1
|
Liu Q, Huang R, Jin X, Bai X, Tang W, Wang L, Karako K, Zhu W. Advances in research on receptor heterogeneity in breast cancer liver metastasis. Biosci Trends 2025; 19:165-172. [PMID: 40240168 DOI: 10.5582/bst.2025.01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Breast cancer liver metastasis (BCLM) presents a critical challenge in breast cancer treatment and has substantial epidemiological and clinical significance. Receptor status is pivotal in managing both primary breast cancer and its liver metastases. Moreover, shifts in these statuses can have a profound impact on patient treatment strategies and prognoses. Research has indicated that there is significant heterogeneity in receptor status between primary breast cancer and liver metastases. This variation may be influenced by a multitude of factors, such as therapeutic pressure, inherent tumor heterogeneity, clonal evolution, and the unique microenvironment of the liver. Changes in the receptor status of BCLM are crucial for adjusting treatment strategies, and liver biopsy plays an important role in the treatment process. Directions for future research targeting changes in receptor status include in-depth study of molecular mechanisms, combined treatment strategies for receptor status reversal, development of artificial intelligence deep learning models to predict receptor status in liver metastases, and clinical research on new drug development and combination therapies. That research will provide more precise treatment strategies for patients with BCLM and improve their prognosis.
Collapse
Affiliation(s)
- Qinyu Liu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Runze Huang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xuanci Bai
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Japan Institute for Health Security, Tokyo, Japan
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Kenji Karako
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
2
|
Naxerova K. Evolutionary paths towards metastasis. Nat Rev Cancer 2025:10.1038/s41568-025-00814-x. [PMID: 40263543 DOI: 10.1038/s41568-025-00814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The evolution of metastasis in humans is considerably less well understood than the biology of early carcinogenesis. For over a century, clinicians and scientists have been debating whether metastatic potential is the intrinsic property of a cancer, pre-determined by the molecular characteristics of the tumour founder cell, or whether metastatic capacity evolves in a stepwise fashion as the tumour grows, akin to the multistage accumulation of oncogenic alterations that give rise to the first cancer cell. In this Perspective, I examine how genetic analyses of primary tumours and matched metastases can distinguish between these two competing metastasis evolution models, with particular emphasis on the utility of metastatic randomness - a quantitative measure that reflects whether metastases arise from a random selection of primary tumour subclones or whether they are enriched for descendants of privileged lineages that have acquired pro-metastatic traits. Probable metastasis evolution trajectories in tumours with high and low baseline metastatic capacity are discussed, along with the role of seeding rates and selection at different metastatic host sites. Finally, I argue that trailblazing insights into human metastasis biology are immediately possible if we make a concerted effort to apply existing experimental and theoretical tools to the right patient cohorts.
Collapse
Affiliation(s)
- Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Yilmaz U, Rowe SP, Marks LB. Increases in the Association Between the Rates of Synchronous and Metachronous Metastases over Time. J Clin Med 2025; 14:2762. [PMID: 40283594 PMCID: PMC12027837 DOI: 10.3390/jcm14082762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Background: This study investigates the association between synchronous and metachronous metastases across various cancer types, evaluating whether that relationship has evolved over time. Methods: Data from the Surveillance, Epidemiology, and End Results (SEER)-8 dataset from 1975 to 2020 were retrospectively reviewed. For each of the 18 solid tumor types, the crude rates of synchronous and metachronous metastases were estimated from the SEER database. For each of the years assessed (from 1975 to 2015 at 10-year increments), linear regression analyses were conducted to quantify the relationship between the rates of metachronous metastasis and synchronous metastasis across all cancer sites. The degrees of association over time were compared using a Fisher's z-transformation. Results: At all time points considered, there was a significant association between the rates of metachronous and synchronous metastases (all p values < 0.05 for 5-year follow-up data). The degree of that association tended to increase over time (R = 0.59, 0.60, 0.66, 0.80, and 0.87 for 1975, 1985, 1995, 2005, and 2015, respectively), with the p value of the z-score comparing the many R values over time varying from 0.04 to 0.48. Conclusions: There appears to be an increasing association between the rates of synchronous and metachronous distant metastases over time. The exact cause of this increasing association is unknown. However, it appears to have occurred somewhat contemporaneous with the increasing use of more-accurate imaging studies (e.g., FDG-PET). Newer, targeted radiotracers for PET may provide the landscape for a prospective evaluation of the role of imaging.
Collapse
Affiliation(s)
- Ugur Yilmaz
- Department of Radiation Oncology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul 34865, Türkiye;
| | - Steven P. Rowe
- Department of Radiology, Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Lawrence B. Marks
- Departments of Radiation Oncology, Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Golas MM, Gunawan B, Gutenberg A, Danner BC, Gerdes JS, Stadelmann C, Füzesi L, Liersch T, Sander B. Cytogenetic signatures favoring metastatic organotropism in colorectal cancer. Nat Commun 2025; 16:3261. [PMID: 40188208 PMCID: PMC11972295 DOI: 10.1038/s41467-025-58413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Colorectal carcinoma (CRC) exhibits metastatic organotropism, primarily targeting liver, lung, and rarely the brain. Here, we study chromosomal imbalances (CIs) in cohorts of primary CRCs and metastases. Brain metastases show the highest burden of CIs, including aneuploidies and focal CIs, with enrichment of +12p encoding KRAS. Compared to liver and lung metastases, brain metastases present with increased co-occurrence of KRAS mutation and amplification. CRCs with concurrent KRAS mutation and amplification display significant metabolic reprogramming with upregulation of glycolysis, alongside upregulation of cell cycle pathways, including copy number gains of MDM2 and CDK4. Evolutionary modeling suggests early acquisition of many organotropic CIs enriched in both liver and brain metastases, while brain-enriched CIs preferentially emerge later. Collectively, this study supports a model where cytogenetic events in CRCs favor site-specific metastatic colonization. These site-enriched CI patterns may serve as biomarkers for metastatic potential in precision oncology.
Collapse
Affiliation(s)
- Mariola Monika Golas
- Human Genetics, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Comprehensive Cancer Center Augsburg, University Medical Center Augsburg, Augsburg, Germany.
| | - Bastian Gunawan
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Pathology Northern Hesse, Kassel, Germany
| | - Angelika Gutenberg
- Department of Neurosurgery, Asklepios Hospital Harburg, Hamburg, Germany
| | - Bernhard C Danner
- Department of Cardiac, Thoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jan S Gerdes
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
- Epilepsy Center Hamburg, Evangelical Hospital Alsterdorf, Neurology and Epileptology, Hamburg, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Laszlo Füzesi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Bjoern Sander
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Zhang JT, Liu SY, Gao X, Liu SYM, Yan B, Huang C, Jiao Z, Yan HH, Pan Y, Dong S, Gao W, Gong Y, Tu HY, Xia XF, Zhou Q, Zhong WZ, Yang XN, Yi X, Wu YL. Follow-up Analysis Enhances Understanding of Molecular Residual Disease in Localized Non-Small Cell Lung Cancer. Clin Cancer Res 2025; 31:1305-1314. [PMID: 39853318 PMCID: PMC11959268 DOI: 10.1158/1078-0432.ccr-24-2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/12/2024] [Accepted: 01/21/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE The prognostic value of molecular residual disease (MRD) in non-small cell lung cancer (NSCLC) is well established, with treatment-guiding results anticipated. Here, we present updated analyses from our previously published cohort study of 261 patients with NSCLC undergoing complete resection. EXPERIMENTAL DESIGN A total of 261 patients with stage I to III lung cancer who underwent radical surgery were enrolled. Enrolled patients underwent follow-up blood draws according to the predefined time points after surgery. As of December 31, 2023, with a median follow-up of 43.4 months, 948 postoperative blood samples were collected. RESULTS Landmark and longitudinal MRD exhibited positive predictive values of 91.3% and 92.8%, respectively, with a median lead time of 5.2 months. Negative predictive values were 76.5% and 93.2%, respectively. Patients with landmark undetectable MRD could not benefit from adjuvant therapy through the updated follow-up (P = 0.529). Among the 13 patients with recurrent NSCLC and longitudinal undetectable MRD, seven (53.8%) had brain-only metastases, and four (30.8%) had no updated blood samples for over 6 months prior to recurrence. Besides, for those with longitudinal detectable MRD, higher maximum variant allele frequency (>0.55%) and ctDNA level (>13 hGE/mL) were associated with a high risk of short-term recurrence. Additionally, updated follow-up data further support that the peak time for detectable MRD was 18 months after landmark detection. CONCLUSIONS These findings suggest the significant potential of MRD in guiding personalized treatment for NSCLC. Postoperative longitudinal undetectable MRD can indicate a cured population.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Non-Small-Cell Lung/mortality
- Neoplasm, Residual/pathology
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/genetics
- Female
- Male
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/therapy
- Lung Neoplasms/surgery
- Middle Aged
- Follow-Up Studies
- Aged
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Adult
- Neoplasm Staging
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Aged, 80 and over
- Circulating Tumor DNA/blood
Collapse
Affiliation(s)
- Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Si-Yang Maggie Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Chinese Thoracic Oncology Group (CTONG), Guangzhou, China
| | - Bingfa Yan
