1
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
2
|
Nakatani T, Schauer T, Pal M, Ettinger A, Altamirano-Pacheco L, Zorn J, Gilbert DM, Torres-Padilla ME. RIF1 controls replication timing in early mouse embryos independently of lamina-associated nuclear organization. Dev Cell 2025:S1534-5807(25)00179-0. [PMID: 40262611 DOI: 10.1016/j.devcel.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/18/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Cells must duplicate their genome before they divide to ensure equal transmission of genetic information. The genome is replicated with a defined temporal order, replication timing (RT), which is cell-type specific and linked to 3D-genome organization. During mammalian development, RT is initially not well defined and becomes progressively consolidated from the 4-cell stage. However, the molecular regulators are unknown. Here, by combining loss-of-function analysis with genome-wide investigation of RT in mouse embryos, we identify Rap1 interacting factor 1 (RIF1) as a regulator of the progressive consolidation of RT. Embryos without RIF1 show DNA replication features of an early, more totipotent state. RIF1 regulates the progressive stratification of RT values and its depletion leads to global RT changes and a more heterogeneous RT program. Developmental RT changes are disentangled from changes in transcription and nuclear organization, specifically nuclear lamina association. Our work provides molecular understanding of replication and genome organization at the beginning of mammalian development.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Luis Altamirano-Pacheco
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany
| | - Julia Zorn
- Core Facility Laboratory Animal Services, Helmholtz Zentrum München, 81377 München, Germany
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
3
|
Guo D, Du Z, Liu Y, Lin M, Lu Y, Hardikar S, Xue Y, Zhang J, Chen T, Dan J. The ZBTB24-CDCA7-HELLS axis suppresses the totipotent 2C-like reprogramming by maintaining Dux methylation and repression. Nucleic Acids Res 2025; 53:gkaf302. [PMID: 40226918 PMCID: PMC11995263 DOI: 10.1093/nar/gkaf302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Two-cell-like cells (2CLCs), a rare population (∼0.5%) in mouse embryonic stem cell (mESC) cultures, are in a transient totipotent-like state resembling that of 2C-stage embryos, and their discovery and characterization have greatly facilitated the study of early developmental events, such as zygotic genome activation. However, the molecular determinants governing 2C-like reprogramming remain to be elucidated. Here, we show that ZBTB24, CDCA7, and HELLS, components of a molecular pathway that is involved in the pathogenesis of immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, function as negative regulators of 2C-like reprogramming by maintaining DNA methylation of the Dux cluster, a master inducer of the 2C-like state. Disruption of the ZBTB24-CDCA7-HELLS axis results in Dux hypomethylation and derepression, leading to dramatic upregulation of 2C-specific genes, which can be reversed by site-specific re-methylation in the Dux promoter. We also provide evidence that CDCA7 is enriched at the Dux cluster and recruits the CDCA7-HELLS chromatin remodeling complex to constitutive heterochromatin. Our study uncovers a key role for the ZBTB24-CDCA7-HELLS axis in safeguarding the mESC state by suppressing the 2C-like reprogramming.
Collapse
Affiliation(s)
- Dan Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zeling Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Youqi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
| | - Yanna Xue
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jinghong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, United States
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
4
|
Burton A, Torres-Padilla ME. Epigenome dynamics in early mammalian embryogenesis. Nat Rev Genet 2025:10.1038/s41576-025-00831-4. [PMID: 40181107 DOI: 10.1038/s41576-025-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
During early embryonic development in mammals, the totipotency of the zygote - which is reprogrammed from the differentiated gametes - transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
5
|
Pandey DP, Somyajit K. Oncohistone-sculpted epigenetic mechanisms in pediatric brain cancer. Curr Opin Pharmacol 2025; 81:102505. [PMID: 39874681 DOI: 10.1016/j.coph.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Chromatin dynamics, involving reversible changes in chromatin structure, shape key cellular processes and genomic integrity during development and proliferation, with disruptions leading to cancer. Histones, core components of chromatin and substrates for chromatin-modifying enzymes, play crucial roles in oncogenesis when misregulated or mutated. This is particularly pronounced in pediatric hind brain cancers, some of which are driven primarily by the oncohistone H3K27M and the recently identified oncohistone-mimic protein CXorf67/EZHIP. Notably, H3K27M and EZHIP-driven cancers exhibit low mutation burdens, highlighting the enigmatic role of non-mutational epigenetic reprogramming in oncogenesis beyond traditional paradigms of oncogene activation and tumor suppressor loss. Here, we review the impact of H3K27M and EZHIP-driven cancer mechanisms on chromatin and transcriptional dysregulation leading to aberrant cell fate determination, and their potential influence beyond gene activity, affecting broader cellular pathways. Illuminating these mechanisms is crucial for advancing treatment options for pediatric brain cancers, where therapeutic regimens are poorly defined.
Collapse
Affiliation(s)
- Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| | - Kumar Somyajit
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
6
|
Nakatani T. Dynamics of replication timing during mammalian development. Trends Genet 2025:S0168-9525(25)00026-5. [PMID: 40082146 DOI: 10.1016/j.tig.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
Recent developments in low-input genomics techniques have greatly advanced the analysis of the order in which DNA is replicated in the genome - that is, replication timing (RT) - and its interrelationships with other processes. RT correlates or anticorrelates with genomic-specific parameters such as gene expression, chromatin accessibility, histone modifications, and the 3D structure of the genome, but the significance of how they influence each other and how they relate to biological processes remains unclear. In this review I discuss the results of recent analyses of RT, the time at which it is remodeled and consolidated during embryogenesis, how it influences development and differentiation, and the regulatory mechanisms and factors involved.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, München, Germany.
| |
Collapse
|
7
|
Davis BEM, Snedeker J, Ranjan R, Wooten M, Barton SS, Blundon J, Chen X. Increased levels of lagging strand polymerase α in an adult stem cell lineage affect replication-coupled histone incorporation. SCIENCE ADVANCES 2025; 11:eadu6799. [PMID: 40020063 PMCID: PMC11870066 DOI: 10.1126/sciadv.adu6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Stem cells display asymmetric histone inheritance, while nonstem progenitor cells exhibit symmetric patterns in the Drosophila male germ line. Here, we report that components involved in lagging strand synthesis, DNA polymerases α and δ, have substantially reduced levels in stem cells compared to progenitor cells, and this promotes local asymmetry of parental histone incorporation at the replication fork. Compromising Polα genetically induces the local replication-coupled histone incorporation pattern in progenitor cells to resemble that in stem cells, seen by both nuclear localization patterns and chromatin fibers. This is recapitulated using a Polα inhibitor in a concentration-dependent manner. The local old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S phase and M phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in nonstem cells to resemble those in stem cells.
