1
|
Chen JN, Wang L, He YX, Sun XW, Cheng LJ, Li YN, Yoshida S, Shen ZY. SEL1L-mediated endoplasmic reticulum associated degradation inhibition suppresses proliferation and migration in Huh7 hepatocellular carcinoma cells. World J Gastroenterol 2025; 31:103133. [PMID: 40093667 PMCID: PMC11886529 DOI: 10.3748/wjg.v31.i10.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Proteins play a central role in regulating biological functions, and various pathways regulate their synthesis and secretion. Endoplasmic reticulum-associated protein degradation (ERAD) is crucial for monitoring protein synthesis and processing unfolded or misfolded proteins in actively growing tumor cells. However, the role of the multiple ERAD complexes in liver cancer remains unclear. AIM To elucidate the effects of SEL1L-mediated ERAD on Huh7 and explore the underlying mechanisms in vivo and in vitro. METHODS Huh7 cells were treated with ERAD inhibitor to identify ERAD's role. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine and colony formation experiments were performed. Apoptosis level and migration ability were assessed using fluorescence activated cell sorting and Transwell assay, respectively. Huh7 SEL1L knockout cell line was established via clustered regularly interspaced short palindromic repeats, proliferation, apoptosis, and migration were assessed through previous experiments. The role of SEL1L in vivo and the downstream target of SEL1L were identified using Xenograft and mass spectrometry, respectively. RESULTS The ERAD inhibitor suppressed cell proliferation and migration and promoted apoptosis. SEL1L-HRD1 significantly influenced Huh7 cell growth. SEL1L knockout suppressed tumor cell proliferation and migration and enhanced apoptosis. Mass spectrometry revealed EXT2 is a primary substrate of ERAD. SEL1L knockout significantly increased the protein expression of EXT2. Furthermore, EXT2 knockdown partially restored the effect of SEL1L knockout. CONCLUSION ERAD inhibition suppressed the proliferation and migration of Huh7 and promoted its apoptosis. EXT2 plays an important role and ERAD might be a potential treatment for Huh7 hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia-Nan Chen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Yu-Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Xiao-Wei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Long-Jiao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ya-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
- Nankai International Advanced Research Institute, Shenzhen 518045, Guangdong Province, China
| | - Zhong-Yang Shen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
2
|
Zhang H, Tang Z, Shen S, Feng L, Qin Y, Huang L, Chen Y, Liu Y, Wang W. Deficiency of EXT1 and FGFR3 genes promotes chondrocyte differentiation, leading to the induction of osteochondroma formation. Bone 2025; 192:117370. [PMID: 39675407 DOI: 10.1016/j.bone.2024.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE This study aims to investigate the roles of the EXT1 and FGFR3 genes in the development of osteochondromas, focusing specifically on their potential interactions in chondrocyte proliferation, differentiation, and tumor formation. METHODS In vitro, the ATDC5 chondroprogenitor cell line was used to examine the effects of inactivation of both EXT1 and FGFR3. In vivo, a mouse model with dual gene knockout of Ext1 and Fgfr3 was constructed to further explore these genes' roles in tumor formation by observing the incidence and distribution patterns of osteochondromas. RESULTS The in vitro experiments demonstrated that ATDC5 cells with reduced expression of EXT1 and FGFR3 genes exhibited enhanced chondrogenic differentiation. In vivo, Fgfr3+/-;Ext1+/- mice showed a significant incidence of osteochondromas (72.7 %), primarily located in the humerus, fibula, and tibia, while mice with a single heterozygous deletion did not display notable lesions. CONCLUSION The EXT1 and FGFR3 genes play crucial regulatory roles in the development of osteochondromas. Deficiencies in Ext1 and Fgfr3 can induce the formation of osteochondromas.