- Geneplus-Beijing Institute, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chen Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, Beijing, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Gutmann DH, Boehm JS, Karlsson EK, Padron E, Seshadri M, Wallis D, Snyder JC. Precision preclinical modeling to advance cancer treatment. J Natl Cancer Inst 2025; 117:586-594. [PMID: 39383197 PMCID: PMC11972679 DOI: 10.1093/jnci/djae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
A new era of cancer management is underway in which treatments are being developed for the entire continuum of the disease process. The availability of genetically engineered and naturally occurring preclinical models serves as instructive platforms for evaluating therapeutic mechanisms. However, a major clinical challenge is that the entire malignancy process occurs across multiple scales including genetic mutations, malignant changes in cell behavior, dysregulated tumor microenvironments, and systemic adaptations in the host. A multidisciplinary group of investigators coalesced at the National Cancer Institute Oncology Models Forum with the overall goal to provide updates on the use of precision preclinical models of cancer. The benefits and limitations of preclinical models were discussed to identify strategies for maximizing opportunities in modeling that could inform future cancer prevention and treatment approaches. Our shared perspective is that the continuum of single cell, multicell, organoid, and in situ models are remarkable resources for the clinical challenges ahead. We provide a roadmap for parsing already available models and include preliminary recommendations for the application of next-generation preclinical modeling in cancer intervention.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University, St Louis, MO 63110, United States
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Joshua C Snyder
- Department of Surgery, Duke University, Durham, NC 27710, United States
| |
Collapse
|
7
|
Song J, Ye X, Xiao H. Liquid biopsy entering clinical practice: Past discoveries, current insights, and future innovations. Crit Rev Oncol Hematol 2025; 207:104613. [PMID: 39756526 DOI: 10.1016/j.critrevonc.2025.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
In recent years, liquid biopsy has gained prominence as an emerging biomarker in cancer research, providing critical insights into tumor biology and metastasis. Technological advancements have enabled its integration into clinical practice, with ongoing trials demonstrating encouraging outcomes. Key applications of liquid biopsy include early cancer detection, cancer staging, prognosis evaluation, and real-time monitoring of tumor progression to optimize treatment decisions. In this review, we present a comprehensive conceptual framework for liquid biopsy, discuss the challenges in its research and clinical application, and highlight its significant potential in identifying therapeutic targets and resistance mechanisms across various cancer types. Furthermore, we explore the emerging role of liquid biopsy-based multicancer screening, which has shown promising advancements. Looking ahead, standardization, multi-omics coanalysis, and the advancement of precision medicine and personalized treatments are expected to drive the future development and integration of liquid biopsy into routine clinical workflows, enhancing cancer diagnosis and treatment management.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Ginzel JD, Chapman H, Sills JE, Allen EJ, Barak LS, Cardiff RD, Borowsky AD, Lyerly HK, Rogers BW, Snyder JC. Nonlinear progression during the occult transition establishes cancer lethality. Dis Model Mech 2025; 18:dmm052113. [PMID: 40105775 PMCID: PMC11957451 DOI: 10.1242/dmm.052113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Cancer screening relies upon a linear model of neoplastic growth and progression. Yet, historical observations suggest that malignant progression is uncoupled from growth, which may explain the paradoxical increase in early-stage breast cancer detection without a dramatic reduction in metastasis. Here, we lineage trace millions of transformed cells and thousands of tumors using a cancer rainbow mouse model of HER2 (also known as ERBB2)-positive breast cancer. Transition rates from field cell to screen-detectable tumor to symptomatic tumor were estimated from a dynamical model of tumor development. Field cells were orders of magnitude less likely to transition to a screen-detectable tumor than the subsequent transition from screen-detectable tumor to symptomatic tumor. Our model supports a critical 'occult' transition in tumor development during which a transformed cell becomes a bona fide neoplasm. Lineage tracing and test by transplantation revealed that nonlinear progression during the occult transition gives rise to nascent lethal cancers at screen detection. Simulations illustrated how occult transition rates are a critical determinant of tumor growth and malignancy. Our data provide direct experimental evidence that cancers can deviate from the predictable linear progression model that is foundational to current screening paradigms.
Collapse
Affiliation(s)
- Joshua D. Ginzel
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Henry Chapman
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Joelle E. Sills
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Edwin J. Allen
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | - Robert D. Cardiff
- Department of Pathology and Laboratory Medicine, UC Davis, Davis, CA 95817, USA
| | | | | | - Bruce W. Rogers
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Joshua C. Snyder
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
9
|
Blohmer M, Cheek DM, Hung WT, Kessler M, Chatzidimitriou F, Wang J, Hung W, Lee IH, Gorelick AN, Wassenaar EC, Yang CY, Yeh YC, Ho HL, Speiser D, Karsten MM, Lanuti M, Pai SI, Kranenburg O, Lennerz JK, Chou TY, Kloor M, Naxerova K. Quantifying cell divisions along evolutionary lineages in cancer. Nat Genet 2025; 57:706-717. [PMID: 39905260 DOI: 10.1038/s41588-025-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Cell division drives somatic evolution but is challenging to quantify. We developed a framework to count cell divisions with DNA replication-related mutations in polyguanine homopolymers. Analyzing 505 samples from 37 patients, we studied the milestones of colorectal cancer evolution. Primary tumors diversify at ~250 divisions from the founder cell, while distant metastasis divergence occurs significantly later, at ~500 divisions. Notably, distant but not lymph node metastases originate from primary tumor regions that have undergone surplus divisions, tying subclonal expansion to metastatic capacity. Then, we analyzed a cohort of 73 multifocal lung cancers and showed that the cell division burden of the tumors' common ancestor distinguishes independent primary tumors from intrapulmonary metastases and correlates with patient survival. In lung cancer too, metastatic capacity is tied to more extensive proliferation. The cell division history of human cancers is easily accessible using our simple framework and contains valuable biological and clinical information.
Collapse
Affiliation(s)
- Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David M Cheek
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Maria Kessler
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Foivos Chatzidimitriou
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Jiahe Wang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - William Hung
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Alexander N Gorelick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emma Ce Wassenaar
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ching-Yeuh Yang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dorothee Speiser
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maria M Karsten
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Sara I Pai
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Onno Kranenburg
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
11
|
Liu Z, Liu Y, Kang X, Li L, Xiang Y. Subcellular Organelle Targeting as a Novel Approach to Combat Tumor Metastasis. Pharmaceutics 2025; 17:198. [PMID: 40006565 PMCID: PMC11859411 DOI: 10.3390/pharmaceutics17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor metastasis, the spread of cancer cells from the primary site to distant organs, remains a formidable challenge in oncology. Central to this process is the involvement of subcellular organelles, which undergo significant functional and structural changes during metastasis. Targeting these specific organelles offers a promising avenue for enhanced drug delivery and metastasis therapeutic efficacy. This precision increases the potency and reduces potential off-target effects. Moreover, by understanding the role of each organelle in metastasis, treatments can be designed to disrupt the metastatic process at multiple stages, from cell migration to the establishment of secondary tumors. This review delves deeply into tumor metastasis processes and their connection with subcellular organelles. In order to target these organelles, biomembranes, cell-penetrating peptides, localization signal peptides, aptamers, specific small molecules, and various other strategies have been developed. In this review, we will elucidate targeting delivery strategies for each subcellular organelle and look forward to prospects in this domain.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Yang Liu
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Xin Kang
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Yucheng Xiang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
12
|
Koyyalagunta D, Ganesh K, Morris Q. Inferring cancer type-specific patterns of metastatic spread using Metient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602790. [PMID: 39282311 PMCID: PMC11398359 DOI: 10.1101/2024.07.09.602790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cancers differ in how they establish metastases. These differences can be studied by reconstructing the metastatic spread of a cancer from sequencing data of multiple tumors. Current methods to do so are limited by computational scalability and rely on technical assumptions that do not reflect current clinical knowledge. Metient overcomes these limitations using gradient-based, multi-objective optimization to generate multiple hypotheses of metastatic spread and rescores these hypotheses using independent data on genetic distance and organotropism. Unlike current methods, Metient can be used with both clinical sequencing data and barcode-based lineage tracing in preclinical models, enhancing its translatability across systems. In a reanalysis of metastasis in 169 patients and 490 tumors, Metient automatically identifies cancer type-specific trends of metastatic dissemination in melanoma, high-risk neuroblastoma, and non-small cell lung cancer. Its reconstructions often align with expert analyses but frequently reveal more plausible migration histories, including those with more metastasis-to-metastasis seeding and higher polyclonal seeding, offering new avenues for targeting metastatic cells. Metient's findings challenge existing assumptions about metastatic spread, enhance our understanding of cancer type-specific metastasis, and offer insights that inform future clinical treatment strategies of metastasis.