Collapse
Affiliation(s)
- Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Savannah Sáde Barton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Ciardo D, Haccard O, de Carli F, Hyrien O, Goldar A, Marheineke K. Dual DNA replication modes: varying fork speeds and initiation rates within the spatial replication program in Xenopus. Nucleic Acids Res 2025; 53:gkaf007. [PMID: 39883014 PMCID: PMC11781033 DOI: 10.1093/nar/gkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping. The analysis revealed two independent spatiotemporal processes that regulate the replication dynamics in the Xenopus model system. These mechanisms are referred to as a fast and a slow replication mode, differing by their opposite replication fork speed and rate of origin firing. We found that Polo-like kinase 1 (Plk1) depletion abolished the spatial separation of these two replication modes. In contrast, neither replication checkpoint inhibition nor Rap1-interacting factor (Rif1) depletion affected the distribution of these replication patterns. These results suggest that Plk1 plays an essential role in the local coordination of the spatial replication program and the initiation-elongation coupling along the chromosomes in Xenopus, ensuring the timely completion of the S phase.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Haccard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay(NeuroPsi), F-91400 Saclay, France
| | - Francesco de Carli
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91190 Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
9
|
López-Hernández L, Toolan-Kerr P, Bannister AJ, Millán-Zambrano G. Dynamic histone modification patterns coordinating DNA processes. Mol Cell 2025; 85:225-237. [PMID: 39824165 DOI: 10.1016/j.molcel.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
Significant effort has been spent attempting to unravel the causal relationship between histone post-translational modifications and fundamental DNA processes, including transcription, replication, and repair. However, less attention has been paid to understanding the reciprocal influence-that is, how DNA processes, in turn, shape the distribution and patterns of histone modifications and how these changes convey information, both temporally and spatially, from one process to another. Here, we review how histone modifications underpin the widespread bidirectional crosstalk between different DNA processes, which allow seemingly distinct phenomena to operate as a unified whole.
Collapse
Affiliation(s)
- Laura López-Hernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain
| | - Patrick Toolan-Kerr
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
10
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
11
|
Hains AE, Chetal K, Nakatani T, Marques JG, Ettinger A, Junior CAOB, Gonzalez-Sandoval A, Pillai R, Filbin MG, Torres-Padilla ME, Sadreyev RI, Van Rechem C. Multi-omics approaches reveal that diffuse midline gliomas present altered DNA replication and are susceptible to replication stress therapy. Genome Biol 2024; 25:319. [PMID: 39707510 DOI: 10.1186/s13059-024-03460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The fatal diffuse midline gliomas (DMG) are characterized by an undruggable H3K27M mutation in H3.1 or H3.3. K27M impairs normal development by stalling differentiation. The identification of targetable pathways remains very poorly explored. Toward this goal, we undertake a multi-omics approach to evaluate replication timing profiles, transcriptomics, and cell cycle features in DMG cells from both H3.1K27M and H3.3K27M subgroups and perform a comparative, integrative data analysis with healthy brain tissue. RESULTS DMG cells present differential replication timing in each subgroup, which, in turn, correlates with significant differential gene expression. Differentially expressed genes in S phase are involved in various pathways related to DNA replication. We detect increased expression of DNA replication genes earlier in the cell cycle in DMG cell lines compared to normal brain cells. Furthermore, the distance between origins of replication in DMG cells is smaller than in normal brain cells and their fork speed is slower, a read-out of replication stress. Consistent with these findings, DMG tumors present high replication stress signatures in comparison to normal brain cells. Finally, DMG cells are specifically sensitive to replication stress therapy. CONCLUSIONS This whole genome multi-omics approach provides insights into the cell cycle regulation of DMG via the H3K27M mutations and establishes a pharmacologic vulnerability in DNA replication, which resolves a potentially novel therapeutic strategy for this non-curable disease.
Collapse
Affiliation(s)
- Anastasia E Hains
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospitaland, Harvard Medical School , Boston, MA, 02114, USA
| | | | - Joana G Marques
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Carlos A O Biagi Junior
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Renjitha Pillai
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospitaland, Harvard Medical School , Boston, MA, 02114, USA
| | | |
Collapse
|
12
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. PLoS Biol 2024; 22:e3002840. [PMID: 39401257 PMCID: PMC11501031 DOI: 10.1371/journal.pbio.3002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.