Collapse
Affiliation(s)
- Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Zhencun Tang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China; Department of Otolaryngology Head and Neck Surgery, 920th Hospital of Joint Logistics Support Force, PLA, China
| | - Shiying Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Lei Feng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Yunfa Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Liangchong Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Yanyan Chen
- Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Yu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| |
Collapse
|
3
|
Mycroft-West CJ, Leanca MA, Wu L. Structural glycobiology - from enzymes to organelles. Biochem Soc Trans 2025; 53:BST20241119. [PMID: 39889286 DOI: 10.1042/bst20241119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Biological carbohydrate polymers represent some of the most complex molecules in life, enabling their participation in a huge range of physiological functions. The complexity of biological carbohydrates arises from an extensive enzymatic repertoire involved in their construction, deconstruction and modification. Over the past decades, structural studies of carbohydrate processing enzymes have driven major insights into their mechanisms, supporting associated applications across medicine and biotechnology. Despite these successes, our understanding of how multienzyme networks function to create complex polysaccharides is still limited. Emerging techniques such as super-resolution microscopy and cryo-electron tomography are now enabling the investigation of native biological systems at near molecular resolutions. Here, we review insights from classical in vitro studies of carbohydrate processing, alongside recent in situ studies of glycosylation-related processes. While considerable technical challenges remain, the integration of molecular mechanisms with true biological context promises to transform our understanding of carbohydrate regulation, shining light upon the processes driving functional complexity in these essential biomolecules.
Collapse
Affiliation(s)
| | - Miron A Leanca
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| |
Collapse
|
4
|
Zhong R, Zhou D, Phillips DR, Adams ER, Chen L, Rose JP, Wang BC, Ye ZH. Identification of glycosyltransferases mediating 2-O-arabinopyranosyl and 2-O-galactosyl substitutions of glucuronosyl side chains of xylan. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:234-252. [PMID: 39145524 PMCID: PMC11424249 DOI: 10.1111/tpj.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Xylan is one of the major hemicelluloses in plant cell walls and its xylosyl backbone is often decorated at O-2 with glucuronic acid (GlcA) and/or methylglucuronic acid (MeGlcA) residues. The GlcA/MeGlcA side chains may be further substituted with 2-O-arabinopyranose (Arap) or 2-O-galactopyranose (Gal) residues in some plant species, but the enzymes responsible for these substitutions remain unknown. During our endeavor to investigate the enzymatic activities of Arabidopsis MUR3-clade members of the GT47 glycosyltransferase family, we found that one of them was able to transfer Arap from UDP-Arap onto O-2 of GlcA side chains of xylan, and thus it was named xylan 2-O-arabinopyranosyltransferase 1 (AtXAPT1). The function of AtXAPT1 was verified in planta by its T-DNA knockout mutation showing a loss of the Arap substitution on xylan GlcA side chains. Further biochemical characterization of XAPT close homologs from other plant species demonstrated that while the poplar ones had the same catalytic activity as AtXAPT1, those from Eucalyptus, lemon-scented gum, sea apple, 'Ohi'a lehua, duckweed and purple yam were capable of catalyzing both 2-O-Arap and 2-O-Gal substitutions of xylan GlcA side chains albeit with differential activities. Sequential reactions with XAPTs and glucuronoxylan methyltransferase 3 (GXM3) showed that XAPTs acted poorly on MeGlcA side chains, whereas GXM3 could efficiently methylate arabinosylated or galactosylated GlcA side chains of xylan. Furthermore, molecular docking and site-directed mutagenesis analyses of Eucalyptus XAPT1 revealed critical roles of several amino acid residues at the putative active site in its activity. Together, these findings establish that XAPTs residing in the MUR3 clade of family GT47 are responsible for 2-O-arabinopyranosylation and 2-O-galactosylation of GlcA side chains of xylan.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
5
|