Collapse
Affiliation(s)
- Divya Koyyalagunta
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quaid Morris
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
13
|
Chen Q, Liu Z, Chen B. Many are called but few are chosen-from multiple clonal origins to one winner. LIFE MEDICINE 2025; 4:lnaf008. [PMID: 40191275 PMCID: PMC11971563 DOI: 10.1093/lifemedi/lnaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025]
Affiliation(s)
- Qihang Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510260, China
| | - Zihan Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510260, China
| | - Bingjie Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510260, China
- State Key Laboratory of Respiratory Disease, Department of Critical Care, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
14
|
Houlahan KE, Mangiante L, Sotomayor-Vivas C, Adimoelja A, Park S, Khan A, Pribus SJ, Ma Z, Caswell-Jin JL, Curtis C. Complex rearrangements fuel ER + and HER2 + breast tumours. Nature 2025; 638:510-518. [PMID: 39779850 PMCID: PMC11821522 DOI: 10.1038/s41586-024-08377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER+ subtypes with increased risk of relapse decades after diagnosis1,2. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing. We demonstrate that breast tumours fall along a continuum constrained by three genomic archetypes. The ER+ high-risk integrative subgroup is characterized by complex focal amplifications, similar to HER2+ tumours, including cyclic extrachromosomal DNA amplifications induced by ER through R-loop formation and APOBEC3B-editing, which arise in pre-invasive lesions. By contrast, triple-negative tumours exhibit genome-wide instability and tandem duplications and are enriched for homologous repair deficiency-like signatures, whereas ER+ typical-risk tumours are largely genomically stable. These genomic archetypes, which replicate in an independent cohort of 2,659 primary tumours, are established early during tumorigenesis, sculpt the tumour microenvironment and are conserved in metastatic disease. These complex structural alterations contribute to replication stress and immune evasion, and persist throughout tumour evolution, unveiling potential vulnerabilities.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lise Mangiante
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Alvina Adimoelja
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Seongyeol Park
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sophia J Pribus
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zhicheng Ma
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer L Caswell-Jin
- Department of Medicine (Oncology), School of Medicine, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine (Oncology), School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
15
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells. Clin Cancer Res 2025; 31:414-429. [PMID: 39540841 PMCID: PMC11739783 DOI: 10.1158/1078-0432.ccr-24-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell RNA sequencing, we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multiparameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics were used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and nontumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. Single-cell RNA sequencing demonstrated that the surrounding lung stroma adopts a chronic, nonresolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, the metastasis-associated lung demonstrated marked fibrosis, likely because of the accumulation of pathogenic, profibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a prometastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the antifibrotic tyrosine kinase inhibitor (TKI) nintedanib. Our data shed light on the non-cell-autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
Affiliation(s)
- James B. Reinecke
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
| | - Leyre Jimenez Garcia
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Amy C. Gross
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Maren Cam
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew J. Gust
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Jeffrey P. Sheridan
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
16
|
Leko V, Groh E, Levi ST, Copeland AR, White BS, Gasmi B, Li Y, Hill V, Gurusamy D, Levin N, Kim SP, Sindiri S, Gartner JJ, Prickett TD, Parkhust M, Lowery FJ, Goff SL, Rosenberg SA, Robbins P. Utilization of primary tumor samples for cancer neoantigen discovery. J Immunother Cancer 2025; 13:e010993. [PMID: 39800378 PMCID: PMC11748769 DOI: 10.1136/jitc-2024-010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The use of tumor-infiltrating T lymphocytes (TIL) that recognize cancer neoantigens has led to lasting remissions in metastatic melanoma and certain cases of metastatic epithelial cancer. For the treatment of the latter, selecting cells for therapy typically involves laborious screening of TIL for recognition of autologous tumor-specific mutations, detected through next-generation sequencing of freshly resected metastatic tumors. Our study explored the feasibility of using archived formalin-fixed, paraffin-embedded (FFPE) primary tumor samples for cancer neoantigen discovery, to potentially expedite this process and reduce the need for resections normally required for tumor sequencing. METHOD Whole-exome sequencing was conducted on matched primary and metastatic colorectal cancer samples from 22 patients. The distribution of metastatic tumor mutations that were confirmed as neoantigens through cognate TIL screening was evaluated in the corresponding primary tumors. Mutations unique to primary tumors were screened for recognition by metastasis-derived TIL and circulating T lymphocytes. RESULTS We found that 25 (65.8%) of the 38 validated neoantigens identified in metastatic tumors from 18 patients with colorectal cancer were also present in matched primary tumor samples. This included all 12 neoantigens encoded by putative cancer driver genes, which are generally regarded as superior targets for adoptive cell therapy. The detection rate for other neoantigens, representing mutations without an established role in cancer biology, was 50% (13/26). Gene products encoding neoantigens detected in the primary tumors were not more likely to be clonal or broadly distributed among the analyzed metastatic lesions compared with those undetected in the primary tumors. Additionally, we found that mutations detected only in primary tumor samples did not elicit recognition by metastatic tumor-derived TIL but could elicit specific recognition by the autologous circulating memory T cells. CONCLUSIONS Our findings indicate that primary FFPE tumor-derived screening libraries could be used to discover most neoantigens present in metastatic tumors requiring treatment. Furthermore, this approach can reveal additional neoantigens not present in resected metastatic tumors, prompting further research to understand their clinical relevance as potential therapeutic targets.
Collapse
Affiliation(s)
- Vid Leko
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Eric Groh
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Shoshana T Levi
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Amy R Copeland
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Billel Gasmi
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong Li
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria Hill
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Noam Levin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Sivasish Sindiri
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Parkhust
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Frank J Lowery
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Paul Robbins
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Kuett L, Bollhagen A, Tietscher S, Sobottka B, Eling N, Varga Z, Moch H, de Souza N, Bodenmiller B. Distant Metastases of Breast Cancer Resemble Primary Tumors in Cancer Cell Composition but Differ in Immune Cell Phenotypes. Cancer Res 2025; 85:15-31. [PMID: 39437149 DOI: 10.1158/0008-5472.can-24-1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer in women, with distant metastasis being the main cause of breast cancer-related deaths. Elucidating the changes in the tumor and immune ecosystems that are associated with metastatic disease is essential to improve understanding and ultimately treatment of metastasis. Here, we developed an in-depth, spatially resolved single-cell atlas of the phenotypic diversity of tumor and immune cells in primary human breast tumors and matched distant metastases, using imaging mass cytometry to analyze a total of 75 unique antibody targets. Although the same tumor cell phenotypes were typically present in primary tumors and metastatic sites, suggesting a strong founder effect of the primary tumor, their proportions varied between matched samples. Notably, the metastatic site did not influence tumor phenotype composition, except for the brain. Metastatic sites exhibited a lower number of immune cells overall but had a higher proportion of myeloid cells as well as exhausted and cytotoxic T cells. Myeloid cells showed distinct tissue-specific compositional signatures and increased presence of potentially matrix remodeling phenotypes in metastatic sites. This analysis of tumor and immune cell phenotypic composition of metastatic breast cancer highlights the heterogeneity of the disease within patients and across distant metastatic sites, indicating myeloid cells as the predominant immune modulators that could potentially be targeted at these sites. Significance: Multiplex imaging analysis of matched primary and metastatic breast tumors provides a phenotypic and spatial map of tumor microenvironments, revealing similar compositions of cancer cells and divergent immunologic features between matched samples.
Collapse
Affiliation(s)
- Laura Kuett
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Tan CL, Lindner K, Boschert T, Meng Z, Rodriguez Ehrenfried A, De Roia A, Haltenhof G, Faenza A, Imperatore F, Bunse L, Lindner JM, Harbottle RP, Ratliff M, Offringa R, Poschke I, Platten M, Green EW. Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy. Nat Biotechnol 2025; 43:134-142. [PMID: 38454173 PMCID: PMC11738991 DOI: 10.1038/s41587-024-02161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
The identification of patient-derived, tumor-reactive T cell receptors (TCRs) as a basis for personalized transgenic T cell therapies remains a time- and cost-intensive endeavor. Current approaches to identify tumor-reactive TCRs analyze tumor mutations to predict T cell activating (neo)antigens and use these to either enrich tumor infiltrating lymphocyte (TIL) cultures or validate individual TCRs for transgenic autologous therapies. Here we combined high-throughput TCR cloning and reactivity validation to train predicTCR, a machine learning classifier that identifies individual tumor-reactive TILs in an antigen-agnostic manner based on single-TIL RNA sequencing. PredicTCR identifies tumor-reactive TCRs in TILs from diverse cancers better than previous gene set enrichment-based approaches, increasing specificity and sensitivity (geometric mean) from 0.38 to 0.74. By predicting tumor-reactive TCRs in a matter of days, TCR clonotypes can be prioritized to accelerate the manufacture of personalized T cell therapies.
Collapse
Affiliation(s)
- C L Tan
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - K Lindner
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
| | - T Boschert
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Z Meng
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - A Rodriguez Ehrenfried
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - A De Roia
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - G Haltenhof
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | | | | | - L Bunse
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | | | - R P Harbottle
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - M Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - R Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - I Poschke
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany.
- Helmholtz Institute for Translational Oncology, Mainz, Germany.
- German Cancer Research Center-Hector Cancer Institute at the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - E W Green
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
19
|
Chuang CF, Lin CW, Yeh CK. Ultrasound-triggered drug release and cytotoxicity of microbubbles with diverse drug attributes. ULTRASONICS SONOCHEMISTRY 2025; 112:107182. [PMID: 39631357 PMCID: PMC11655813 DOI: 10.1016/j.ultsonch.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Ultrasound (US)-triggered cavitation of drug-loaded microbubbles (MBs) represents a promising approach for targeted drug delivery, with substantial benefits attainable through precise control over drug release dosage and form. This study investigates Camptothecin-loaded MBs (CPT-MBs) and Doxorubicin-loaded MBs (DOX-MBs), focusing on how properties such as hydrophilicity, hydrophobicity, and charged functional groups affect their interaction with the lipid surfaces of MBs, thereby influencing the fundamental characteristics and acoustic properties of the drug-loaded MBs. In comparison to DOX-MBs, CPT-MBs showed larger MB size (2.2 ± 0.3 and 1.4 ± 0.1 μm, respectively), a 2-fold increase in drug loading, and an 18 % reduction in leakage after 2 h at 37℃. Under 1 MHz US with a 100 ms pulse repetition interval (PRI), 1000 cycles, 5-minute duration, and 550 kPa acoustic pressure, CPT-MBs undergo inertial cavitation, while DOX-MBs undergo stable cavitation. Drug particles released from these MBs under US-induced cavitation were analyzed using dynamic light scattering, NanoSight, cryo-electron microscopy, and density gradient ultracentrifugation. Results showed that CPT-MBs mainly release free CPT, while DOX-MBs release multilayered DOX-lipid aggregates. The cytotoxicity to C6 cells induced by US-triggered cavitation of these two types of MBs also differed. DOX-lipid aggregates delayed initial uptake, leading to less pronounced short-term (2 h) effects compared to the rapid release of free CPT from CPT-MBs. These findings underscore the need to optimize drug delivery strategies by fine-tuning MB composition and US parameters to control drug release kinetics and achieve the best tumoricidal outcomes.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Giannoudis A, Sokol ES, Bhogal T, Ramkissoon SH, Razis ED, Bartsch R, Shaw JA, McGregor K, Clark A, Huang RSP, Palmieri C. Breast cancer brain metastases genomic profiling identifies alterations targetable by immune-checkpoint and PARP inhibitors. NPJ Precis Oncol 2024; 8:282. [PMID: 39706915 DOI: 10.1038/s41698-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases. Homologous recombination deficiency as measured by BRCA1/2 alteration prevalence and loss-of-heterozygosity and immune checkpoint inhibitor (ICI) biomarkers [Tumor mutation burden (TMB)-High, Microsatellite instability (MSI)-High, PD-L1/L2)] were significantly more prevalent in BCBM than local BC and N-CNS. High PD-L1 protein expression was observed in ER-negative/HER2-negative BCBMs (48.3% vs 50.0% in local BCs, 21.4% in N-CNS). Our data highlights that a high proportion of BCBMs are potentially amenable to treatment with targeted therapeutic agents including PARP inhibitors and ICIs.