Collapse
Affiliation(s)
- Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Sung Yun Kim
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
13
|
Ranjan R, Ma B, Gleason RJ, Liao Y, Bi Y, Davis BEM, Yang G, Clark M, Mahajan V, Condon M, Broderick NA, Chen X. Modulating DNA Polα Enhances Cell Reprogramming Across Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613993. [PMID: 39345551 PMCID: PMC11429986 DOI: 10.1101/2024.09.19.613993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As a fundamental biological process, DNA replication ensures the accurate copying of genetic information. However, the impact of this process on cellular plasticity in multicellular organisms remains elusive. Here, we find that reducing the level or activity of a replication component, DNA Polymerase α (Polα), facilitates cell reprogramming in diverse stem cell systems across species. In Drosophila male and female germline stem cell lineages, reducing Polα levels using heterozygotes significantly enhances fertility of both sexes, promoting reproductivity during aging without compromising their longevity. Consistently, in C. elegans the pola heterozygous hermaphrodites exhibit increased fertility without a reduction in lifespan, suggesting that this phenomenon is conserved. Moreover, in male germline and female intestinal stem cell lineages of Drosophila, polα heterozygotes exhibit increased resistance to tissue damage caused by genetic ablation or pathogen infection, leading to enhanced regeneration and improved survival during post-injury recovery, respectively. Additionally, fine tuning of an inhibitor to modulate Polα activity significantly enhances the efficiency of reprogramming human embryonic fibroblasts into induced pluripotent cells. Together, these findings unveil novel roles of a DNA replication component in regulating cellular reprogramming potential, and thus hold promise for promoting tissue health, facilitating post-injury rehabilitation, and enhancing healthspan.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Binbin Ma
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingshan Bi
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guanghui Yang
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Maggie Clark
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vikrant Mahajan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Madison Condon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Kurashima K, Kamikawa Y, Tsubouchi T. Embryonic stem cells maintain high origin activity and slow forks to coordinate replication with cell cycle progression. EMBO Rep 2024; 25:3757-3776. [PMID: 39054377 PMCID: PMC11387781 DOI: 10.1038/s44319-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Embryonic stem (ES) cells are pluripotent stem cells that can produce all cell types of an organism. ES cells proliferate rapidly and are thought to experience high levels of intrinsic replication stress. Here, by investigating replication fork dynamics in substages of S phase, we show that mammalian pluripotent stem cells maintain a slow fork speed and high active origin density throughout the S phase, with little sign of fork pausing. In contrast, the fork speed of non-pluripotent cells is slow at the beginning of S phase, accompanied by increased fork pausing, but thereafter fork pausing rates decline and fork speed rates accelerate in an ATR-dependent manner. Thus, replication fork dynamics within the S phase are distinct between ES and non-ES cells. Nucleoside addition can accelerate fork speed and reduce origin density. However, this causes miscoordination between the completion of DNA replication and cell cycle progression, leading to genome instability. Our study indicates that fork slowing in the pluripotent stem cells is an integral aspect of DNA replication.
Collapse
Affiliation(s)
- Kiminori Kurashima
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yasunao Kamikawa
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomomi Tsubouchi
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
15
|
Takahashi S, Kyogoku H, Hayakawa T, Miura H, Oji A, Kondo Y, Takebayashi SI, Kitajima TS, Hiratani I. Embryonic genome instability upon DNA replication timing program emergence. Nature 2024; 633:686-694. [PMID: 39198647 PMCID: PMC11410655 DOI: 10.1038/s41586-024-07841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takuya Hayakawa
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yoshiko Kondo
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
16
|
Du Z, Lin M, Li Q, Guo D, Xue Y, Liu W, Shi H, Chen T, Dan J. The totipotent 2C-like state safeguards genomic stability of mouse embryonic stem cells. J Cell Physiol 2024; 239:e31337. [PMID: 38860420 DOI: 10.1002/jcp.31337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Mouse embryonic stem cells (mESCs) sporadically transition to a transient totipotent state that resembles blastomeres of the two-cell (2C) embryo stage, which has been proposed to contribute to exceptional genomic stability, one of the key features of mESCs. However, the biological significance of the rare population of 2C-like cells (2CLCs) in ESC cultures remains to be tested. Here we generated an inducible reporter cell system for specific elimination of 2CLCs from the ESC cultures to disrupt the equilibrium between ESCs and 2CLCs. We show that removing 2CLCs from the ESC cultures leads to dramatic accumulation of DNA damage, genomic mutations, and rearrangements, indicating impaired genomic instability. Furthermore, 2CLCs removal results in increased apoptosis and reduced proliferation of mESCs in both serum/LIF and 2i/LIF culture conditions. Unexpectedly, p53 deficiency results in defective response to DNA damage, leading to early accumulation of DNA damage, micronuclei, indicative of genomic instability, cell apoptosis, and reduced self-renewal capacity of ESCs when devoid of 2CLCs in cultures. Together, our data reveal that transition to the privileged 2C-like state is a major component of the intrinsic mechanisms that maintain the exceptional genomic stability of mESCs for long-term self-renewal.
Collapse
Affiliation(s)
- Zeling Du
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Qiaohua Li
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Dan Guo
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Yanna Xue
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Wei Liu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| |
Collapse
|
17
|
de Jaime-Soguero A, Hattemer J, Bufe A, Haas A, van den Berg J, van Batenburg V, Das B, di Marco B, Androulaki S, Böhly N, Landry JJM, Schoell B, Rosa VS, Villacorta L, Baskan Y, Trapp M, Benes V, Chabes A, Shahbazi M, Jauch A, Engel U, Patrizi A, Sotillo R, van Oudenaarden A, Bageritz J, Alfonso J, Bastians H, Acebrón SP. Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nat Commun 2024; 15:7404. [PMID: 39191776 DOI: 10.1038/s41467-024-51821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Collapse
Affiliation(s)
| | - Janina Hattemer
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Bufe
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Alexander Haas
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jeroen van den Berg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent van Batenburg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Barbara di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Androulaki
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nicolas Böhly
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brigitte Schoell
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yagmur Baskan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Bageritz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Holger Bastians
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
18
|
Do BT, Hsu PP, Vermeulen SY, Wang Z, Hirz T, Abbott KL, Aziz N, Replogle JM, Bjelosevic S, Paolino J, Nelson SA, Block S, Darnell AM, Ferreira R, Zhang H, Milosevic J, Schmidt DR, Chidley C, Harris IS, Weissman JS, Pikman Y, Stegmaier K, Cheloufi S, Su XA, Sykes DB, Vander Heiden MG. Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress. Dev Cell 2024; 59:2203-2221.e15. [PMID: 38823395 PMCID: PMC11444020 DOI: 10.1016/j.devcel.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that perturbing metabolism can alter cell state. Here, we find that nucleotide depletion and DNA replication stress drive differentiation in human and murine normal and transformed hematopoietic systems, including patient-derived acute myeloid leukemia (AML) xenografts. These cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length. In systems where differentiation is blocked by oncogenic transcription factor expression, replication stress activates primed regulatory loci and induces lineage-appropriate maturation genes despite the persistence of progenitor programs. Altering the baseline cell state by manipulating transcription factor expression causes replication stress to induce genes specific for alternative lineages. The ability of replication stress to selectively activate primed maturation programs across different contexts suggests a general mechanism by which changes in metabolism can promote lineage-appropriate cell state transitions.