Li H, Doray B, Jennings BC, Lee WS, Liu L, Kornfeld S, Li H. Structure of a truncated human GlcNAc-1-phosphotransferase variant reveals the basis for its hyperactivity. J Biol Chem 2024; 300:107706. [PMID: 39178950 PMCID: PMC11418123 DOI: 10.1016/j.jbc.2024.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Mutations that cause loss of function of GlcNAc-1-phosphotransferase (PTase) lead to the lysosomal storage disorder mucolipidosis II. PTase is the key enzyme of the mannose 6-phosphate (M6P) targeting system that is responsible for tagging lysosomal hydrolases with the M6P moiety for their delivery to the lysosome. We had previously generated a truncated hyperactive form of PTase termed S1S3 which was shown to notably increase the phosphorylation level of secreted lysosomal enzymes and enhance their uptake by cells. Here, we report the 3.4 Å cryo-EM structure of soluble S1S3 lacking both transmembrane domains and cytosolic tails. The structure reveals a high degree of conservation of the catalytic core to full-length PTase. In this dimeric structure, the EF-hand of one protomer is observed interacting with the conserved region four of the other. In addition, we present a high-quality EM 3D map of the UDP-GlcNAc bound form of the full-length soluble protein showing the key molecular interactions between the nucleotide sugar donor and side chain amino acids of the protein. Finally, although the domain organization of S1S3 is very similar to that of the Drosophila melanogaster (fruit fly) PTase homolog, we establish that the latter does not act on lysosomal hydrolases.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin C Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang-Sik Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Liu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
6
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Stancanelli E, Krahn JA, Viverette E, Dutcher R, Pagadala V, Borgnia MJ, Liu J, Pedersen LC. Structural and Functional Analysis of Heparosan Synthase 2 from Pasteurella multocida (PmHS2) to Improve the Synthesis of Heparin. ACS Catal 2024; 14:6577-6588. [PMID: 39990868 PMCID: PMC11845225 DOI: 10.1021/acscatal.4c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Heparin is a widely used drug to treat thrombotic disorders in hospitals. Heparosan synthase 2 from Pasteurella multocida (PmHS2) is a key enzyme used for the chemoenzymatic synthesis of heparin oligosaccharides. It has both activities: glucosaminyl transferase activity and glucuronyl transferase activity; however, the mechanism to carry out the glyco-oligomerization is unknown. Here, we report crystal structures of PmHS2 constructs with bound uridine diphosphate (UDP) and a cryo-EM structure of PmHS2 in complex with UDP and a heptasaccharide (NS 7-mer) substrate. Using a LC-MC analytical method, we discovered the enzyme displays both a two-step concerted oligomerization mode and a distributive oligomerization mode depending on the non-reducing end of the starting oligosaccharide primer. Removal of 7 amino acid residues from the C-terminus results in an enzymatically active monomer instead of dimer and loses the concerted oligomerization mode of activity. In addition, the monomer construct can transfer N-acetyl glucosamine at a substrate concentration that is ∼7-fold higher than wildtype enzyme. It was also determined that an F529A mutant can transfer an N-sulfo glucosamine (GlcNS) saccharide from a previously inactive UDP-GlcNS donor. Performing the glyco-transfer reaction at a high substrate concentration and the capability of using unnatural donors are desirable to simplify the chemoenzymatic synthesis to prepare heparin-based therapeutics.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juno A. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Elizabeth Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Robert Dutcher
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Mycroft-West CJ, Abdelkarim S, Duyvesteyn HME, Gandhi NS, Skidmore MA, Owens RJ, Wu L. Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1. Nat Commun 2024; 15:1326. [PMID: 38351061 PMCID: PMC10864358 DOI: 10.1038/s41467-024-45419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Sahar Abdelkarim
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Neha S Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, QLD 4000, Brisbane, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mark A Skidmore
- Centre for Glycoscience Research and Training, Keele University, ST5 5BG, Newcastle-Under-Lyme, UK
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK.