Collapse
Affiliation(s)
- A Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - E S Sokol
- Foundation Medicine, Inc., Boston, MA, USA
| | - T Bhogal
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - E D Razis
- Hygeia Hospital, 3rd Oncology Department, Marousi, Athens, Greece
| | - R Bartsch
- Medical University of Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
| | - J A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - K McGregor
- Foundation Medicine, Inc., Boston, MA, USA
| | | | | | - C Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
21
|
Wang G, Wen P, Xue T, Huang Y, Shao Q, Zhang N, Qu F, Wang J, Wang N, Zeng X. Her2 promotes early dissemination of breast cancer by inhibiting the p38 pathway through the downregulation of MAP3K4. Cell Commun Signal 2024; 22:611. [PMID: 39702199 PMCID: PMC11660853 DOI: 10.1186/s12964-024-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024] Open
Abstract
Early dissemination refers to the process by which cancer cells spread to distant organs at an early stage of the disease, often before the primary tumor is clinically detectable. Experimental studies have demonstrated that Her2 promotes early dissemination of breast cancer by inhibiting the p38 signaling pathway. However, the precise mechanism by which Her2 suppresses the activation of p38 signaling in early-stage cancer cells (ECCs) remains unclear. Here, we report that MAP3K4, an upstream kinase of p38, is downregulated in Her2 + ductal carcinoma in situ (DCIS) cells and tissues, which is required for Her2-induced early dissemination of DCIS cells by regulating the activation of the p38 signaling cascade. Furthermore, Her2 suppresses the transcription of MAP3K4 by downregulating the expression of HOXB13, a crucial transcription factor contributing to MAP3K4 expression in DCIS cells. Together, these findings unveil a novel downstream regulatory mechanism through which Her2 inhibits the activation of p38 signaling and facilitates early dissemination of breast cancer, offering insights into the development of effective diagnostic methods and targeted therapies for inhibiting the early dissemination of Her2 + breast cancer.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Female
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Down-Regulation
- Cell Line, Tumor
- p38 Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Signaling System/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Animals
- MAP Kinase Kinase Kinase 4/metabolism
- MAP Kinase Kinase Kinase 4/genetics
- Gene Expression Regulation, Neoplastic
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Mice
- Signal Transduction
Collapse
Affiliation(s)
- Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Ping Wen
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Ting Xue
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Yuxin Huang
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Qing Shao
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Fanli Qu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Wang
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Nan Wang
- The Second Surgical Department of Breast Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300071, China.
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
22
|
Lu Z, Mo S, Xie D, Zhai X, Deng S, Zhou K, Wang K, Kang X, Zhang H, Tong J, Hou L, Hu H, Li X, Zhou D, Lee LTO, Liu L, Zhu Y, Yu J, Lan P, Wang J, He Z, He X, Hu Z. Polyclonal-to-monoclonal transition in colorectal precancerous evolution. Nature 2024; 636:233-240. [PMID: 39478225 DOI: 10.1038/s41586-024-08133-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/27/2024] [Indexed: 12/06/2024]
Abstract
Unravelling the origin and evolution of precancerous lesions is crucial for effectively preventing malignant transformation, yet our current knowledge remains limited1-3. Here we used a base editor-enabled DNA barcoding system4 to comprehensively map single-cell phylogenies in mouse models of intestinal tumorigenesis induced by inflammation or loss of the Apc gene. Through quantitative analysis of high-resolution phylogenies including 260,922 single cells from normal, inflamed and neoplastic intestinal tissues, we identified tens of independent cell lineages undergoing parallel clonal expansions within each lesion. We also found polyclonal origins of human sporadic colorectal polyps through bulk whole-exome sequencing and single-gland whole-genome sequencing. Genomic and clinical data support a model of polyclonal-to-monoclonal transition, with monoclonal lesions representing a more advanced stage. Single-cell RNA sequencing revealed extensive intercellular interactions in early polyclonal lesions, but there was significant loss of interactions during monoclonal transition. Therefore, our data suggest that colorectal precancer is often founded by many different lineages and highlight their cooperative interactions in the earliest stages of cancer formation. These findings provide insights into opportunities for earlier intervention in colorectal cancer.
Collapse
Affiliation(s)
- Zhaolian Lu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanlan Mo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Duo Xie
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiangwei Zhai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shanjun Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kantian Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mathematical Sciences, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xueling Kang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juanzhen Tong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liangzhen Hou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Huijuan Hu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefei Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiguang Wang
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Zheng Hu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
23
|
Angaji A, Owusu M, Velling C, Dick N, Weghorn D, Berg J. High-density sampling reveals volume growth in human tumours. eLife 2024; 13:RP95338. [PMID: 39587846 PMCID: PMC11594531 DOI: 10.7554/elife.95338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
In growing cell populations such as tumours, mutations can serve as markers that allow tracking the past evolution from current samples. The genomic analyses of bulk samples and samples from multiple regions have shed light on the evolutionary forces acting on tumours. However, little is known empirically on the spatio-temporal dynamics of tumour evolution. Here, we leverage published data from resected hepatocellular carcinomas, each with several hundred samples taken in two and three dimensions. Using spatial metrics of evolution, we find that tumour cells grow predominantly uniformly within the tumour volume instead of at the surface. We determine how mutations and cells are dispersed throughout the tumour and how cell death contributes to the overall tumour growth. Our methods shed light on the early evolution of tumours in vivo and can be applied to high-resolution data in the emerging field of spatial biology.
Collapse
Affiliation(s)
- Arman Angaji
- Institute for Biological Physics, University of CologneCologneGermany
| | | | - Christoph Velling
- Institute for Biological Physics, University of CologneCologneGermany
| | - Nicola Dick
- Centre for Genomic RegulationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Donate Weghorn
- Centre for Genomic RegulationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Johannes Berg
- Institute for Biological Physics, University of CologneCologneGermany
| |
Collapse
|
24
|
Zhang X, Xiao K, Wen Y, Wu F, Gao G, Chen L, Zhou C. Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma. Nat Commun 2024; 15:9855. [PMID: 39543109 PMCID: PMC11564768 DOI: 10.1038/s41467-024-53849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way.
Collapse
Affiliation(s)
- Xiaoshen Zhang
- School of Medicine, Tongji University, 200092, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
- Department of Respiratory Medicine, Shanghai Sixth People's hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Kai Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201100, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, 200092, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201100, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024, Hangzhou, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
25
|
Serio RN, Scheben A, Lu B, Gargiulo DV, Patruno L, Buckholtz CL, Chaffee RJ, Jibilian MC, Persaud SG, Staklinski SJ, Hassett R, Brault LM, Ramazzotti D, Barbieri CE, Siepel AC, Nowak DG. Clonal Lineage Tracing with Somatic Delivery of Recordable Barcodes Reveals Migration Histories of Metastatic Prostate Cancer. Cancer Discov 2024; 14:1990-2009. [PMID: 38969342 PMCID: PMC11984259 DOI: 10.1158/2159-8290.cd-23-1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The patterns by which primary tumors spread to metastatic sites remain poorly understood. Here, we define patterns of metastatic seeding in prostate cancer using a novel injection-based mouse model-EvoCaP (Evolution in Cancer of the Prostate), featuring aggressive metastatic cancer to bone, liver, lungs, and lymph nodes. To define migration histories between primary and metastatic sites, we used our EvoTraceR pipeline to track distinct tumor clones containing recordable barcodes. We detected widespread intratumoral heterogeneity from the primary tumor in metastatic seeding, with few clonal populations instigating most migration. Metastasis-to-metastasis seeding was uncommon, as most cells remained confined within the tissue. Migration patterns in our model were congruent with human prostate cancer seeding topologies. Our findings support the view of metastatic prostate cancer as a systemic disease driven by waves of aggressive clones expanding their niche, infrequently overcoming constraints that otherwise keep them confined in the primary or metastatic site. Significance: Defining the kinetics of prostate cancer metastasis is critical for developing novel therapeutic strategies. This study uses CRISPR/Cas9-based barcoding technology to accurately define tumor clonal patterns and routes of migration in a novel somatically engineered mouse model (EvoCaP) that recapitulates human prostate cancer using an in-house developed analytical pipeline (EvoTraceR).