Collapse
Affiliation(s)
- Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA; Rogel Cancer Center and Division of Hematology and Oncology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sidney Y Vermeulen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhishan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Najihah Aziz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bjelosevic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha A Nelson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Block
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hanyu Zhang
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan S Weissman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, Riverside, CA 92521, USA
| | - Xiaofeng A Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Karagyozova T, Almouzni G. Replicating chromatin in the nucleus: A histone variant perspective. Curr Opin Cell Biol 2024; 89:102397. [PMID: 38981199 DOI: 10.1016/j.ceb.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
In eukaryotes, chromatin and DNA replication are intimately linked, whereby chromatin impacts DNA replication control while genome duplication involves recovery of chromatin organisation. Here, we review recent advances in this area using a histone variant lens. We highlight how nucleosomal features interplay with origin definition and how the order of origin firing links with chromatin states in early mammalian development. We next discuss histone recycling and de novo deposition at the fork to finally open on the post-replicative recovery of the chromatin landscape to promote maintenance of cell identity.
Collapse
Affiliation(s)
- Tina Karagyozova
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
20
|
Gao C, Gao X, Gao F, Du X, Wu S. A CRISPR/Cas9 screen in embryonic stem cells reveals that Mdm2 regulates totipotency exit. Commun Biol 2024; 7:809. [PMID: 38961268 PMCID: PMC11222520 DOI: 10.1038/s42003-024-06507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
21
|
Chen YL, Jones AN, Crawford A, Sattler M, Ettinger A, Torres-Padilla ME. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells. J Cell Biol 2024; 223:e202309027. [PMID: 38625077 PMCID: PMC11022885 DOI: 10.1083/jcb.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.
Collapse
Affiliation(s)
- Yung-Li Chen
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Amy Crawford
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Bioscience, Bavarian NMR Center, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany
| |
Collapse
|
22
|
Znachorova T, Dudko N, Ming H, Jiang Z, Fulka H. The timing of pronuclear transfer critically affects the developmental competence and quality of embryos. Mol Hum Reprod 2024; 30:gaae024. [PMID: 38991843 PMCID: PMC11262804 DOI: 10.1093/molehr/gaae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.
Collapse
Affiliation(s)
- Tereza Znachorova
- Department of Cell Nucleus Plasticity, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nataliia Dudko
- Department of Cell Nucleus Plasticity, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Helena Fulka
- Department of Cell Nucleus Plasticity, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
23
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Iyyappan R, Scatolin GN, Jiang Z, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat Commun 2024; 15:5247. [PMID: 38898078 PMCID: PMC11187207 DOI: 10.1038/s41467-024-49565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that late replicating regions are established in association with the B compartment and the nuclear lamina from the first cell cycle after fertilization on both maternal and paternal genomes. Late replicating regions contain a relative paucity of active origins and few but long genes and low G/C content. In both bovine and mouse embryos, replication timing patterns are established prior to embryonic genome activation. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to separation of soma and germ cell lineages. Our studies show that the segregation of early and late replicating regions is among the first layers of genome organization established after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York, NY, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical School, New York, NY, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Amnon Koren
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Recent work reveals that cell cycle duration and structure are remodeled in lock-step with distinct stages of erythroid differentiation. These cell cycle features have regulatory roles in differentiation, beyond the generic function of increasing cell number. RECENT FINDINGS Developmental progression through the early erythroid progenitor stage (known as colony-forming-erythroid, or 'CFU-e') is characterized by gradual shortening of G1 phase of the cycle. This process culminates in a key transcriptional switch to erythroid terminal differentiation (ETD) that is synchronized with, and dependent on, S phase progression. Further, the CFU-e/ETD switch takes place during an unusually short S phase, part of an exceptionally short cell cycle that is characterized by globally fast replication fork speeds. Cell cycle and S phase speed can alter developmental events during erythroid differentiation, through pathways that are targeted by glucocorticoid and erythropoietin signaling during the erythroid stress response. SUMMARY There is close inter-dependence between cell cycle structure and duration, S phase and replication fork speeds, and erythroid differentiation stage. Further, modulation of cell cycle structure and speed cycle impacts developmental progression and cell fate decisions during erythroid differentiation. These pathways may offer novel mechanistic insights and potential therapeutic targets.
