lin Y, Yuan X, Chen X, Somta P. Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:146. [PMID: 38834825 DOI: 10.1007/s00122-024-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.
| |
Collapse
|
24
|
Li S, Li Y, Zhu H, Chen L, Zhang H, Lian L, Xu M, Feng X, Hou R, Yao X, Lin Y, Wang H, Wang X. Deciphering PDH1's role in mung bean domestication: a genomic perspective on pod dehiscence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1413-1422. [PMID: 38341804 DOI: 10.1111/tpj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Mung bean (Vigna radiata) stands as a crucial legume crop in Asia, contributing to food security. However, our understanding of the underlying genetic foundation governing domesticated agronomic traits, especially those linked to pod architecture, remains largely unexplored. In this study, we delved into the genomic divergence between wild and domesticated mung bean varieties, leveraging germplasm obtained from diverse sources. Our findings unveiled pronounced variation in promoter regions (35%) between the two mung bean subpopulations, suggesting substantial changes in gene expression patterns during domestication. Leveraging transcriptome analysis using distinct reproductive stage pods and subpopulations, we identified candidate genes responsible for pod and seed architecture development, along with Genome-Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) analysis. Notably, our research conclusively confirmed PDH1 as a parallel domesticated gene governing pod dehiscence in legumes. This study imparts valuable insights into the genetic underpinnings of domesticated agronomic traits in mung bean, and simultaneously highlighting the parallel domestication of pivotal traits within the realm of legume crops.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yaling Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijie Lian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Miaomiao Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xilong Feng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolin Yao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifan Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Huaying Wang
- Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| |
Collapse
|
25
|
Wang JD, Wang J, Huang LC, Kan LJ, Wang CX, Xiong M, Zhou P, Zhou LH, Chen C, Zhao DS, Fan XL, Zhang CQ, Zhou Y, Zhang L, Liu QQ, Li QF. ABA-mediated regulation of rice grain quality and seed dormancy via the NF-YB1-SLRL2-bHLH144 Module. Nat Commun 2024; 15:4493. [PMID: 38802342 PMCID: PMC11130328 DOI: 10.1038/s41467-024-48760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.
Collapse
Affiliation(s)
- Jin-Dong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Jun Kan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chu-Xin Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Min Xiong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peng Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Hui Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
26
|
Alam O, Purugganan MD. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. THE PLANT CELL 2024; 36:1227-1241. [PMID: 38243576 PMCID: PMC11062453 DOI: 10.1093/plcell/koae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices.
Collapse
Affiliation(s)
- Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, 10028, USA
| |
Collapse
|
27
|
Lu Q, Zhao H, Zhang Z, Bai Y, Zhao H, Liu G, Liu M, Zheng Y, Zhao H, Gong H, Chen L, Deng X, Hong X, Liu T, Li B, Lu P, Wen F, Wang L, Li Z, Li H, Li H, Zhang L, Ma W, Liu C, Bai Y, Xin B, Chen J, E L, Lai J, Song W. Genomic variation in weedy and cultivated broomcorn millet accessions uncovers the genetic architecture of agronomic traits. Nat Genet 2024; 56:1006-1017. [PMID: 38658793 DOI: 10.1038/s41588-024-01718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.
Collapse
Affiliation(s)
- Qiong Lu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Hainan Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China
| | - Zhengquan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Yuhe Bai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yunxiao Zheng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Haiyue Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Huihui Gong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Lingwei Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Xizhen Deng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Xiangde Hong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Tianxiang Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Baichuan Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Ping Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Feng Wen
- Tongliao Agricultural and Animal Husbandry Research Institute, Tongliao, People's Republic of China
| | - Lun Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Zhijiang Li
- Institute of Crop Resources Research, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hai Li
- High Latitude Crops Institute, Shanxi Agricultural University, Datong, People's Republic of China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Like Zhang
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Wenhui Ma
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Chunqing Liu
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Yan Bai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Lizhu E
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China.
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China.