| |
Collapse
|
10
|
Borovikov A, Galeeva N, Marakhonov A, Murtazina A, Kadnikova V, Davydenko K, Orlova A, Sparber P, Markova T, Orlova M, Osipova D, Nagornova T, Semenova N, Levchenko O, Filatova A, Sharova M, Vasiluev P, Kanivets I, Pyankov D, Sharkov A, Udalova V, Kenis V, Nikitina N, Sumina M, Zherdev K, Petel'guzov A, Chelpachenko O, Zubkov P, Dan I, Snetkov A, Akinshina A, Buklemishev Y, Ryzhkova O, Tabakov V, Zakharova E, Korostelev S, Zinchenko R, Skoblov M, Polyakov A, Dadali E, Kutsev S, Shchagina O. The Missing Piece of the Puzzle: Unveiling the Role of PTPN11 Gene in Multiple Osteochondromas in a Large Cohort Study. Hum Mutat 2024; 2024:8849348. [PMID: 40225915 PMCID: PMC11918999 DOI: 10.1155/2024/8849348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 04/15/2025]
Abstract
This study is aimed at investigating the clinical and genetic characteristics of 244 unrelated probands diagnosed with multiple osteochondromas (MO). The diagnosis of MO typically involves identifying multiple benign bone tumors known as osteochondromas (OCs) through imaging studies and physical examinations. However, cases with both OCs and enchondromas (ECs) may indicate the more rare condition metachondromatosis (MC), which is assumed to be distinct disease. Previous cohort studies of MO found heterozygous loss-of-function (LoF) variants only in the EXT1 or EXT2 genes, with DNA diagnostic yield ranging from 78 to 95%. The PTPN11 gene, which is causative for MC, was not previously investigated as a gene candidate for MO. In this study, we detected a total of 177 unique single nucleotide and copy number variants in three genes across 220 probands, consisting of 80 previously reported and 97 novel variants. Specifically, we identified five cases with OCs and no ECs as well as four cases with MC carrying LoF variants in the PTPN11 gene and two additional cases with ECs harboring variants in the EXT1/2 genes. These findings suggest a potential overlap between the MO and MC both phenotypically and genetically. These findings highlight the importance of expanding genetic testing beyond the EXT1 and EXT2 genes in MO cases, as other genes such as PTPN11 may also be causative. This can improve the accuracy of diagnosis and treatment for individuals with MO and MC. It is essential to determine whether MO and MC represent distinct diseases or if they encompass a broader clinical spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Orlova
- Research Centre for Medical Genetics, Moscow, Russia
| | - Peter Sparber
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - Maria Orlova
- Research Centre for Medical Genetics, Moscow, Russia
| | - Darya Osipova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | | | - Ilya Kanivets
- Genomed, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | | | - Artem Sharkov
- Genomed, Moscow, Russia
- Veltischev Research and Clinical Institute of Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Vladimir Kenis
- The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia
| | - Natalia Nikitina
- State Healthcare Institution of Sverdlovsk Region “Clinical and Diagnostic Center “Mother's and Child Health Protection”, Ekaterinburg, Russia
| | - Maria Sumina
- State Healthcare Institution of Sverdlovsk Region “Clinical and Diagnostic Center “Mother's and Child Health Protection”, Ekaterinburg, Russia
| | - Konstantin Zherdev
- National Medical Research Center of Children's Health, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Oleg Chelpachenko
- National Medical Research Center of Children's Health, Moscow, Russia
| | - Pavel Zubkov
- National Medical Research Center of Children's Health, Moscow, Russia
| | - Ivan Dan
- National Medical Research Center of Traumatology and Orthopedics Named after N.N. Priorov, Moscow, Russia
| | - Andrey Snetkov
- National Medical Research Center of Traumatology and Orthopedics Named after N.N. Priorov, Moscow, Russia
| | - Alexandra Akinshina
- National Medical Research Center of Traumatology and Orthopedics Named after N.N. Priorov, Moscow, Russia
| | - Yury Buklemishev
- National Medical Research Center of Traumatology and Orthopedics Named after N.N. Priorov, Moscow, Russia
| | | | | | | | - Sergey Korostelev
- Genomed, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - Elena Dadali
- Research Centre for Medical Genetics, Moscow, Russia
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
11
|
Zhou W, Hong J, Han J, Cai F, Tang Q, Yu Q, Li G, Ma S, Liu X, Huo S, Chen K, Zhu F. Silkworm glycosaminoglycans bind to Bombyx mori nuclear polyhedrosis virus and facilitate its entry. Int J Biol Macromol 2023; 253:127352. [PMID: 37838120 DOI: 10.1016/j.ijbiomac.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Interacting with cell surface attachment factors or receptors is the first step for virus infection. Glycans cover a thick layer on eukaryotic cells and are potential targets of various viruses. Bombyx mori nuclear polyhedrosis viruses (BmNPV) is a baculovirus that causes huge economic loss to the sericulture industry but the mechanism of infection is unclear. Looking for potential host receptors for the virus is an important task. In this study, we investigated the role of glycosaminoglycan (GAG) modifications, including heparan sulfate (HS) and chondroitin sulfate (CS), during BmNPV infection. Enzymatic removal of cell surface HS and CS effectively inhibited BmNPV infection and replication. Exogenous HS and CS can directly bind to BmNPV virion in solution and act as neutralizers for viral infection. Furthermore, the expression of enzymes involved in GAG biosynthesis was upregulated in the BmNPV susceptible silkworm after virus administration, but down-regulated in the resistant strain after virus treatment, suggesting that BmNPV was able to utilize host cell machinery to promote the biosynthesis of GAGs. This study demonstrated HS and CS as important attachment factors that facilitate the viral entry process, and targeting HS and CS can be an effective means of inhibiting BmNPV infection.