Collapse
Affiliation(s)
- Ryan N. Serio
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Billy Lu
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | - Lucrezia Patruno
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | | | - Ryan J. Chaffee
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Stephen J. Staklinski
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rebecca Hassett
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Lise M. Brault
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniele Ramazzotti
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Christopher E. Barbieri
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Adam C. Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dawid G. Nowak
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Xie T, Qiu BM, Luo J, Diao YF, Hu LW, Liu XL, Shen Y. Distant metastasis patterns among lung cancer subtypes and impact of primary tumor resection on survival in metastatic lung cancer using SEER database. Sci Rep 2024; 14:22445. [PMID: 39341901 PMCID: PMC11438988 DOI: 10.1038/s41598-024-73389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
This research aimed to systematically uncover the metastatic characteristics and survival rates of lung cancer subtypes and to evaluate the impact of surgery at the primary tumor site on cancer-specific survival in DM lung cancer. We used the Surveillance, Epidemiology, and End Results (SEER) database (2010-2019) to identify primary lung cancers with DM at presentation (M1). Kaplan-Meier (KM) survival curves were generated and compared utilizing log-rank tests. Cox regression methods were employed to determine hazard ratios (HR) and 95% confidence intervals related to CSS factors. Inverse probability of treatment weighting (IPTW) was applied to reduce bias. We analyzed 77,827 M1 lung cancer cases, with 41.22% having DM at presentation. Bone metastasis was most common in ADC, ASC, SCC, LCC; brain in LCNEC; liver in SCLC. Lung was common in TC + AC and SCC. Long-term survival was best in TC + AC and worst in SCLC (p < 0.001). Male gender, age < 50, primary tumor site (main bronchus, lower lobe), large tumor diameter, ADC/SCLC/SCC pathology, and regional lymph node involvement were significant risk factors for multiorgan metastasis. Age ≥ 50, male, large tumor diameter, positive lymph nodes, and multiorgan metastases were associated with lower CSS. In contrast, radiotherapy, chemotherapy, systemic therapy, and surgery were associated with higher CSS rates. Primary tumor resection improved survival in lung cancer patients (excluding small cell lung cancer, SCLC) with single organ metastases (KM log rank p < 0.001, HR = 0.6165; 95% CI (0.5468-0.6951)), especially in brain (p < 0.001, HR = 0.6467; 95% CI (0.5505-0.7596)) and bone (p = 0.182, HR = 0.6289; p < 0.01), but not in liver or intrapulmonary metastases after IPTW. Significant differences in DM patterns and corresponding survival rates exist among lung cancer subtypes. Primary tumor resection improves survival in lung cancer patients (excluding small cell lung cancer, SCLC) with single organ metastases, with better outcomes in patients with brain and bone metastases, while no significant benefit was seen in patients with liver and intrapulmonary metastases.
Collapse
Affiliation(s)
- Tian Xie
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Bing-Mei Qiu
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi-Fei Diao
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li-Wen Hu
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiao-Long Liu
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Wang Z, Fang Y, Wang R, Kong L, Liang S, Tao S. Reconstructing tumor clonal heterogeneity and evolutionary relationships based on tumor DNA sequencing data. Brief Bioinform 2024; 25:bbae516. [PMID: 39413797 PMCID: PMC11483135 DOI: 10.1093/bib/bbae516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
The heterogeneity of tumor clones drives the selection and evolution of distinct tumor cell populations, resulting in an intricate and dynamic tumor evolution process. While tumor bulk DNA sequencing helps elucidate intratumor heterogeneity, challenges such as the misidentification of mutation multiplicity due to copy number variations and uncertainties in the reconstruction process hinder the accurate inference of tumor evolution. In this study, we introduce a novel approach, REconstructing Tumor Clonal Heterogeneity and Evolutionary Relationships (RETCHER), which characterizes more realistic cancer cell fractions by accurately identifying mutation multiplicity while considering uncertainty during the reconstruction process and the credibility and reasonableness of subclone clustering. This method comprehensively and accurately infers multiple forms of tumor clonal heterogeneity and phylogenetic relationships. RETCHER outperforms existing methods on simulated data and infers clearer subclone structures and evolutionary relationships in real multisample sequencing data from five tumor types. By precisely analysing the complex clonal heterogeneity within tumors, RETCHER provides a new approach to tumor evolution research and offers scientific evidence for developing precise and personalized treatment strategies. This approach is expected to play a significant role in tumor evolution research, clinical diagnosis, and treatment. RETCHER is available for free at https://github.com/zlsys3/RETCHER.
Collapse
Affiliation(s)
- Zhen Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
- College of Information Engineering, Dalian University, Dalian, Liaoning, China
| | - Yanhua Fang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruoyu Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
| | - Liwen Kong
- College of Information Engineering, Dalian University, Dalian, Liaoning, China
| | - Shanshan Liang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
| | - Shuai Tao
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
- College of Information Engineering, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
28
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant activation of wound healing programs within the metastatic niche facilitates lung colonization by osteosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575008. [PMID: 38260361 PMCID: PMC10802507 DOI: 10.1101/2024.01.10.575008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics was used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and non-tumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a pro-metastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the anti-fibrotic TKI nintedanib. Our data shed light on the non-cell autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
|
29
|
Wu SL, Yang L, Huang C, Li Q, Ma C, Yuan F, Zhou Y, Wang X, Tong WM, Niu Y, Jin F. Genome-wide characterization of dynamic DNA 5-hydroxymethylcytosine and TET2-related DNA demethylation during breast tumorigenesis. Clin Epigenetics 2024; 16:125. [PMID: 39261937 PMCID: PMC11391647 DOI: 10.1186/s13148-024-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fang Yuan
- National Institute of Measurement and Testing Technology, Chengdu, 610021, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
30
|
Lancia A, Ingrosso G, Detti B, Festa E, Bonzano E, Linguanti F, Camilli F, Bertini N, La Mattina S, Orsatti C, Francolini G, Abenavoli EM, Livi L, Aristei C, de Jong D, Al Feghali KA, Siva S, Becherini C. Biology-guided radiotherapy in metastatic prostate cancer: time to push the envelope? Front Oncol 2024; 14:1455428. [PMID: 39314633 PMCID: PMC11417306 DOI: 10.3389/fonc.2024.1455428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The therapeutic landscape of metastatic prostate cancer has undergone a profound revolution in recent years. In addition to the introduction of novel molecules in the clinics, the field has witnessed a tremendous development of functional imaging modalities adding new biological insights which can ultimately inform tailored treatment strategies, including local therapies. The evolution and rise of Stereotactic Body Radiotherapy (SBRT) have been particularly notable in patients with oligometastatic disease, where it has been demonstrated to be a safe and effective treatment strategy yielding favorable results in terms of disease control and improved oncological outcomes. The possibility of debulking all sites of disease, matched with the ambition of potentially extending this treatment paradigm to polymetastatic patients in the not-too-distant future, makes Biology-guided Radiotherapy (BgRT) an attractive paradigm which can be used in conjunction with systemic therapy in the management of patients with metastatic prostate cancer.
Collapse
Affiliation(s)
- Andrea Lancia
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | | | - Beatrice Detti
- Radiotherapy Unit Prato, Usl Centro Toscana, Presidio Villa Fiorita, Prato, Italy
| | - Eleonora Festa
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | | | - Federico Camilli
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Niccolò Bertini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Salvatore La Mattina
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | - Carolina Orsatti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | | | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Dorine de Jong
- Medical Affairs, RefleXion Medical, Inc., Hayward, CA, United States
| | | | - Shankar Siva
- Department of Radiation Oncology, Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carlotta Becherini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
31
|
Salvà F, Saoudi N, Rodríguez M, Baraibar I, Ros J, García A, Tabernero J, Elez E. Determinants of Metastatic Colorectal Cancer With Permanent Liver- Limited Disease. Clin Colorectal Cancer 2024; 23:207-214. [PMID: 38981843 DOI: 10.1016/j.clcc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) is a complex and genetically heterogeneous disease presenting a specific metastatic pattern, with the liver being the most common site of metastasis. Around 20%-25% of patients with CRC will develop exclusively hepatic metastatic disease throughout their disease history. With its specific characteristics and therapeutic options, liver-limited disease (LLD) should be considered as a specific entity. The identification of these patients is particularly relevant in view of the growing interest in liver transplantation in selected patients with advanced CRC. Identifying why some patients will develop only LLD remains a challenge, mainly because of a lack of a systemic understanding of this complex and interlinked phenomenon given that cancer has traditionally been investigated according to distinct physiological compartments. Recently, multidisciplinary efforts and new diagnostic tools have made it possible to study some of these complex issues in greater depth and may help identify targets and specific treatment strategies to benefit these patients. In this review we analyze the underlying biology and available tools to help clinicians better understand this increasingly common and specific disease.