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
28
|
Glison N, Gaiero P, Monteverde E, Speranza PR. Breeding for reduced seed dormancy to domesticate new grass species. Genet Mol Biol 2024; 47Suppl 1:e20230262. [PMID: 38666746 PMCID: PMC11046443 DOI: 10.1590/1678-4685-gmb-2023-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/01/2024] [Indexed: 04/29/2024] Open
Abstract
Introducing new grass species into cultivation has long been proposed as beneficial to increase the sustainability and diversity of productive systems. However, wild species with potential tend to show high seed dormancy, causing slow, poor, and unsynchronized seedling emergence. Meanwhile, domesticated species, such as cereals, show lower seed dormancy, facilitating their successful establishment. In this work, we conduct a review of phenotypic variation on seed dormancy and its genetic and molecular basis. This quantitative and highly heritable trait shows phenotype plasticity which is modulated by environmental factors. The level of dormancy depends on the expression of genes associated with the metabolism and sensitivity to the hormones abscisic acid (ABA) and gibberellins (GA), along with other dormancy-specific genes. The genetic regulation of these traits is highly conserved across species. The low seed dormancy observed in cereals and some temperate forages was mostly unconsciously selected during various domestication processes. Emphasis is placed on selecting materials with low seed dormancy for warm-season forage grasses to improve their establishment and adoption. Finally, we review advances in the domestication of dallisgrass, where seed dormancy was considered a focus trait throughout the process.
Collapse
Affiliation(s)
- Nicolás Glison
- Universidad de la República, Facultad de Agronomía, Departamento de Biología Vegetal, Montevideo, Uruguay
| | - Paola Gaiero
- Universidad de la República, Facultad de Agronomía, Departamento de Biología Vegetal, Montevideo, Uruguay
| | - Eliana Monteverde
- Universidad de la República, Facultad de Agronomía, Departamento de Biología Vegetal, Montevideo, Uruguay
- University of Illinois, Department of Crop Sciences, Urbana, IL, USA
| | - Pablo R. Speranza
- Universidad de la República, Facultad de Agronomía, Departamento de Biología Vegetal, Montevideo, Uruguay
| |
Collapse
|
29
|
Li J, Zhao Y, Wu Z, Wang X. Editorial: Crop improvement by omics and bioinformatics. FRONTIERS IN PLANT SCIENCE 2024; 15:1391334. [PMID: 38633453 PMCID: PMC11022161 DOI: 10.3389/fpls.2024.1391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Jun Li
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhichao Wu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueqiang Wang
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| |
Collapse
|
30
|
Gonçalves JDP, Gasparini K, Picoli EADT, Costa MDBL, Araujo WL, Zsögön A, Ribeiro DM. Metabolic control of seed germination in legumes. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154206. [PMID: 38452650 DOI: 10.1016/j.jplph.2024.154206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Seed development, dormancy, and germination are connected with changes in metabolite levels. Not surprisingly, a complex regulatory network modulates biosynthesis and accumulation of storage products. Seed development has been studied profusely in Arabidopsis thaliana and has provided valuable insights into the genetic control of embryo development. However, not every inference applies to crop legumes, as these have been domesticated and selected for high seed yield and specific metabolic profiles and fluxes. Given its enormous economic relevance, considerable work has contributed to shed light on the mechanisms that control legume seed growth and germination. Here, we summarize recent progress in the understanding of regulatory networks that coordinate seed metabolism and development in legumes.
Collapse
Affiliation(s)
- Júlia de Paiva Gonçalves
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | | | - Wagner Luiz Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil; National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Wang Y, Jiang C, Zhang X, Yan H, Yin Z, Sun X, Gao F, Zhao Y, Liu W, Han S, Zhang J, Zhang Y, Zhang Z, Zhang H, Li J, Xie X, Zhao Q, Wang X, Ye G, Li J, Ming R, Li Z. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:662-677. [PMID: 37909415 PMCID: PMC10893945 DOI: 10.1111/pbi.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.
Collapse
Affiliation(s)
- Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Huimin Yan
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhigang Yin
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Fenghua Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shichen Han
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yage Zhang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xianzhi Xie
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoning Wang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Guoyou Ye
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
- Institution International Rice Research InstituteLos BañosLagunaPhilippines
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| |
Collapse
|
32
|
Dallinger HG, Löschenberger F, Azrak N, Ametz C, Michel S, Bürstmayr H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. THE PLANT GENOME 2024; 17:e20301. [PMID: 36851839 DOI: 10.1002/tpg2.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.
Collapse
Affiliation(s)
- Hermann G Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | | | - Naim Azrak
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Hermann Bürstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| |
Collapse
|
33
|
Guo N, Tang S, Wang Y, Chen W, An R, Ren Z, Hu S, Tang S, Wei X, Shao G, Jiao G, Xie L, Wang L, Chen Y, Zhao F, Sheng Z, Hu P. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nat Commun 2024; 15:1134. [PMID: 38326370 PMCID: PMC10850359 DOI: 10.1038/s41467-024-45402-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.