Collapse
Affiliation(s)
- Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Snedeker J, Davis BEM, Ranjan R, Wooten M, Blundon J, Chen X. Reduced Levels of Lagging Strand Polymerases Shape Stem Cell Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591383. [PMID: 38746451 PMCID: PMC11092439 DOI: 10.1101/2024.04.26.591383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells display asymmetric histone inheritance while non-stem progenitor cells exhibit symmetric patterns in the Drosophila male germline lineage. Here, we report that components involved in lagging strand synthesis, such as DNA polymerase α and δ (Polα and Polδ), have significantly reduced levels in stem cells compared to progenitor cells. Compromising Polα genetically induces the replication-coupled histone incorporation pattern in progenitor cells to be indistinguishable from that in stem cells, which can be recapitulated using a Polα inhibitor in a concentration-dependent manner. Furthermore, stem cell-derived chromatin fibers display a higher degree of old histone recycling by the leading strand compared to progenitor cell-derived chromatin fibers. However, upon reducing Polα levels in progenitor cells, the chromatin fibers now display asymmetric old histone recycling just like GSC-derived fibers. The old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S-phase and M-phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in non-stem cells in a manner similar to that in stem cells.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Current address: Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
26
|
Ubieto-Capella P, Ximénez-Embún P, Giménez-Llorente D, Losada A, Muñoz J, Méndez J. A rewiring of DNA replication mediated by MRE11 exonuclease underlies primed-to-naive cell de-differentiation. Cell Rep 2024; 43:114024. [PMID: 38581679 DOI: 10.1016/j.celrep.2024.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/01/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Mouse embryonic stem cells (mESCs) in the primed pluripotency state, which resembles the post-implantation epiblast, can be de-differentiated in culture to a naive state that resembles the pre-implantation inner cell mass. We report that primed-to-naive mESC transition entails a significant slowdown of DNA replication forks and the compensatory activation of dormant origins. Using isolation of proteins on nascent DNA coupled to mass spectrometry, we identify key changes in replisome composition that are responsible for these effects. Naive mESC forks are enriched in MRE11 nuclease and other DNA repair proteins. MRE11 is recruited to newly synthesized DNA in response to transcription-replication conflicts, and its inhibition or genetic downregulation in naive mESCs is sufficient to restore the fork rate of primed cells. Transcriptomic analyses indicate that MRE11 exonuclease activity is required for the complete primed-to-naive mESC transition, demonstrating a direct link between DNA replication dynamics and the mESC de-differentiation process.
Collapse
Affiliation(s)
- Patricia Ubieto-Capella
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit-ProteoRed-ISCIII, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit-ProteoRed-ISCIII, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
27
|
Vega-Sendino M, Ruiz S. Transition from totipotency to pluripotency in mice: insights into molecular mechanisms. Biochem Soc Trans 2024; 52:231-239. [PMID: 38288760 DOI: 10.1042/bst20230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
Totipotency is the ability of a single cell to develop into a full organism and, in mammals, is strictly associated with the early stages of development following fertilization. This unlimited developmental potential becomes quickly restricted as embryonic cells transition into a pluripotent state. The loss of totipotency seems a consequence of the zygotic genome activation (ZGA), a process that determines the switch from maternal to embryonic transcription, which in mice takes place following the first cleavage. ZGA confers to the totipotent cell a transient transcriptional profile characterized by the expression of stage-specific genes and a set of transposable elements that prepares the embryo for subsequent development. The timely silencing of this transcriptional program during the exit from totipotency is required to ensure proper development. Importantly, the molecular mechanisms regulating the transition from totipotency to pluripotency have remained elusive due to the scarcity of embryonic material. However, the development of new in vitro totipotent-like models together with advances in low-input genome-wide technologies, are providing a better mechanistic understanding of how this important transition is achieved. This review summarizes the current knowledge on the molecular determinants that regulate the exit from totipotency.
Collapse
Affiliation(s)
- Maria Vega-Sendino
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20814, U.S.A
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20814, U.S.A
| |
Collapse
|
28
|
Pradhan SK, Lozoya T, Prorok P, Yuan Y, Lehmkuhl A, Zhang P, Cardoso MC. Developmental Changes in Genome Replication Progression in Pluripotent versus Differentiated Human Cells. Genes (Basel) 2024; 15:305. [PMID: 38540366 PMCID: PMC10969796 DOI: 10.3390/genes15030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
DNA replication is a fundamental process ensuring the maintenance of the genome each time cells divide. This is particularly relevant early in development when cells divide profusely, later giving rise to entire organs. Here, we analyze and compare the genome replication progression in human embryonic stem cells, induced pluripotent stem cells, and differentiated cells. Using single-cell microscopic approaches, we map the spatio-temporal genome replication as a function of chromatin marks/compaction level. Furthermore, we mapped the replication timing of subchromosomal tandem repeat regions and interspersed repeat sequence elements. Albeit the majority of these genomic repeats did not change their replication timing from pluripotent to differentiated cells, we found developmental changes in the replication timing of rDNA repeats. Comparing single-cell super-resolution microscopic data with data from genome-wide sequencing approaches showed comparable numbers of replicons and large overlap in origins numbers and genomic location among developmental states with a generally higher origin variability in pluripotent cells. Using ratiometric analysis of incorporated nucleotides normalized per replisome in single cells, we uncovered differences in fork speed throughout the S phase in pluripotent cells but not in somatic cells. Altogether, our data define similarities and differences on the replication program and characteristics in human cells at different developmental states.
Collapse
Affiliation(s)
- Sunil Kumar Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Teresa Lozoya
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Yue Yuan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Peng Zhang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| |
Collapse
|
29
|
Wu B, Wang Y, Wei X, Zhang J, Wu J, Cao G, Zhang Y, Liu J, Li X, Bao S. NELFA and BCL2 induce the 2C-like state in mouse embryonic stem cells in a chemically defined medium. Cell Prolif 2024; 57:e13534. [PMID: 37592709 PMCID: PMC10849787 DOI: 10.1111/cpr.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
A minority of mouse embryonic stem cells (ESCs) display totipotent features resembling 2-cell stage embryos and are known as 2-cell-like (2C-like) cells. However, how ESCs transit into this 2C-like state remains largely unknown. Here, we report that the overexpression of negative elongation factor A (Nelfa), a maternally provided factor, enhances the conversion of ESCs into 2C-like cells in chemically defined conditions, while the deletion of endogenous Nelfa does not block this transition. We also demonstrate that Nelfa overexpression significantly enhances somatic cell reprogramming efficiency. Interestingly, we found that the co-overexpression of Nelfa and Bcl2 robustly activates the 2C-like state in ESCs and endows the cells with dual cell fate potential. We further demonstrate that Bcl2 overexpression upregulates endogenous Nelfa expression and can induce the 2C-like state in ESCs even in the absence of Nelfa. Our findings highlight the importance of BCL2 in the regulation of the 2C-like state and provide insights into the mechanism underlying the roles of Nelfa and Bcl2 in the establishment and regulation of the totipotent state in mouse ESCs.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xinhua Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jiahui Wu
- School of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotChina
| | - Guifang Cao
- School of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic AnimalHohhotChina
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic AnimalHohhotChina
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland LivestockInner Mongolia UniversityHohhotChina
- Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
30
|
Yakhou L, Azogui A, Therizols P, Defossez PA. [Using 2C-like cells to understand embryonic totipotency]. Med Sci (Paris) 2024; 40:147-153. [PMID: 38411422 DOI: 10.1051/medsci/2023217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Totipotency is the ability of a cell to generate a whole organism, a property that characterizes the first embryonic cells, such as the zygote and the blastomeres. This review provides a retrospective on the progress made in the last decade in the study of totipotency, especially with the discovery of mouse ES cells expressing markers of the 2-cell stage (2C-like cells). This model has greatly contributed to a better understanding of the molecular mechanisms involved in totipotency (pioneer factors, epigenetic regulation, splicing, nuclear maturation). 2C-like cells have also paved the way for the development of new cellular models of human totipotency.