Collapse
Affiliation(s)
- Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Rodríguez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ariadna García
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
32
|
Shen G, Jia X, Qi T, Hu Z, Xiao A, Liu Q, He K, Guo W, Zhang D, Li W, Cao G, Li G, Tian J, Huang X, Hu Y. Data-Driven Design of Triple-Targeted Protein Nanoprobes for Multiplexed Imaging of Cancer Lymphatic Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405877. [PMID: 38889909 DOI: 10.1002/adma.202405877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Targeted imaging of cancer lymphatic metastasis remains challenging due to its highly heterogeneous molecular and phenotypic diversity. Herein, triple-targeted protein nanoprobes capable of specifically binding to three targets for imaging cancer lymphatic metastasis, through a data-driven design approach combined with a synthetic biology-based assembly strategy, are introduced. Specifically, to address the diversity of metastatic lymph nodes (LNs), a combination of three targets, including C-X-C motif chemokine receptor 4 (CXCR4), transferrin receptor protein 1 (TfR1), and vascular endothelial growth factor receptor 3 (VEGFR3) is identified, leveraging machine leaning-based bioinformatics analysis and examination of LN tissues from patients with gastric cancer. Using this identified target combination, ferritin nanocage-based nanoprobes capable of specifically binding to all three targets are designed through the self-assembly of genetically engineered ferritin subunits using a synthetic biology approach. Using these nanoprobes, multiplexed imaging of heterogeneous metastatic LNs is successfully achieved in a polyclonal lymphatic metastasis animal model. In 19 freshly resected human gastric specimens, the signal from the triple-targeted nanoprobes significantly differentiates metastatic LNs from benign LNs. This study not only provides an effective nanoprobe for imaging highly heterogeneous lymphatic metastasis but also proposes a potential strategy for guiding the design of targeted nanomedicines for cancer lymphatic metastasis.
Collapse
Affiliation(s)
- Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Ultrasound, Shuozhou Grand Hospital of Shanxi Medical University, Shuozhou, 036000, China
| | - Tianyi Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhenhua Hu
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anqi Xiao
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Keyu He
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dan Zhang
- Center of Biomedical Analysis, Tsinghua University, Beijing, 100084, China
| | - Wanjun Li
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, 723000, China
| | - Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
33
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
34
|
Handler JS, Li Z, Dveirin RK, Fang W, Goodarzi H, Fertig EJ, Kalhor R. Identifying a gene signature of metastatic potential by linking pre-metastatic state to ultimate metastatic fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607813. [PMID: 39185156 PMCID: PMC11343111 DOI: 10.1101/2024.08.14.607813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.
Collapse
Affiliation(s)
- Jesse S Handler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zijie Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel K Dveirin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins Data Science and AI Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Liu B, Hu S, Wang X. Applications of single-cell technologies in drug discovery for tumor treatment. iScience 2024; 27:110486. [PMID: 39171294 PMCID: PMC11338156 DOI: 10.1016/j.isci.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Single-cell technologies have been known as advanced and powerful tools to study tumor biological systems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug discovery and development. Specifically, single-cell technologies can promote the discovery of drug targets, help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tumor drugs. Emerging single-cell analysis technologies have been developed to further integrating multidimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review, we systematically summarized the applications of single-cell technologies in various sections of drug discovery for tumor treatment, including target identification, high-throughput drug screening, and pharmacokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth understanding of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize therapeutic strategies and improve clinical outcomes of tumor patients.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China
| |
Collapse
|
36
|
Yao G, Zhu Y, Liu C, Man Y, Liu K, Zhang Q, Tan Y, Duan Q, Chen D, Du Z, Fan Y. Comparative analysis of the mutational landscape and evolutionary patterns of pancreatic ductal adenocarcinoma metastases in the liver or peritoneum. Heliyon 2024; 10:e35428. [PMID: 39170579 PMCID: PMC11336646 DOI: 10.1016/j.heliyon.2024.e35428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) often presents with liver or peritoneal metastases at diagnosis. Despite similar treatment approaches, patient outcomes vary between these metastatic sites. To improve targeted therapies for metastatic PDAC, a comprehensive analysis of the genetic profiles and evolutionary patterns at these distinct metastatic locations is essential. Methods We performed whole exome sequencing on 44 tissue samples from 27 PDAC patients, including primary tumours and matched liver or peritoneal metastases. We analysed somatic mutation profiles, signatures, and affected pathways for each group, and examined clonal evolution using subclonal architectures and phylogenetic trees. Results KRAS mutations remained the predominant driver alteration, with a prevalence of 89 % across all tumours. Notably, we observed site-specific differences in mutation frequencies, with KRAS alterations detected in 77.8 % (7/9) of peritoneal metastases and 87.5 % (7/8) of liver metastases. TP53 mutations exhibited a similar pattern, occurring in 55.6 % (5/9) of peritoneal and 37.5 % (3/8) of liver metastases. Intriguingly, we identified site-specific alterations in DNA repair pathway genes, including ATM and BRCA1, with distinct mutational profiles in liver versus peritoneal metastases. Furthermore, liver metastases demonstrated a significantly higher tumor mutational burden (TMB) compared to peritoneal metastases (median [IQR]: 2.14 [1.77-2.71] vs. 1.29 [1.21-1.69] mutations/Mb; P = 0.048). Conclusions In conclusion, metastasis of pancreatic cancer may be influenced by variables other than KRAS mutations, such as TP53. PDAC peritoneal and liver metastases may differ in potential therapeutic biomarkers. Further inquiry is needed on the biological mechanisms underlying metastasis and the treatment of diverse metastases.
Collapse
Affiliation(s)
- Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanfeng Zhu
- Department of Nursing, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shangha, China
| | - Chunhui Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanwen Man
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Kefeng Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Yuan Tan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Qianqian Duan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shanghai, China
| | - Yonggang Fan
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| |
Collapse
|
37
|
Ginzel JD, Chapman H, Sills JE, Allen EJ, Barak LS, Cardiff RD, Borowsky AD, Lyerly HK, Rogers BW, Snyder JC. Nonlinear progression during the occult transition establishes cancer lethality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590826. [PMID: 38712192 PMCID: PMC11071403 DOI: 10.1101/2024.04.23.590826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cancer screening is based upon a linear model of neoplastic growth and malignant progression. Yet, historical observations suggest that malignant progression is uncoupled from growth which may explain the paradoxical increase in early-stage breast cancer detection without a dramatic reduction in metastatic burden. Here we lineage trace millions of genetically transformed field cells and thousands of screen detectable and symptomatic tumors using a cancer rainbow mouse model of HER2+ breast cancer. Transition rates from field cell to screen detectable tumor and then to symptomatic tumors were estimated from a dynamical model of tumor development. Field cells are orders of magnitude less likely to transition to a screen detectable tumor than the subsequent transition of a screen detectable tumor to a symptomatic tumor. Our model supports a critical occult transition in tumor development during which time a transformed cell becomes a bona fide neoplasm. Lineage tracing and test-by-transplantation reveals that nonlinear progression during or prior to the occult transition gives rise to nascent lethal cancers at screen detection. Simulations illustrate how occult transition rates are a critical determinant of tumor growth and malignancy in the lifetime of a host. Our data provides direct experimental evidence that cancers can deviate from the predictable linear progression model foundational to current screening paradigms.
Collapse
|
38
|
Batool Z, Kamal MA, Shen B. Advancements in triple-negative breast cancer sub-typing, diagnosis and treatment with assistance of artificial intelligence : a focused review. J Cancer Res Clin Oncol 2024; 150:383. [PMID: 39103624 PMCID: PMC11300496 DOI: 10.1007/s00432-024-05903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Triple negative breast cancer (TNBC) is most aggressive type of breast cancer with multiple invasive sub-types and leading cause of women's death worldwide. Lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) causes it to spread rapidly making its treatment challenging due to unresponsiveness towards anti-HER and endocrine therapy. Hence, needing advanced therapeutic treatments and strategies in order to get better recovery from TNBC. Artificial intelligence (AI) has been emerged by giving its high inputs in the automated diagnosis as well as treatment of several diseases, particularly TNBC. AI based TNBC molecular sub-typing, diagnosis as well as therapeutic treatment has become successful now days. Therefore, present review has reviewed recent advancements in the role and assistance of AI particularly focusing on molecular sub-typing, diagnosis as well as treatment of TNBC. Meanwhile, advantages, certain limitations and future implications of AI assistance in the TNBC diagnosis and treatment are also discussed in order to fully understand readers regarding this issue.
Collapse
Affiliation(s)
- Zahra Batool
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Mohammad Amjad Kamal
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Bairong Shen
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China.
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, A-10, No.17, Tianfu Avenue, Shangliu Distinct, Chengdu, 610002, China.
| |
Collapse
|
39
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
40
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
41
|
Li J, Xiong S, He P, Liang P, Li C, Zhong R, Cai X, Xie Z, Liu J, Cheng B, Chen Z, Liang H, Lao S, Chen Z, Shi J, Li F, Feng Y, Huo Z, Deng H, Yu Z, Wang H, Zhan S, Xiang Y, Wang H, Zheng Y, Lin X, He J, Liang W. Spatial whole exome sequencing reveals the genetic features of highly-aggressive components in lung adenocarcinoma. Neoplasia 2024; 54:101013. [PMID: 38850835 PMCID: PMC11208950 DOI: 10.1016/j.neo.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
In invasive lung adenocarcinoma (LUAD), patients with micropapillary (MIP) or solid (SOL) components had a significantly poorer prognosis than those with only lepidic (LEP), acinar (ACI) or papillary (PAP) components. It is interesting to explore the genetic features of different histologic subtypes, especially the highly aggressive components. Based on a cohort of 5,933 patients, this study observed that in different tumor size groups, LUAD with MIP/SOL components showed a different prevalence, and patients with ALK alteration or TP53 mutations had a higher probability of developing MIP/SOL components. To control individual differences, this research used spatial whole-exome sequencing (WES) via laser-capture microdissection of five patients harboring these five coexistent components and identified genetic features among different histologic components of the same tumor. In tracing the evolution of components, we found that titin (TTN) mutation might serve as a crucial intratumor potential driver for MIP/SOL components, which was validated by a cohort of 146 LUAD patients undergoing bulk WES. Functional analysis revealed that TTN mutations enriched the complement and coagulation cascades, which correlated with the pathway of cell adhesion, migration, and proliferation. Collectively, the histologic subtypes of invasive LUAD were genetically different, and certain trunk genotypes might synergize with branching TTN mutation to develop highly aggressive components.