Collapse
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
- National Nanfan Research Academy (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, P. R. China
| | - Wei Chen
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ruihu An
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zongliang Ren
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ling Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ying Chen
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China.
- Jiangxi Early-season Rice Research Center, Pingxiang, Jiangxi Province, 337000, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China.
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, P. R. China.
| |
Collapse
|
34
|
Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, Zhang JS. Regulation of seed traits in soybean. ABIOTECH 2023; 4:372-385. [PMID: 38106437 PMCID: PMC10721594 DOI: 10.1007/s42994-023-00122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max) is an essential economic crop that provides vegetative oil and protein for humans, worldwide. Increasing soybean yield as well as improving seed quality is of great importance. Seed weight/size, oil and protein content are the three major traits determining seed quality, and seed weight also influences soybean yield. In recent years, the availability of soybean omics data and the development of related techniques have paved the way for better research on soybean functional genomics, providing a comprehensive understanding of gene functions. This review summarizes the regulatory genes that influence seed size/weight, oil content and protein content in soybean. We also provided a general overview of the pleiotropic effect for the genes in controlling seed traits and environmental stresses. Ultimately, it is expected that this review will be beneficial in breeding improved traits in soybean.
Collapse
Affiliation(s)
- Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yue Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun-Jie Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
35
|
Lemay MA, de Ronne M, Bélanger R, Belzile F. k-mer-based GWAS enhances the discovery of causal variants and candidate genes in soybean. THE PLANT GENOME 2023; 16:e20374. [PMID: 37596724 DOI: 10.1002/tpg2.20374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Genome-wide association studies (GWAS) are powerful statistical methods that detect associations between genotype and phenotype at genome scale. Despite their power, GWAS frequently fail to pinpoint the causal variant or the gene controlling a given trait in crop species. Assessing genetic variants other than single-nucleotide polymorphisms (SNPs) could alleviate this problem. In this study, we tested the potential of structural variant (SV)- and k-mer-based GWAS in soybean by applying these methods as well as conventional SNP/indel-based GWAS to 13 traits. We assessed the performance of each GWAS approach based on loci for which the causal genes or variants were known from previous genetic studies. We found that k-mer-based GWAS was the most versatile approach and the best at pinpointing causal variants or candidate genes. Moreover, k-mer-based analyses identified promising candidate genes for loci related to pod color, pubescence form, and resistance to Phytophthora sojae. In our dataset, SV-based GWAS did not add value compared to k-mer-based GWAS and may not be worth the time and computational resources invested. Despite promising results, significant challenges remain regarding the downstream analysis of k-mer-based GWAS. Notably, better methods are needed to associate significant k-mers with sequence variation. Our results suggest that coupling k-mer- and SNP/indel-based GWAS is a powerful approach for discovering candidate genes in crop species.
Collapse
Affiliation(s)
- Marc-André Lemay
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Maxime de Ronne
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Richard Bélanger
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - François Belzile
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| |
Collapse
|
36
|
Wei S, Yong B, Jiang H, An Z, Wang Y, Li B, Yang C, Zhu W, Chen Q, He C. A loss-of-function mutant allele of a glycosyl hydrolase gene has been co-opted for seed weight control during soybean domestication. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2469-2489. [PMID: 37635359 DOI: 10.1111/jipb.13559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The resultant DNA from loss-of-function mutation can be recruited in biological evolution and development. Here, we present such a rare and potential case of "to gain by loss" as a neomorphic mutation during soybean domestication for increasing seed weight. Using a population derived from a chromosome segment substitution line of Glycine max (SN14) and Glycine soja (ZYD06), a quantitative trait locus (QTL) of 100-seed weight (qHSW) was mapped on chromosome 11, corresponding to a truncated β-1, 3-glucosidase (βGlu) gene. The novel gene hsw results from a 14-bp deletion, causing a frameshift mutation and a premature stop codon in the βGlu. In contrast to HSW, the hsw completely lost βGlu activity and function but acquired a novel function to promote cell expansion, thus increasing seed weight. Overexpressing hsw instead of HSW produced large soybean seeds, and surprisingly, truncating hsw via gene editing further increased the seed size. We further found that the core 21-aa peptide of hsw and its variants acted as a promoter of seed size. Transcriptomic variation in these transgenic soybean lines substantiated the integration hsw into cell and seed size control. Moreover, the hsw allele underwent selection and expansion during soybean domestication and improvement. Our work cloned a likely domesticated QTL controlling soybean seed weight, revealed a novel genetic variation and mechanism in soybean domestication, and provided new insight into crop domestication and breeding, and plant evolution.