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jindie Hong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jinying Han
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Fuchuan Cai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qi Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Guohui Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Wilson LFL, Neun S, Yu L, Tryfona T, Stott K, Hollfelder F, Dupree P. The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan. THE NEW PHYTOLOGIST 2023; 240:2353-2371. [PMID: 37823344 PMCID: PMC10952531 DOI: 10.1111/nph.19305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan β-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and β-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that β-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.
Collapse
Affiliation(s)
- Louis F. L. Wilson
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Stefanie Neun
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Li Yu
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
13
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Sammon D, Krueger A, Busse-Wicher M, Morgan RM, Haslam SM, Schumann B, Briggs DC, Hohenester E. Molecular mechanism of decision-making in glycosaminoglycan biosynthesis. Nat Commun 2023; 14:6425. [PMID: 37828045 PMCID: PMC10570366 DOI: 10.1038/s41467-023-42236-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.
Collapse
Affiliation(s)
- Douglas Sammon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Marta Busse-Wicher
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Abzena, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Rhodri Marc Morgan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- ZoBio, 2333 CH, Leiden, Netherlands
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - David C Briggs
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Immelmann R, Gawenda N, Ramírez V, Pauly M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. PLANT DIRECT 2023; 7:e514. [PMID: 37502316 PMCID: PMC10368651 DOI: 10.1002/pld3.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Plant cell walls contain the hemicellulose xyloglucan, whose fine structure may vary depending on cell type, tissue, and/or plant species. Most but not all of the glycosyltransferases involved in the biosynthesis of xyloglucan sidechains have been identified. Here, we report the identification of several functional glycosyltransferases from blueberry (Vaccinium corymbosum bluecrop). Among those transferases is a hitherto elusive Xyloglucan:Beta-xylosylTransferase (XBT). Heterologous expression of VcXBT in the Arabidopsis thaliana double mutant mur3 xlt2, where xyloglucan consists only of an unsubstituted xylosylated glucan core structure, results in the production of the xylopyranose-containing "U" sidechain as characterized by mass spectrometry, glycosidic linkage, and NMR analysis. The introduction of the additional xylopyranosyl residue rescues the dwarfed phenotype of the untransformed Arabidopsis mur3 xlt2 mutant to wild-type height. Structural protein analysis using Alphafold of this and other related xyloglucan glycosyltransferase family 47 proteins not only identifies potential domains that might influence the regioselectivity of these enzymes but also gives hints to specific amino acids that might determine the donor-substrate specificity of these glycosyltransferases.
Collapse
Affiliation(s)
- Ronja Immelmann
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Niklas Gawenda
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Vicente Ramírez
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
16
|
Li M, Pedersen LC, Xu D. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Front Mol Biosci 2023; 10:1194293. [PMID: 37275960 PMCID: PMC10235622 DOI: 10.3389/fmolb.2023.1194293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heparan sulfate-binding proteins (HSBPs) are structurally diverse extracellular and membrane attached proteins that interact with HS under normal physiological conditions. Interactions with HS offer an additional level of control over the localization and function of HSBPs, which enables them to behave in a more refined manner. Because all cell signaling events start at the cell membrane, and cell-cell communication relies on translocation of soluble factors across the extracellular matrix, HS occupies an apical position in cellular signal transduction by interacting with hundreds of growth factors, cytokines, chemokines, enzymes, enzyme inhibitors, receptors and adhesion molecules. These extracellular and membrane proteins can play important roles in physiological and pathological conditions. For most HS-binding proteins, the interaction with HS represents an essential element in regulating their normal physiological functions. Such dependence on HS suggests that manipulating HS-protein interactions could be explored as a therapeutic strategy to selectively antagonize/activate HS-binding proteins. In this review, we will discuss current understanding of the diverse nature of HS-HSBP interactions, and the latest advancements in targeting the HS-binding site of HSBPs using structurally-defined HS oligosaccharides and monoclonal antibodies.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| |
Collapse
|