Collapse
Affiliation(s)
- Jianfu Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Ping He
- Department of pathology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Peng Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou 510120, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Bo Cheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhuxing Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Shen Lao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zisheng Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jiang Shi
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Feng Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhenyu Huo
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Hongsheng Deng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Ziwen Yu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Haixuan Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yang Xiang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Huiting Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yongmin Zheng
- Department of pathology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaodong Lin
- Department of pathology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China; Southern Medical University, Guangzhou 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| |
Collapse
|
42
|
Abou-Ghali NE, Giannakakou P. Advances in metastatic prostate cancer circulating tumor cell enrichment technologies and clinical studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:151-175. [PMID: 40287219 DOI: 10.1016/bs.ircmb.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a pivotal tool that enables molecular interrogation of patient tumor cells and association with clinical outcomes. In prostate cancer specifically, where tumor biopsies from patients with bone metastasis are extremely challenging, CTCs offer a viable and established source of tumor "biopsy". While the prognostic value of CTC enumeration in metastatic prostate cancer is established, there is a compelling need for molecular CTC characterization for effective patient stratification and disease management. The clinical utility of CTCs has been advanced by the evolution of enrichment technologies and their molecular characterization. Enrichment technologies have evolved from strictly EpCAM-based enrichment to antigen-agnostic enrichment, while their clinical utility has evolved from enumeration to advanced downstream analyses including CTC proteomics, transcriptomics and genomics. This chapter offers a comprehensive overview of recent advancements in CTC enrichment and analytical technologies while highlighting pivotal clinical studies in prostate cancer, that utilize CTCs to determine the molecular basis of clinical response and resistance, to assist in disease management and treatment customization.
Collapse
|
43
|
Huang F, Jiang S, Wei R, Xiao T, Wei F, Zheng Z, Liu Q. Association of resection margin distance with anastomotic recurrence in stage I-III colon cancer: data from the National Colorectal Cancer Cohort (NCRCC) study in China. Int J Colorectal Dis 2024; 39:105. [PMID: 38995409 PMCID: PMC11245431 DOI: 10.1007/s00384-024-04684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Few studies have focused on anastomotic recurrence (AR) in colon cancer. This study aimed to clarify the association of resection margin distance with AR and compare the prognosis with nonanastomotic local recurrence (NAR). METHODS This retrospective cohort study included the clinical data of patients who underwent radical colon cancer surgery between January 1, 2009, and December 31, 2019. RESULTS A total of 1958 colon cancer patients were included in the study. 34 of whom (1.7%) had AR and 105 of whom (5.4%) had NAR. Multivariate analysis revealed that the lower distal resection margin distance, advanced N stage, and number of lymph nodes dissected were risk factors for AR. In the proximal resection margin, the risk of AR was lowest at a distance of 6 cm or greater, with a 3-year rate of 1.3%. In the distal resection margin, the 3-year AR risk increased rapidly if the distance was less than 3 cm. The prognosis of patients in the AR group was similar to that of patients in the NAR group, regardless of synchronous distant metastases. Furthermore, the radical surgery rate for AR was significantly higher than that for NAR, but the prognosis of AR was comparable to that of NAR. CONCLUSIONS The distal resection margin distance, advanced N stage, and less number of lymph nodes dissected are associated with AR of colon cancer. The prognosis of patients with AR was similar to that of patients with NAR. TRIAL REGISTRATION Clinical Trial Numbers NCT04074538 ( clinicaltrials.gov ), August 26, 2019, registered, retrospectively registered.
Collapse
Affiliation(s)
- Fei Huang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shan Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ran Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tixian Xiao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fangze Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhaoxu Zheng
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
44
|
Dang Q, Zuo L, Hu X, Zhou Z, Chen S, Liu S, Ba Y, Zuo A, Xu H, Weng S, Zhang Y, Luo P, Cheng Q, Liu Z, Han X. Molecular subtypes of colorectal cancer in the era of precision oncotherapy: Current inspirations and future challenges. Cancer Med 2024; 13:e70041. [PMID: 39054866 PMCID: PMC11272957 DOI: 10.1002/cam4.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most hackneyed malignancies. Even patients with identical clinical symptoms and the same TNM stage still exhibit radically different clinical outcomes after receiving equivalent treatment regimens, indicating extensive heterogeneity of CRC. Myriad molecular subtypes of CRC have been exploited for decades, including the most compelling consensus molecular subtype (CMS) classification that has been broadly applied for patient stratification and biomarker-drug combination formulation. Encountering barriers to clinical translation, however, CMS classification fails to fully reflect inter- or intra-tumor heterogeneity of CRC. As a consequence, addressing heterogeneity and precisely managing CRC patients with unique characteristics remain arduous tasks for clinicians. REVIEW In this review, we systematically summarize molecular subtypes of CRC and further elaborate on their clinical applications, limitations, and future orientations. CONCLUSION In recent years, exploration of subtypes through cell lines, animal models, patient-derived xenografts (PDXs), organoids, and clinical trials contributes to refining biological insights and unraveling subtype-specific therapies in CRC. Therapeutic interventions including nanotechnology, clustered regulatory interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9), gut microbiome, and liquid biopsy are powerful tools with the possibility to shift the immunologic landscape and outlook for CRC precise medicine.
Collapse
Affiliation(s)
- Qin Dang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lulu Zuo
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xinru Hu
- Department of Cardiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaokai Zhou
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shuang Chen
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
45
|
Li J, Zhen J, Ai R, Lai M, Wang H, Cai L. Intracranial management of HER-2 overexpression breast cancer with extensive volume or symptomatic brain metastases. Front Oncol 2024; 14:1386909. [PMID: 39011485 PMCID: PMC11246875 DOI: 10.3389/fonc.2024.1386909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Objectives This study aimed to evaluate the impact of high intracranial burden and symptomatic presentation of brain metastases on treatment outcomes in patients with HER-2 positive breast cancer. Through a retrospective analysis, we explored the intracranial responses following the application of HER-2 targeted therapy alone or in combination with other modalities and further elucidated the relationship between treatment efficacy, intracranial progression-free survival (PFS), overall survival (OS), and the burden of intracranial lesions and symptomatic presentations. Methods A retrospective analysis was conducted on cases of HER-2 overexpressing breast cancer patients with brain metastases. Clinical records were reviewed to extract patient demographics, treatment modalities, and intracranial disease characteristics. Intracranial tumor burden was quantified at diagnosis and post-initial treatment. High intracranial tumor burden was defined as either total metastatic volume >15 cc, or the largest lesion >3 cm. Responses were assessed using established criteria. The correlation between intracranial disease parameters and intracranial progression-free survival (PFS) and overall survival (OS) was determined. Results The study comprised 65 patients with HER-2 overexpression breast cancer and brain metastases. Symptomatic presentation was observed in 69.2% of patients at the diagnosis of brain metastases. Treatment with HER-2 target therapy alone or in combination with other modalities resulted in substantial intracranial responses, with 81.5% achieving at least a partial response at 3 months from therapy initiation. Median intracranial PFS and OS for patients with high intracranial burden were 9 and 22 months, respectively. Patients with high intracranial burden and symptomatic presentation at diagnosis demonstrated worse PFS and OS to those with lower burden and absence of symptoms (p < 0.05 for each). Conclusions Her-2 overexpressing breast cancer and brain metastases face significant challenges, particularly those with high intracranial tumor burden, which correlates with poorer outcomes and higher incidence of leptomeningeal metastasis. Most patients responded positively to initial therapies, especially anti-HER-2 treatments combined with radiotherapy. Larger tumors necessitated more comprehensive treatment approaches, such as WBRT and SRS. Key factors influencing intracranial tumor control included the Ki-67 index, intracranial tumor burden, and continuous use of HER-2 targeted therapy post-diagnosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Junjie Zhen
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ruyu Ai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Mingyao Lai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hui Wang
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Linbo Cai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| |
Collapse
|
46
|
Jan YH, Lu CT, Lam AKY. Comparison of genomic profiling of patient-matched primary colorectal and surgical resected distant metastatic (stage IV) colorectal carcinoma for drug actionability. Hum Pathol 2024; 149:21-28. [PMID: 38862093 DOI: 10.1016/j.humpath.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
It is often difficult to obtain adequate tissue for genomic study from distant metastases for assessment of targeted therapy in colorectal carcinomas. The study aims to explore the genomic differences between matched distant metastatic colorectal carcinomas (mCRC) and primary carcinoma using surgical specimens of both with adequate tissue. Thirty-four paired primary and distant metastatic colorectal carcinoma samples (liver, ovary, and lung) were obtained from surgical excisions (not small biopsies) and are microsatellite stable. They were subjected to DNA sequencing using comprehensive next-generation sequencing. This included mutation concordance analysis and mutational signature analysis. The mutation concordance analysis showed 49.6% shared mutations between primary and metastatic tumours, with 23.0% mutations exclusive to primary tumours and 27.4% mutations exclusive to distant metastases. While many patients with KRAS/BRAF mutations had shared mutations, two cases had unique KRAS mutations in the primary tumours only. Additionally, TMB (tumour mutational burden) analysis revealed that half of the TMB-high (≥7.5 mutations/Mb) metastatic colorectal carcinomas had a low TMB (<7.5 mutations/Mb) in the primary tumours. The mutational signature analysis identified de novo signatures consistent with known single base substitution patterns such as SBS11 (alkylation agents) and SBS30 (base excision repair deficiency) post-chemotherapy. To conclude, this study demonstrates significant genomic variations in resected distant metastasis when compared to primary colorectal carcinomas when adequate tissue is available. This finding underscores the importance of considering these differences and selecting tissue for mutation analysis in planning targeted and effective treatment strategies for mCRC.