Collapse
Affiliation(s)
- Siming Wei
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- Jilin Academy of Agricultural Sciences, Changchun, 130022, China
| | - Zhenghong An
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Bingbing Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Yang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
37
|
Fu J, Pei W, He L, Ma B, Tang C, Zhu L, Wang L, Zhong Y, Chen G, Wang Q, Wang Q. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genet 2023; 19:e1011052. [PMID: 37976306 PMCID: PMC10691696 DOI: 10.1371/journal.pgen.1011052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.
Collapse
Affiliation(s)
- Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wenzheng Pei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Linqian He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ben Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
39
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
40
|
Wu D, Xie L, Sun Y, Huang Y, Jia L, Dong C, Shen E, Ye CY, Qian Q, Fan L. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biol 2023; 24:179. [PMID: 37537691 PMCID: PMC10401782 DOI: 10.1186/s13059-023-03017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Asian rice is one of the world's most widely cultivated crops. Large-scale resequencing analyses have been undertaken to explore the domestication and de-domestication genomic history of Asian rice, but the evolution of rice is still under debate. RESULTS Here, we construct a syntelog-based rice pan-genome by integrating and merging 74 high-accuracy genomes based on long-read sequencing, encompassing all ecotypes and taxa of Oryza sativa and Oryza rufipogon. Analyses of syntelog groups illustrate subspecies divergence in gene presence-and-absence and haplotype composition and identify massive genomic regions putatively introgressed from ancient Geng/japonica to ancient Xian/indica or its wild ancestor, including almost all well-known domestication genes and a 4.5-Mbp centromere-spanning block, supporting a single domestication event in main rice subspecies. Genomic comparisons between weedy and cultivated rice highlight the contribution from wild introgression to the emergence of de-domestication syndromes in weedy rice. CONCLUSIONS This work highlights the significance of inter-taxa introgression in shaping diversification and divergence in rice evolution and provides an exploratory attempt by utilizing the advantages of pan-genomes in evolutionary studies.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Center for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, 310058, China
| | - Lingjuan Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanqing Sun
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Huang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lei Jia
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chenfeng Dong
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Longjiang Fan
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Karikari B, Lemay MA, Belzile F. k-mer-Based Genome-Wide Association Studies in Plants: Advances, Challenges, and Perspectives. Genes (Basel) 2023; 14:1439. [PMID: 37510343 PMCID: PMC10379394 DOI: 10.3390/genes14071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Genome-wide association studies (GWAS) have allowed the discovery of marker-trait associations in crops over recent decades. However, their power is hampered by a number of limitations, with the key one among them being an overreliance on single-nucleotide polymorphisms (SNPs) as molecular markers. Indeed, SNPs represent only one type of genetic variation and are usually derived from alignment to a single genome assembly that may be poorly representative of the population under study. To overcome this, k-mer-based GWAS approaches have recently been developed. k-mer-based GWAS provide a universal way to assess variation due to SNPs, insertions/deletions, and structural variations without having to specifically detect and genotype these variants. In addition, k-mer-based analyses can be used in species that lack a reference genome. However, the use of k-mers for GWAS presents challenges such as data size and complexity, lack of standard tools, and potential detection of false associations. Nevertheless, efforts are being made to overcome these challenges and a general analysis workflow has started to emerge. We identify the priorities for k-mer-based GWAS in years to come, notably in the development of user-friendly programs for their analysis and approaches for linking significant k-mers to sequence variation.