Collapse
Affiliation(s)
- Lounis Yakhou
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Anaelle Azogui
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Pierre Therizols
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Pierre-Antoine Defossez
- Équipe dynamiquede la méthylation de l'ADN des génomes eucaryotes, Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris-Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
31
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
32
|
Nakatani T, Schauer T, Altamirano-Pacheco L, Klein KN, Ettinger A, Pal M, Gilbert DM, Torres-Padilla ME. Emergence of replication timing during early mammalian development. Nature 2024; 625:401-409. [PMID: 38123678 PMCID: PMC10781638 DOI: 10.1038/s41586-023-06872-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.
Collapse
Affiliation(s)
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
33
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.25.573304. [PMID: 38234839 PMCID: PMC10793403 DOI: 10.1101/2023.12.25.573304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that both bovine and mouse cleavage stage embryos progress through S-phase in a defined pattern. Late replicating regions are associated with the nuclear lamina from the first cell cycle after fertilization, and contain few active origins, and few but long genes. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to segregation of soma and germ line. Our studies show that the formation of early and late replicating regions is among the first layers of epigenetic regulation established on the mammalian genome after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York
| | | | - Timour Baslan
- Department of Biomedical Sciences, The University of Pennsylvania, Philadelphia, PA, 19104
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, 14853, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
34
|
Jia B, Jiang Y, Huan Y, Han Y, Liu W, Liu X, Wang Y, He L, Cao Z, He X, Zhang K, Gu J, Guo Q, Fei Z. Rac GTPase activating protein 1 promotes the glioma growth by regulating the expression of MCM3. Transl Oncol 2023; 37:101756. [PMID: 37595394 PMCID: PMC10458994 DOI: 10.1016/j.tranon.2023.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Glioma is the most common tumor of the nervous system. The diffuse growth and proliferation of glioma poses great challenges for its treatment. Here, Transcriptomic analysis revealed that Rac GTPase activating protein 1 (RACGAP1) is highly expressed in glioma. RACGAP1 has been shown to play an important role in the malignant biological progression of a variety of tumors. However, the underlying role and mechanism in glioma remain poorly understood. By using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry and Orthotopic mouse xenografts, we confirmed that knockdown of RACGAP1 impeded cell proliferation in glioma and prolonged the survival of orthotopic mice. Interestingly, we also found that inhibiting the expression of RACGAP1 reduced the expression of minichromosome maintenance 3 (MCM3) through RNA-seq and rescue assay, while Yin Yang 1 (YY1) transcriptionally regulated RACGAP1 expression. Furthermore, T7 peptide-decorated exosome (T7-exo) is regard as a promising delivery modality for targeted therapy of glioma, and the T7-siRACGAP1-exo significantly improved the survival time of glioma bearing mice. These results suggested that targeting RACGAP1 may be a potential strategy for glioma therapy.
Collapse
Affiliation(s)
- Bo Jia
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuran Jiang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wei Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingwen Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengcong Cao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
35
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555109. [PMID: 37693559 PMCID: PMC10491125 DOI: 10.1101/2023.08.28.555109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited specifically to sites in the 3'-UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via two approaches. In the first method, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes ~2600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Approximately 60% of mRNAs targeted by Upf1-Nos are not stabilized in the absence of Nos. However, Upf1-Nos mRNA targets are hypo-adenylated and inefficiently translated at the ovary-embryo transition, whether or not they suffer Nos-dependent degradation in the embryo. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors during the MZT in the embryo.
Collapse
|
36
|
Pang LY, DeLuca S, Zhu H, Urban JM, Spradling AC. Chromatin and gene expression changes during female Drosophila germline stem cell development illuminate the biology of highly potent stem cells. eLife 2023; 12:RP90509. [PMID: 37831064 PMCID: PMC10575629 DOI: 10.7554/elife.90509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.
Collapse
Affiliation(s)
- Liang-Yu Pang
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Steven DeLuca
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Haolong Zhu
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - John M Urban
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
37
|
Wang N, Xu S, Egli D. Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol 2023; 33:872-886. [PMID: 37202286 PMCID: PMC11214770 DOI: 10.1016/j.tcb.2023.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Duplicating a genome of 3 billion nucleotides is challenged by a variety of obstacles that can cause replication stress and affect the integrity of the genome. Recent studies show that replication fork slowing and stalling is prevalent in early mammalian development, resulting in genome instability and aneuploidy, and constituting a barrier to development in human reproduction. Genome instability resulting from DNA replication stress is a barrier to the cloning of animals and to the reprogramming of differentiated cells to induced pluripotent stem cells, as well as a barrier to cell transformation. Remarkably, the regions most impacted by replication stress are shared in these different cellular contexts, affecting long genes and flanking intergenic areas. In this review we integrate our knowledge of DNA replication stress in mammalian embryos, in programming, and in reprogramming, and we discuss a potential role for fragile sites in sensing replication stress and restricting cell cycle progression in health and disease.
