1
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Wang L, Rosenfeldt M, Koutsaviti A, Harizani M, Zhao Y, Leelahakorn N, Frachon A, Raadam MH, Miettinen K, Pateraki I, Ioannou E, Kampranis SC. Systematic biotechnological production of isoprenoid analogs with bespoke carbon skeletons. Nat Commun 2025; 16:2098. [PMID: 40025103 PMCID: PMC11873216 DOI: 10.1038/s41467-025-57494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Natural products are widely used as pharmaceuticals, flavors, fragrances, and cosmetic ingredients. Synthesizing and evaluating analogs of natural products can considerably expand their applications. However, the chemical synthesis of analogs of natural products is severely hampered by their highly complex structures. This is particularly evident in isoprenoids, the largest class of natural products. Here, we develop a yeast cell-based biocatalytic method that enables the systematic biotechnological production of analogs of different classes of isoprenoids (including monoterpenoids, sesquiterpenoids, triterpenoids, and cannabinoids) with additional carbons in their skeletons. We demonstrate the applicability of this approach through two proof-of-concept studies: the biosynthesis of the highly valued aroma ingredient ethyllinalool, and the production of cannabinoid analogs with improved cannabinoid receptor agonism. This method is simple, readily adaptable to any cell factory, and enables the tailored expansion of the isoprenoid chemical space to identify molecules with improved properties and the biotechnological production of valuable compounds.
Collapse
Affiliation(s)
- Lina Wang
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Mads Rosenfeldt
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Maria Harizani
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nattawat Leelahakorn
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | | | - Morten H Raadam
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karel Miettinen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Zhao Y, Wu Z, Li J, Qi Y, Zhang X, Shen C. The key role of cytochrome P450s in the biosynthesis of plant derived natural products. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109695. [PMID: 40015195 DOI: 10.1016/j.plaphy.2025.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Cytochrome P450 (CYP450 or CYP450, abbreviated as CYP450) represents a large family of self-oxidizable heme proteins, belonging to the class of monooxygenases, and is named because of the specific absorption peak at 450 nm in its ferrous/CO-bound complex. Cytochrome P450 has a wide spectrum of substrates and a rich variety of catalytic reactions, plays an important role in drug metabolism, natural product biosynthesis, and biocatalysis industry. In the biosynthesis of plant natural products, it plays an important role, especially in the downstream synthesis pathway and structural modification after skeleton synthesis. There are abundant natural products from plants, including terpenes, alkaloids, flavonoids, steroidal saponins, etc., which have great development value in the medical field. In the biosynthetic pathways of these natural products, cytochrome P450 enzymes often play an important role. They can serve as rate-limiting enzymes in the biosynthetic pathways or as modifying enzymes for the structural diversity of compounds. So, a deeper understanding of cytochrome P450 enzymes in the natural product synthesis pathway will enhance the development of natural products and advance the study of their synthetic biology. This review offers an overview of the biosynthesis of key medicinal natural products, with a particular focus on the critical role of cytochrome P450 enzymes in key catalytic steps. It also highlights recent advancements in the research of natural product biosynthesis and synthetic biology.
Collapse
Affiliation(s)
- Yawen Zhao
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Zhenzhen Wu
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Jiayao Li
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Yaoxing Qi
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Xiaoxiao Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China; State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China.