Collapse
Affiliation(s)
- Benjamin Karikari
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale P.O. Box TL 1882, Ghana
| | - Marc-André Lemay
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
42
|
Balarynová J, Klčová B, Tarkowská D, Turečková V, Trněný O, Špundová M, Ochatt S, Smýkal P. Domestication has altered the ABA and gibberellin profiles in developing pea seeds. PLANTA 2023; 258:25. [PMID: 37351659 PMCID: PMC10290032 DOI: 10.1007/s00425-023-04184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
MAIN CONCLUSION We showed that wild pea seeds contained a more diverse combination of bioactive GAs and had higher ABA content than domesticated peas. Although the role of abscisic acid (ABA) and gibberellins (GAs) interplay has been extensively studied in Arabidopsis and cereals models, comparatively little is known about the effect of domestication on the level of phytohormones in legume seeds. In legumes, as in other crops, seed dormancy has been largely or entirely removed during domestication. In this study, we have measured the endogenous levels of ABA and GAs comparatively between wild and domesticated pea seeds during their development. We have shown that wild seeds contained more ABA than domesticated ones, which could be important for preparing the seeds for the period of dormancy. ABA was catabolised particularly by an 8´-hydroxylation pathway, and dihydrophaseic acid was the main catabolite in seed coats as well as embryos. Besides, the seed coats of wild and pigmented cultivated genotypes were characterised by a broader spectrum of bioactive GAs compared to non-pigmented domesticated seeds. GAs in both seed coat and embryo were synthesized mainly by a 13-hydroxylation pathway, with GA29 being the most abundant in the seed coat and GA20 in the embryos. Measuring seed water content and water loss indicated domesticated pea seeds´ desiccation was slower than that of wild pea seeds. Altogether, we showed that pea domestication led to a change in bioactive GA composition and a lower ABA content during seed development.
Collapse
Affiliation(s)
- Jana Balarynová
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Barbora Klčová
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc, Czech Republic
| | - Oldřich Trněný
- Agriculture Research Ltd., 664 41, Troubsko, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Sergio Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
43
|
Lyu X, Li YH, Li Y, Li D, Han C, Hong H, Tian Y, Han L, Liu B, Qiu LJ. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean. MOLECULAR PLANT 2023:S1674-2052(23)00169-7. [PMID: 37433301 DOI: 10.1016/j.molp.2023.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Pod coloration is a domestication-related trait in soybean, with modern cultivars typically displaying brown or tan pods, while their wild relative, Glycine soja, possesses black pods. However, the factors regulating this color variation remain unknown. In this study, we cloned and characterized L1, the classical locus responsible for black pods in soybean. By using map-based cloning and genetic analyses, we identified the causal gene of L1 and revealed that it encodes a hydroxymethylglutaryl-coenzyme A (CoA) lyase-like (HMGL-like) domain protein. Biochemical assays showed that L1 functions as a eucomic acid synthase and facilitates the synthesis of eucomic acid and piscidic acid, both of which contribute to coloration of pods and seed coats in soybean. Interestingly, we found that L1 plants are more prone to pod shattering under light exposure than l1 null mutants because dark pigmentation increases photothermal efficiency. Hence, pleiotropic effects of L1 on pod color and shattering, as well as seed pigmentation, likely contributed to the preference for l1 alleles during soybean domestication and improvement. Collectively, our study provides new insights into the mechanism of pod coloration and identifies a new target for future de novo domestication of legume crops.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yanfei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People''s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
44
|
Yuan B, Qi G, Yuan C, Wang Y, Zhao H, Li Y, Wang Y, Dong L, Dong Y, Liu X. Major genetic locus with pleiotropism determined seed-related traits in cultivated and wild soybeans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:125. [PMID: 37165285 DOI: 10.1007/s00122-023-04358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Here, a novel pleiotropic QTL qSS14 simultaneously regulating four seed size traits and two consistently detected QTLs qSW17 and qSLW02 were identified across multiple years. Seed-related traits were the key agronomic traits that have been artificially selected during the domestication of wild soybean. Identifying the genetic loci and genes that regulate seed size could clarify the genetic variations in seed-related traits and provide novel insights into high-yield soybean breeding. In this study, we used a high-density genetic map constructed by F10 RIL populations from a cross between Glycine max and Glycine soja to detect additive QTLs for seven seed-related traits over the last three years. As a result, we identified one novel pleiotropic QTL, qSS14, that simultaneously controlled four seed size traits (100-seed weight, seed length, seed width, and seed thickness) and two consistently detected QTLs, qSW17, and qSLW02, in multiple years of phenotypic data. Furthermore, we predicted two, two and three candidate genes within these three critical loci based on the parental resequencing data and gene function annotations. And the relative expression of four candidate genes GLYMA_14G155100, GLYMA_17G061000, GLYMA_02G273100, and GLYMA_02G273300 showed significant differences among parents and the extreme materials through qRT-PCR analysis. These findings could facilitate the determination of beneficial genes in wild soybean and contribute to our understanding of the soybean domestication process.
Collapse
Affiliation(s)
- Baoqi Yuan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Cuiping Yuan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Yumin Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Yuqiu Li
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Yingnan Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Lingchao Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China
| | - Yingshan Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, Jilin, China.