Collapse
Affiliation(s)
- Yi-Hua Jan
- ACT Genomics, Co. Ltd., Taipei City, 114, Taiwan; Department of Molecular Medicine at the Koo Foundation Sun Yat-Sen Cancer Center, Taipei City, 11259, Taiwan
| | - Cu Tai Lu
- Department of Surgery, Gold Coast University Hospital, Southport, QLD, 4215, Australia; School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Alfred King-Yin Lam
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia; Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| |
Collapse
|
47
|
Corleone G, Sorino C, Caforio M, Di Giovenale S, De Nicola F, Goeman F, Bertaina V, Pitisci A, Cortile C, Locatelli F, Folgiero V, Fanciulli M. Enhancer engagement sustains oncogenic transformation and progression of B-cell precursor acute lymphoblastic leukemia. J Exp Clin Cancer Res 2024; 43:179. [PMID: 38926853 PMCID: PMC11210131 DOI: 10.1186/s13046-024-03075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Enhancer reprogramming plays a significant role in the heterogeneity of cancer. However, we have limited knowledge about the impact of chromatin remodeling in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) patients, and how it affects tumorigenesis and drug response. Our research focuses on investigating the role of enhancers in sustaining oncogenic transformation in children with BCP-ALL. METHODS We used ATAC-seq to study the accessibility of chromatin in pediatric BCP-ALL at three different stages-onset, remission, and relapse. Using a combination of computational and experimental methods, we were able to analyze the accessibility landscape and focus on the most significant cis-regulatory sites. These sites were then functionally validated through the use of Promoter capture Hi-C in a primary cell line model called LAL-B, followed by RNA-seq and genomic deletion of target sites using CRISPR-Cas9 editing. RESULTS We found that enhancer activity changes during cancer progression and is mediated by the production of enhancer RNAs (eRNAs). CRISPR-Cas9-mediated validation of previously unknown eRNA productive enhancers demonstrated their capability to control the oncogenic activities of the MYB and DCTD genes. CONCLUSIONS Our findings directly support the notion that productive enhancer engagement is a crucial determinant of the BCP-ALL and highlight the potential of enhancers as therapeutic targets in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Giacomo Corleone
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Cristina Sorino
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Matteo Caforio
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Stefano Di Giovenale
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
- Department of Computer, Control, and Management, Engineering Antonio Ruberti, Sapienza University of Rome, Rome, 00161, Italy
| | - Francesca De Nicola
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Frauke Goeman
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Angela Pitisci
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Clelia Cortile
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy.
| | - Maurizio Fanciulli
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
48
|
Chen S, Xie D, Li Z, Wang J, Hu Z, Zhou D. Frequency-dependent selection of neoantigens fosters tumor immune escape and predicts immunotherapy response. Commun Biol 2024; 7:770. [PMID: 38918569 PMCID: PMC11199503 DOI: 10.1038/s42003-024-06460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer is an evolutionary process shaped by selective pressure from the microenvironments. However, recent studies reveal that certain tumors undergo neutral evolution where there is no detectable fitness difference amongst the cells following malignant transformation. Here, through computational modeling, we demonstrate that negative frequency-dependent selection (or NFDS), where the immune response against cancer cells depends on the clonality of neoantigens, can lead to an immunogenic landscape that is highly similar to neutral evolution. Crucially, NFDS promotes high antigenic heterogeneity and early immune evasion in hypermutable tumors, leading to poor responses to immune checkpoint blockade (ICB) therapy. Our model also reveals that NFDS is characterized by a negative association between average clonality and total burden of neoantigens. Indeed, this unique feature of NFDS is common in the whole-exome sequencing (WES) datasets (357 tumor samples from 275 patients) from four melanoma cohorts with ICB therapy and a non-small cell lung cancer (NSCLC) WES dataset (327 tumor samples from 100 patients). Altogether, our study provides quantitative evidence supporting the theory of NFDS in cancer, explaining the high prevalence of neutral-looking tumors. These findings also highlight the critical role of frequency-dependent selection in devising more efficient and predictive immunotherapies.
Collapse
Affiliation(s)
- Shaoqing Chen
- School of Mathematical Sciences, Xiamen University, Xiamen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Duo Xie
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zan Li
- Life Science Research Center, Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| | - Zheng Hu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
49
|
Morton LM, Lee OW, Karyadi DM, Bogdanova TI, Stewart C, Hartley SW, Breeze CE, Schonfeld SJ, Cahoon EK, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Dai J, Krznaric M, Yeager M, Hutchinson A, Hicks BD, Dagnall CL, Steinberg MK, Jones K, Jain K, Jordan B, Machiela MJ, Dawson ET, Vij V, Gastier-Foster JM, Bowen J, Mabuchi K, Hatch M, Berrington de Gonzalez A, Getz G, Tronko MD, Thomas GA, Chanock SJ. Genomic characterization of cervical lymph node metastases in papillary thyroid carcinoma following the Chornobyl accident. Nat Commun 2024; 15:5053. [PMID: 38871684 PMCID: PMC11176192 DOI: 10.1038/s41467-024-49292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Childhood radioactive iodine exposure from the Chornobyl accident increased papillary thyroid carcinoma (PTC) risk. While cervical lymph node metastases (cLNM) are well-recognized in pediatric PTC, the PTC metastatic process and potential radiation association are poorly understood. Here, we analyze cLNM occurrence among 428 PTC with genomic landscape analyses and known drivers (131I-exposed = 349, unexposed = 79; mean age = 27.9 years). We show that cLNM are more frequent in PTC with fusion (55%) versus mutation (30%) drivers, although the proportion varies by specific driver gene (RET-fusion = 71%, BRAF-mutation = 38%, RAS-mutation = 5%). cLNM frequency is not associated with other characteristics, including radiation dose. cLNM molecular profiling (N = 47) demonstrates 100% driver concordance with matched primary PTCs and highly concordant mutational spectra. Transcriptome analysis reveals 17 differentially expressed genes, particularly in the HOXC cluster and BRINP3; the strongest differentially expressed microRNA also is near HOXC10. Our findings underscore the critical role of driver alterations and provide promising candidates for elucidating the biological underpinnings of PTC cLNM.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Karyadi
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tetiana I Bogdanova
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen W Hartley
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Breeze
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir Drozdovitch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergii Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Chepurny
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla Yu Zurnadzhy
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Marko Krznaric
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mia K Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Komal Jain
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Ben Jordan
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric T Dawson
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Nvidia Corporation, Santa Clara, CA, USA
| | - Vibha Vij
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay Bowen
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mykola D Tronko
- Department of Fundamental and Applied Problems of Endocrinology, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Gerry A Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Liu H, Gao J, Feng M, Cheng J, Tang Y, Cao Q, Zhao Z, Meng Z, Zhang J, Zhang G, Zhang C, Zhao M, Yan Y, Wang Y, Xue R, Zhang N, Li H. Integrative molecular and spatial analysis reveals evolutionary dynamics and tumor-immune interplay of in situ and invasive acral melanoma. Cancer Cell 2024; 42:1067-1085.e11. [PMID: 38759655 DOI: 10.1016/j.ccell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
In acral melanoma (AM), progression from in situ (AMis) to invasive AM (iAM) leads to significantly reduced survival. However, evolutionary dynamics during this process remain elusive. Here, we report integrative molecular and spatial characterization of 147 AMs using genomics, bulk and single-cell transcriptomics, and spatial transcriptomics and proteomics. Vertical invasion from AMis to iAM displays an early and monoclonal seeding pattern. The subsequent regional expansion of iAM exhibits two distinct patterns, clonal expansion and subclonal diversification. Notably, molecular subtyping reveals an aggressive iAM subset featured with subclonal diversification, increased epithelial-mesenchymal transition (EMT), and spatial enrichment of APOE+/CD163+ macrophages. In vitro and ex vivo experiments further demonstrate that APOE+CD163+ macrophages promote tumor EMT via IGF1-IGF1R interaction. Adnexal involvement can predict AMis with higher invasive potential whereas APOE and CD163 serve as prognostic biomarkers for iAM. Altogether, our results provide implications for the early detection and treatment of AM.
Collapse
MESH Headings
- Humans
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Epithelial-Mesenchymal Transition/genetics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Neoplasm Invasiveness
- Apolipoproteins E/genetics
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Female
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Spatial Analysis
- Middle Aged
- Prognosis
- Disease Progression
- Aged
- Receptors, Cell Surface
Collapse
Affiliation(s)
- Hengkang Liu
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China
| | - Jiawen Gao
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China; Institute of Photomedicine and Department of Phototherapy at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mei Feng
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Jinghui Cheng
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Yuchen Tang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Qi Cao
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Ziji Zhao
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Ziqiao Meng
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China
| | - Jiarui Zhang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Guohong Zhang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Chong Zhang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Mingming Zhao
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Yicen Yan
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Yang Wang
- National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China
| | - Ruidong Xue
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China.
| | - Ning Zhang
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing 100191, China; Yunnan Baiyao Group, Kunming 650500, China.
| | - Hang Li
- Peking University-Yunnan Baiyao International Medical Research Center, Peking University First Hospital, Beijing 100191, China; National Clinical Research Center for Skin and Immune Diseases, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing 100034, China; Yunnan Baiyao Group, Kunming 650500, China.
| |
Collapse
|