Collapse
Affiliation(s)
- Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Canat A, Atilla D, Torres‐Padilla M. Hyperosmotic stress induces 2-cell-like cells through ROS and ATR signaling. EMBO Rep 2023; 24:e56194. [PMID: 37432066 PMCID: PMC10481651 DOI: 10.15252/embr.202256194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.
Collapse
Affiliation(s)
- Antoine Canat
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Derya Atilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
40
|
Nakatani T, Torres-Padilla ME. Regulation of mammalian totipotency: a molecular perspective from in vivo and in vitro studies. Curr Opin Genet Dev 2023; 81:102083. [PMID: 37421903 DOI: 10.1016/j.gde.2023.102083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 07/10/2023]
Abstract
In mammals, cells acquire totipotency at fertilization. Embryonic genome activation (EGA), which occurs at the 2-cell stage in the mouse and 4- to 8-cell stage in humans, occurs during the time window at which embryonic cells are totipotent and thus it is thought that EGA is mechanistically linked to the foundations of totipotency. The molecular mechanisms that lead to the establishment of totipotency and EGA had been elusive for a long time, however, recent advances have been achieved with the establishment of new cell lines with greater developmental potential and the application of novel low-input high-throughput techniques in embryos. These have unveiled several principles of totipotency related to its epigenetic makeup but also to characteristic features of totipotent cells. In this review, we summarize and discuss current views exploring some of the key drivers of totipotency from both in vitro cell culture models and embryogenesis in vivo.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
41
|
Gupta N, Yakhou L, Albert JR, Azogui A, Ferry L, Kirsh O, Miura F, Battault S, Yamaguchi K, Laisné M, Domrane C, Bonhomme F, Sarkar A, Delagrange M, Ducos B, Cristofari G, Ito T, Greenberg MVC, Defossez PA. A genome-wide screen reveals new regulators of the 2-cell-like cell state. Nat Struct Mol Biol 2023; 30:1105-1118. [PMID: 37488355 DOI: 10.1038/s41594-023-01038-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.
Collapse
Affiliation(s)
- Nikhil Gupta
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France.
- Joint AZ CRUK Functional Genomics Centre, The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Lounis Yakhou
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | | | - Anaelle Azogui
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Laure Ferry
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Olivier Kirsh
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | - Sarah Battault
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Kosuke Yamaguchi
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Marthe Laisné
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Cécilia Domrane
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology, UMR3523, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Arpita Sarkar
- IRCAN, Université Côte d'Azur, Inserm, CNRS, Nice, France
| | - Marine Delagrange
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | | | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | | | | |
Collapse
|
42
|
Moritz L, Schon SB, Rabbani M, Sheng Y, Agrawal R, Glass-Klaiber J, Sultan C, Camarillo JM, Clements J, Baldwin MR, Diehl AG, Boyle AP, O'Brien PJ, Ragunathan K, Hu YC, Kelleher NL, Nandakumar J, Li JZ, Orwig KE, Redding S, Hammoud SS. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol 2023; 30:1077-1091. [PMID: 37460896 PMCID: PMC10833441 DOI: 10.1038/s41594-023-01033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.
Collapse
Affiliation(s)
- Lindsay Moritz
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juniper Glass-Klaiber
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeannie M Camarillo
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jourdan Clements
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Saher Sue Hammoud
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Ping W, Sheng Y, Hu G, Zhong H, Li Y, Liu Y, Luo W, Yan C, Wen Y, Wang X, Li Q, Guo R, Zhang J, Liu A, Pan G, Yao H. RBBP4 is an epigenetic barrier for the induced transition of pluripotent stem cells into totipotent 2C-like cells. Nucleic Acids Res 2023; 51:5414-5431. [PMID: 37021556 PMCID: PMC10287929 DOI: 10.1093/nar/gkad219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Collapse
Affiliation(s)
- Wangfang Ping
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxin Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yaoyi Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - YanJiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Li Z, Xu H, Li J, Xu X, Wang J, Wu D, Zhang J, Liu J, Xue Z, Zhan G, Tan BCP, Chen D, Chan YS, Ng HH, Liu W, Hsu CH, Zhang D, Shen Y, Liang H. Selective binding of retrotransposons by ZFP352 facilitates the timely dissolution of totipotency network. Nat Commun 2023; 14:3646. [PMID: 37339952 DOI: 10.1038/s41467-023-39344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Acquisition of new stem cell fates relies on the dissolution of the prior regulatory network sustaining the existing cell fates. Currently, extensive insights have been revealed for the totipotency regulatory network around the zygotic genome activation (ZGA) period. However, how the dissolution of the totipotency network is triggered to ensure the timely embryonic development following ZGA is largely unknown. In this study, we identify the unexpected role of a highly expressed 2-cell (2C) embryo specific transcription factor, ZFP352, in facilitating the dissolution of the totipotency network. We find that ZFP352 has selective binding towards two different retrotransposon sub-families. ZFP352 coordinates with DUX to bind the 2C specific MT2_Mm sub-family. On the other hand, without DUX, ZFP352 switches affinity to bind extensively onto SINE_B1/Alu sub-family. This leads to the activation of later developmental programs like ubiquitination pathways, to facilitate the dissolution of the 2C state. Correspondingly, depleting ZFP352 in mouse embryos delays the 2C to morula transition process. Thus, through a shift of binding from MT2_Mm to SINE_B1/Alu, ZFP352 can trigger spontaneous dissolution of the totipotency network. Our study highlights the importance of different retrotransposons sub-families in facilitating the timely and programmed cell fates transition during early embryogenesis.