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| | - Xiaodong Liu
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China.
| |
Collapse
|
45
|
Liu Y, Zhang Y, Liu X, Shen Y, Tian D, Yang X, Liu S, Ni L, Zhang Z, Song S, Tian Z. SoyOmics: A deeply integrated database on soybean multi-omics. MOLECULAR PLANT 2023; 16:794-797. [PMID: 36950735 DOI: 10.1016/j.molp.2023.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaonan Liu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Tian
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoyue Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Shuhui Song
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
46
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
47
|
Ni L, Tian Z. Toward cis-regulation in soybean: a 3D genome scope. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:28. [PMID: 37313524 PMCID: PMC10248674 DOI: 10.1007/s11032-023-01374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
In eukaryotic cells, 3D genome plays an important role in the regulation of gene spatiotemporal expression, which is essential for the biological and developmental processes in a life cycle. In the past decade, the development of high-throughput technologies greatly enhances our ability to map the 3D genome organization, identifies multiple 3D genome structures, and investigates the functional role of 3D genome organization in gene regulation, which facilitates our understandings of cis-regulatory landscape and biological development. Comparing with the comprehensive analyses of 3D genome in mammals and model plants, the progress in soybean is much less. Future development and application of tools to precisely manipulate 3D genome structure at different levels will significantly strengthen the functional genome study and molecular breeding in soybean. Here, we review the recent progresses in 3D genome study and discuss future directions, which may help to improve soybean 3D functional genome study and molecular breeding.
Collapse
Affiliation(s)
- Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
48
|
Takahashi Y, Nasu H, Nakayama S, Tomooka N. Domestication of azuki bean and soybean in Japan: From the insight of archeological and molecular evidence. BREEDING SCIENCE 2023; 73:117-131. [PMID: 37404345 PMCID: PMC10316305 DOI: 10.1270/jsbbs.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/05/2023] [Indexed: 07/06/2023]
Abstract
Domestication of azuki bean and soybean has enabled them to acquire non-dormant seeds, non-shattering pods, and larger seed size. Seed remains of the Jomon period recently discovered at archeological sites in the Central Highlands of Japan (6,000-4,000 BP) suggest that the use of azuki bean and soybean and their increase in seed size began earlier in Japan than in China and Korea; molecular phylogenetic studies indicate that azuki bean and soybean originated in Japan. Recent identification of domestication genes indicate that the domestication traits of azuki bean and soybean were established by different mechanisms. Analyses of domestication related genes using DNA extracted from the seed remains would reveal further details about their domestication processes.
Collapse
Affiliation(s)
- Yu Takahashi
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroo Nasu
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Seiji Nakayama
- Research Institute of Cultural Properties, Teikyo University, Fuefuki, Yamanashi 406-0032, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
49
|
Vercellino RB, Hernández F, Pandolfo C, Ureta S, Presotto A. Agricultural weeds: the contribution of domesticated species to the origin and evolution of feral weeds. PEST MANAGEMENT SCIENCE 2023; 79:922-934. [PMID: 36507604 DOI: 10.1002/ps.7321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Agricultural weeds descended from domesticated ancestors, directly from crops (endoferality) and/or from crop-wild hybridization (exoferality), may have evolutionary advantages by rapidly acquiring traits pre-adapted to agricultural habitats. Understanding the role of crops on the origin and evolution of agricultural weeds is essential to develop more effective weed management programs, minimize crop losses due to weeds, and accurately assess the risks of cultivated genes escaping. In this review, we first describe relevant traits of weediness: shattering, seed dormancy, branching, early flowering and rapid growth, and their role in the feralization process. Furthermore, we discuss how the design of "super-crops" can affect weed evolution. We then searched for literature documenting cases of agricultural weeds descended from well-domesticated crops, and describe six case studies of feral weeds evolved from major crops: maize, radish, rapeseed, rice, sorghum, and sunflower. Further studies on the origin and evolution of feral weeds can improve our understanding of the physiological and genetic mechanisms underpinning the adaptation to agricultural habitats and may help to develop more effective weed-control practices and breeding better crops. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Fernando Hernández
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudio Pandolfo
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Soledad Ureta
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
50
|
Genome-wide signatures of the geographic expansion and breeding of soybean. SCIENCE CHINA. LIFE SCIENCES 2023; 66:350-365. [PMID: 35997916 DOI: 10.1007/s11427-022-2158-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean (Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces (G. max (L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.
Collapse
|