| |
Collapse
|
4
|
Zhang C, Liu M, Wang X, Cheng J, Xiang J, Yue M, Ning Y, Shao Z, Abdullah CN, Zhou J. De Novo Synthesis of Reticuline and Taxifolin Using Re-engineered Homologous Recombination in Yarrowia lipolytica. ACS Synth Biol 2025; 14:585-597. [PMID: 39899813 DOI: 10.1021/acssynbio.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Yarrowia lipolytica has been widely engineered as a eukaryotic cell factory to produce various important compounds. However, the difficulty of gene editing and the lack of efficient neutral sites make rewiring of Y. lipolytica metabolism challenging. Herein, a Cas9 system was established to redesign the Y. lipolytica homologous recombination system, which caused a more than 56-fold increase in the HR efficiency. The fusion expression of the hBrex27 sequence in the C-terminus of Cas9 recruited more Rad51 protein, and the engineered Cas9 decreased NHEJ, achieving 85% single-gene positive efficiency and 25% multigene editing efficiency. With this system, neutral sites on different chromosomes were characterized, and a deep learning model was developed for gRNA activity prediction, thus providing the corresponding integration efficiency and expression intensity. Subsequently, the tool and platform strains were validated by applying them for the de novo synthesis of (S)-reticuline and (2S)-taxifolin. The developed platform strains and tools helped transform Y. lipolytica into an easy-to-operate model cell factory, similar to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Changtai Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junyi Cheng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jinbo Xiang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengxuan Shao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Chalak Najat Abdullah
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
6
|
El-Sawy ER, Abdel-Aziz MS, Kirsch G. 3-Acetyl Indole in the Synthesis of Natural Bioactive Compounds. Curr Org Synth 2025; 22:328-341. [PMID: 40259586 DOI: 10.2174/0115701794325027240827043203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 04/23/2025]
Abstract
Natural products, with their various sources from plants, marine organisms, and microorganisms, are considered a key source and inspiration for medicines and continue to be so. Indole alkaloids are a class of alkaloids and represent a large subunit of natural products. Indole alkaloids of biological importance are numerous and cover a wide range of pharmaceutical applications, including anticancer, antiviral, antimicrobial, anti-inflammatory, and antioxidant. Obtaining natural, biologically active indole compounds involves isolating them from their natural sources or preparing them synthetically. 3-Substituted indoles represent an emerging structural class of marine alkaloids based on their high degree of biological activity. 3-Acetyl indole is an important core used as a starting material for synthesizing many bioactive indole alkaloids. (5-Indole)oxazole alkaloids, β-carboline alkaloids, bis-indole alkaloids, chuangxinmycin, meridianine, and (±) indolemycin are the most important indole alkaloids that are prepared starting from 3-acety indole. The present review provides comprehensive information on the structures and the synthesis of bioactive indole alkaloids utilizing 3-acetyl indole and its derivatives as starting compounds. Additionally, it also spotlights the diverse biological activities of these compounds.
Collapse
Affiliation(s)
- Eslam R El-Sawy
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, Metz, 57050, France
| |
Collapse
|
7
|
Wu S, Tatsis EC. Specialized metabolism in St John's wort. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102625. [PMID: 39236592 DOI: 10.1016/j.pbi.2024.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The specialized metabolism of St. John's wort, Hypericum perforatum L., is a key focus in medicinal plant research due to its hallmark bioactive compounds hyperforin and hypericin. Known for its traditional medicinal uses dating back to ancient times, St. John's wort is currently used for mild depression therapy. Recent research works have shed light on the biosynthesis of various metabolites in this plant, such as flavonoids, xanthones, hyperforin, and hypericin. The elucidation of these pathways, along with the discovery of novel enzymes like hyperforin synthase, support the pharmaceutical research by enabling scalable production of bioactive compounds for the development of new drugs. Elucidation of the hyperforin biosynthesis based on single-cell RNA-seq is an approach that will be expanded and accelerate the gene discovery and full pathway reconstitution of plant specialized metabolites.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai, China.
| |
Collapse
|
8
|
Le Pogam P, Beniddir MA. Structural diversity and chemical logic underlying the assembly of monoterpene indole alkaloids oligomers. Nat Prod Rep 2024; 41:1723-1765. [PMID: 39262398 DOI: 10.1039/d4np00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Covering: up to 2024This review aims to draw a parallel between all known oligomers of monoterpene indole alkaloids (MIAs) by illustrating the chemical logic underlying their assembly. For this purpose, oligomeric MIAs were first comprehensively listed and organized according to the names of the backbones of their constitutive monomers and the binding sites. From this extensive list, an oligomer network was generated and unprecedented MIA statistics were mined and shared herein. Subsequently, oligomeric MIAs were categorized according to the number of connections instigated between their monomeric components (single, double, triple, and mixed tethering), then subdivided according to the uniqueness or combination of oligomerization assembly reactions. This effort outlined oligomerization trends in a scaffold-specific manner, and established binding reactivity patterns facilitating the comprehension of the associated biosynthetic processes. At last, this review illustrates a unique initiative in crafting a comprehensive repository of machine-readable metadata for MIA oligomers that could be leveraged for chemoinformatic purposes.