Collapse
Affiliation(s)
- Zhengyi Li
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Haiyan Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiao Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Junjiao Wang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Danya Wu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiateng Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Juan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ziwei Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Guankai Zhan
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bobby Cheng Peow Tan
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore
| | - Di Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Huck Hui Ng
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117597, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Wanlu Liu
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Yang Shen
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore.
- Vision Medicals Co., Ltd, G10 BLDG, Huaxin Park, 31 Kefeng Ave, Gaungzhou, 510000, China.
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
45
|
Lovejoy CM, Nagarajan P, Parthun MR. Dynamic Reassociation of the Nuclear Lamina with Newly Replicated DNA. RESEARCH SQUARE 2023:rs.3.rs-2846826. [PMID: 37215015 PMCID: PMC10197746 DOI: 10.21203/rs.3.rs-2846826/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The physical association of specific regions of chromatin with components of the nuclear lamina provides the framework for the 3-dimensionl architecture of the genome. The regulation of these interactions plays a critical role in the maintenance of gene expression patterns and cell identity. The breakdown and reassembly of the nuclear membrane as cells transit mitosis plays a central role in the regulation of the interactions between the genome and the nuclear lamina. However, other nuclear processes, such as transcription, have emerged as regulators of the association of DNA with the nuclear lamina. To determine whether DNA replication also has the potential to regulate DNA-nuclear lamina interactions, we adapted proximity ligation-based chromatin assembly assays to analyze the dynamics of nuclear lamina association with newly replicated DNA. We observe that lamin A/C and lamin B, as well as inner nuclear membrane proteins LBR and emerin, are found in proximity to newly replicated DNA. While core histones rapidly reassociate with DNA following passage of the replication fork, the complete reassociation of nuclear lamina components with newly replicated DNA occurs over a period of approximately 30 minutes. We propose models to describe the disassembly and reassembly of nascent chromatin with the nuclear lamina.
Collapse
|
46
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
47
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
48
|
Alvarez V, Bandau S, Jiang H, Rios-Szwed D, Hukelmann J, Garcia-Wilson E, Wiechens N, Griesser E, Ten Have S, Owen-Hughes T, Lamond A, Alabert C. Proteomic profiling reveals distinct phases to the restoration of chromatin following DNA replication. Cell Rep 2023; 42:111996. [PMID: 36680776 DOI: 10.1016/j.celrep.2023.111996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Chromatin organization must be maintained during cell proliferation to preserve cellular identity and genome integrity. However, DNA replication results in transient displacement of DNA-bound proteins, and it is unclear how they regain access to newly replicated DNA. Using quantitative proteomics coupled to Nascent Chromatin Capture or isolation of Proteins on Nascent DNA, we provide time-resolved binding kinetics for thousands of proteins behind replisomes within euchromatin and heterochromatin in human cells. This shows that most proteins regain access within minutes to newly replicated DNA. In contrast, 25% of the identified proteins do not, and this delay cannot be inferred from their known function or nuclear abundance. Instead, chromatin organization and G1 phase entry affect their reassociation. Finally, DNA replication not only disrupts but also promotes recruitment of transcription factors and chromatin remodelers, providing a significant advance in understanding how DNA replication could contribute to programmed changes of cell memory.
Collapse
Affiliation(s)
- Vanesa Alvarez
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Susanne Bandau
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Hao Jiang
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Diana Rios-Szwed
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jens Hukelmann
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Elisa Garcia-Wilson
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nicola Wiechens
- Laboratory of Chromatin Remodelling and Cancer Epigenetics, Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Eva Griesser
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sara Ten Have
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Tom Owen-Hughes
- Laboratory of Chromatin Remodelling and Cancer Epigenetics, Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Angus Lamond
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Constance Alabert
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
49
|
Jacobs K, Doerdelmann C, Krietsch J, González-Acosta D, Mathis N, Kushinsky S, Guarino E, Gómez-Escolar C, Martinez D, Schmid JA, Leary PJ, Freire R, Ramiro AR, Eischen CM, Mendez J, Lopes M. Stress-triggered hematopoietic stem cell proliferation relies on PrimPol-mediated repriming. Mol Cell 2022; 82:4176-4188.e8. [PMID: 36152632 PMCID: PMC10251193 DOI: 10.1016/j.molcel.2022.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.
Collapse
Affiliation(s)
- Kurt Jacobs
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cyril Doerdelmann
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel González-Acosta
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nicolas Mathis
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Saul Kushinsky
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Estrella Guarino
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Carmen Gómez-Escolar
- B Lymphocyte Biology Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Dolores Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter J Leary
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Functional Genomic Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Almudena R Ramiro
- B Lymphocyte Biology Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
50
|
Fu B, Ma H, Liu D. 2-Cell-like Cells: An Avenue for Improving SCNT Efficiency. Biomolecules 2022; 12:1611. [PMID: 36358959 PMCID: PMC9687756 DOI: 10.3390/biom12111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 03/25/2024] Open
Abstract
After fertilization, the zygote genome undergoes dramatic structural reorganization to ensure the establishment of totipotency, and then the totipotent potential of the zygote or 2-cell-stage embryo progressively declines. However, cellular potency is not always a one-way street. Specifically, a small number of embryonic stem cells (ESCs) occasionally overcome epigenetic barriers and transiently convert to a totipotent status. Despite the significant potential of the somatic cell nuclear transfer (SCNT) technique, the establishment of totipotency is often deficient in cloned embryos. Because of this phenomenon, the question arises as to whether strategies attempting to induce 2-cell-like cells (2CLCs) can provide practical applications, such as reprogramming of somatic cell nuclei. Inspired by strategies that convert ESCs into 2CLCs, we hypothesized that there will be a similar pathway by which cloned embryos can establish totipotent status after SCNT. In this review, we provide a snapshot of the practical strategies utilized to induce 2CLCs during investigations of the development of cloned embryos. The 2CLCs have similar transcriptome and chromatin features to that of 2-cell-stage embryos, and we propose that 2CLCs, already a valuable in vitro model for dissecting totipotency, will provide new opportunities to improve SCNT efficiency.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|