Collapse
Affiliation(s)
- Pierre Le Pogam
- Équipe, Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, BioCIS, 17 avenue des Sciences, 91400 Orsay, France.
| | - Mehdi A Beniddir
- Équipe, Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, BioCIS, 17 avenue des Sciences, 91400 Orsay, France.
| |
Collapse
|
9
|
Holtz M, Rago D, Nedermark I, Hansson FG, Lehka BJ, Hansen LG, Marcussen NEJ, Veneman WJ, Ahonen L, Wungsintaweekul J, Acevedo-Rocha CG, Dirks RP, Zhang J, Keasling JD, Jensen MK. Metabolic engineering of yeast for de novo production of kratom monoterpene indole alkaloids. Metab Eng 2024; 86:135-146. [PMID: 39366478 DOI: 10.1016/j.ymben.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Monoterpene indole alkaloids (MIAs) from Mitragyna speciosa ("kratom"), such as mitragynine and speciogynine, are promising novel scaffolds for opioid receptor ligands for treatment of pain, addiction, and depression. While kratom leaves have been used for centuries in South-East Asia as stimulant and pain management substance, the biosynthetic pathway of these psychoactives have only recently been partially elucidated. Here, we demonstrate the de novo production of mitragynine and speciogynine in Saccharomyces cerevisiae through the reconstruction of a five-step synthetic pathway from common MIA precursor strictosidine comprising fungal tryptamine 4-monooxygenase to bypass an unknown kratom hydroxylase. Upon optimizing cultivation conditions, a titer of ∼290 μg/L kratom MIAs from glucose was achieved. Untargeted metabolomics analysis of lead production strains led to the identification of numerous shunt products derived from the activity of strictosidine synthase (STR) and dihydrocorynantheine synthase (DCS), highlighting them as candidates for enzyme engineering to further improve kratom MIAs production in yeast. Finally, by feeding fluorinated tryptamine and expressing a human tailoring enzyme, we further demonstrate production of fluorinated and hydroxylated mitragynine derivatives with potential applications in drug discovery campaigns. Altogether, this study introduces a yeast cell factory platform for the biomanufacturing of complex natural and new-to-nature kratom MIAs derivatives with therapeutic potential.
Collapse
Affiliation(s)
- Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ida Nedermark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nils E J Marcussen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Linda Ahonen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Juraithip Wungsintaweekul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai Campus, 90112, Songkhla, Thailand
| | - Carlos G Acevedo-Rocha
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ron P Dirks
- Future Genomics Technologies, Leiden, 2333 BE, the Netherlands
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA, USA.
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Deichmann M, Hansson FG, Jensen ED. Yeast-based screening platforms to understand and improve human health. Trends Biotechnol 2024; 42:1258-1272. [PMID: 38677901 DOI: 10.1016/j.tibtech.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.
Collapse
Affiliation(s)
- Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Winegar PH, Hudson GA, Dell LB, Astolfi MCT, Reed J, Payet RD, Ombredane HCJ, Iavarone AT, Chen Y, Gin JW, Petzold CJ, Osbourn AE, Keasling JD. Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae. Metab Eng 2024; 85:145-158. [PMID: 39074544 PMCID: PMC11421371 DOI: 10.1016/j.ymben.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.
Collapse
Affiliation(s)
- Peter H Winegar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Luisa B Dell
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rocky D Payet
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark.
| |
Collapse
|
12
|
Oudin A, Papon N, Courdavault V. Metabolic engineering of the paclitaxel anticancer drug. Cell Res 2024; 34:475-476. [PMID: 38486059 PMCID: PMC11217410 DOI: 10.1038/s41422-024-00950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
- Audrey Oudin
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
| |
Collapse
|
13
|
Gou Y, Li D, Zhao M, Li M, Zhang J, Zhou Y, Xiao F, Liu G, Ding H, Sun C, Ye C, Dong C, Gao J, Gao D, Bao Z, Huang L, Xu Z, Lian J. Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast. Nat Commun 2024; 15:5238. [PMID: 38898098 PMCID: PMC11186835 DOI: 10.1038/s41467-024-49554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.
Collapse
Affiliation(s)
- Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiaojiao Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yilian Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Gaofei Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Haote Ding
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Chenfan Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Perrot T, Marc J, Lezin E, Papon N, Besseau S, Courdavault V. Emerging trends in production of plant natural products and new-to-nature biopharmaceuticals in yeast. Curr Opin Biotechnol 2024; 87:103098. [PMID: 38452572 DOI: 10.1016/j.copbio.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Jillian Marc
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
| |
Collapse
|
15
|
Holtz M, Acevedo-Rocha CG, Jensen MK. Combining enzyme and metabolic engineering for microbial supply of therapeutic phytochemicals. Curr Opin Biotechnol 2024; 87:103110. [PMID: 38503222 DOI: 10.1016/j.copbio.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
The history of pharmacology is deeply intertwined with plant-derived compounds, which continue to be crucial in drug development. However, their complex structures and limited availability in plants challenge drug discovery, optimization, development, and industrial production via chemical synthesis or natural extraction. This review delves into the integration of metabolic and enzyme engineering to leverage micro-organisms as platforms for the sustainable and reliable production of therapeutic phytochemicals. We argue that engineered microbes can serve a triple role in this paradigm: facilitating pathway discovery, acting as cell factories for scalable manufacturing, and functioning as platforms for chemical derivatization. Analyzing recent progress and outlining future directions, the review highlights microbial biotechnology's transformative potential in expanding plant-derived human therapeutics' discovery and supply chains.
Collapse
Affiliation(s)
- Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Carlos G Acevedo-Rocha
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Sadre R. Plant synthetic biology for human health: advances in producing medicines in heterologous expression systems. Curr Opin Biotechnol 2024; 87:103142. [PMID: 38735192 DOI: 10.1016/j.copbio.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Plant synthetic biology has the capability to provide solutions to global challenges in the production and supply of medicines. Recent advances in 'omics' technologies have accelerated gene discoveries in medicinal plant research so that even multistep biosynthetic pathways for bioactive plant natural products with high structural complexity can be reconstituted in heterologous plant expression systems more rapidly. This review provides an overview of concept and strategies used to produce high-value plant natural products in heterologous plant systems and highlights recent successes in engineering the biosynthesis of conventional and new medicines in alternative plant hosts.
Collapse
Affiliation(s)
- Radin Sadre
- Pelotonia Research Center, Department of Horticulture and Crop Science, the Ohio State University, 2255 Kenny Rd, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Bradley SA, Hansson FG, Lehka BJ, Rago D, Pinho P, Peng H, Adhikari KB, Haidar AK, Hansen LG, Volkova D, Holtz M, Muyo Abad S, Ma X, Koudounas K, Besseau S, Gautron N, Mélin C, Marc J, Birer Williams C, Courdavault V, Jensen ED, Keasling JD, Zhang J, Jensen MK. Yeast Platforms for Production and Screening of Bioactive Derivatives of Rauwolscine. ACS Synth Biol 2024; 13:1498-1512. [PMID: 38635307 DOI: 10.1021/acssynbio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Pedro Pinho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Huadong Peng
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Daria Volkova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sergi Muyo Abad
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Xin Ma
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Céline Mélin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Caroline Birer Williams
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608,United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| |
Collapse
|
18
|
da S. Santos B, Finelli FG, Spring DR. Photoredox C(2)-Arylation of Indole- and Tryptophan-Containing Biomolecules. Org Lett 2024; 26:4065-4070. [PMID: 38696591 PMCID: PMC11194849 DOI: 10.1021/acs.orglett.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024]
Abstract
We introduce a novel and straightforward methodology for photoredox arylation of an indole scaffold using aryldiazonium salts under mild and metal-free conditions. Our approach enables the regioselective and chemoselective introduction of several aryl groups to the C(2) position of indoles and tryptophan, even in competition with other amino acids. This approach extends to the late-stage functionalization of peptides and lysozyme, heralding the unprecedented arylation of tryptophan residues in wild-type proteins and offering broad utility in chemical biology.
Collapse
Affiliation(s)
- Bruno
M. da S. Santos
- Instituto
de Pesquisas de Produtos Naturais, Universidade
Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Fernanda G. Finelli
- Instituto
de Pesquisas de Produtos Naturais, Universidade
Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - David R. Spring
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
19
|
Courdavault V, Papon N. Accessing natural vaccine adjuvants. Nat Chem Biol 2024; 20:401-403. [PMID: 38491321 DOI: 10.1038/s41589-024-01585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Affiliation(s)
- Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France.
| | - Nicolas Papon
- Université d'Angers, Université de Bretagne-Occidentale, IRF, SFR ICAT, Angers, France
| |
Collapse
|