1
|
Hu Y, Zhu Y, Tang G, Shan M, Tan P, Yi Y, Zhang X, Liu M, Li X, Wu L, Chen J, Zheng H, Huang Y, Li Z, Li X, Wang D. Accurate Transcription Factor Activity Inference to Decipher Cell Identity from Single-Cell Transcriptomic Data with MetaTF. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e10745. [PMID: 40397381 DOI: 10.1002/advs.202410745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Cellular heterogeneity within cancer tissues determines cancer progression and treatment response. Single-cell RNA sequencing (scRNA-seq) has provided a powerful approach for investigating the cellular heterogeneity of both cancer cells and stroma cells in the tumor microenvironment. However, the common practice to characterize cell identity based on the similarity of their gene expression profiles may not really indicate distinct cellular populations with unique roles. Generally, the cell identity and function are orchestrated by the expression of given specific genes tightly regulated by transcription factors (TFs). Therefore, deciphering TF activity is essential for gaining a better understanding of the uniqueness and functionality of each cell type. Herein, metaTF, a computational framework designed to infer TF activity in scRNA-seq data, is introduced and existing methods are outperformed for estimating TF activity. It presents the improved effectiveness in characterizing cell identity during mouse hematopoietic stem cell development. Furthermore, metaTF provides a superior characterization of the functional identity of breast cancer epithelial cells, and identifies a novel subset of neural-regulated T cells within the tumor immune microenvironment, which potentially activates BCL6 in response to neural-related signals. Overall, metaTF enables robust TF activity analysis from scRNA-seq data, significantly enhancing the characterization of cell identity and function.
Collapse
Affiliation(s)
- Yongfei Hu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yuanyuan Zhu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Guangjue Tang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Shan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Puwen Tan
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yi
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xiyuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Man Liu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Li
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Le Wu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Chen
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hailong Zheng
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510060, China
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Dong Wang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
2
|
Singh M, Louie RHY, Samir J, Field MA, Milthorpe C, Adikari T, Mackie J, Roper E, Faulks M, Jackson KJL, Calcino A, Hardy MY, Blombery P, Amos TG, Deveson IW, Wende HV, Floor SN, Read SA, Shek D, Guerin A, Ma CS, Tangye SG, Di Sabatino A, Lenti MV, Pasini A, Ciccocioppo R, Ahlenstiel G, Suan D, Tye-Din JA, Goodnow CC, Luciani F. Expanded T cell clones with lymphoma driver somatic mutations accumulate in refractory celiac disease. Sci Transl Med 2025; 17:eadp6812. [PMID: 40367192 DOI: 10.1126/scitranslmed.adp6812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 03/31/2025] [Indexed: 05/16/2025]
Abstract
Intestinal inflammation continues in a subset of patients with celiac disease despite a gluten-free diet. Here, by applying multi-omic single-cell analysis to duodenal biopsies, we found that low-grade malignancies with lymphoma driver mutations in patients with refractory celiac disease type 2 (RCD2) are comprised by surface CD3-negative (sCD3-) lymphocytes stalled at an innate lymphoid cell (ILC)-progenitor T cell stage undergoing extensive TRA, TRB, and TRD TCR recombination. In people with refractory celiac disease type 1 (RCD1), a disease currently lacking explanation, we identified sCD3+ T cells with lymphoma driver mutations in 6 of 10 individuals with RCD1 and in one of the patients with active, recently diagnosed celiac disease. Furthermore, the mutant T cells formed large TCRαβ clones and displayed inflammatory and cytotoxic molecular profiles. Thus, accumulation of lymphoma driver-mutated T cells and sCD3- progenitors may contribute to chronic, nonresponsive celiac disease.
Collapse
Affiliation(s)
- Mandeep Singh
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Raymond H Y Louie
- School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jerome Samir
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Matthew A Field
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Smithfield, QLD 4878, Australia
| | - Claire Milthorpe
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Thiruni Adikari
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ellise Roper
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Megan Faulks
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Andrew Calcino
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Smithfield, QLD 4878, Australia
| | - Melinda Y Hardy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC 3000, Australia
- University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy G Amos
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ira W Deveson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Helen Vander Wende
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott A Read
- Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia
- Blacktown Medical School, Western Sydney University, Blacktown, NSW 2148, Australia
- Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Dmitri Shek
- Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia
- Blacktown Medical School, Western Sydney University, Blacktown, NSW 2148, Australia
- Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia 27100, Italy
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Marco V Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia 27100, Italy
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Alessandra Pasini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia 27100, Italy
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona 37134, Italy
| | - Golo Ahlenstiel
- Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia
- Blacktown Medical School, Western Sydney University, Blacktown, NSW 2148, Australia
- Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Dan Suan
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jason A Tye-Din
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Gastroenterology Department, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Cellular Genomics Futures Institute and School of Biomedical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fabio Luciani
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Kenter A, Singh H. An era of immunological discoveries heralded by molecular biology. Trends Immunol 2025; 46:364-371. [PMID: 40240192 DOI: 10.1016/j.it.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
The Molecular Mechanisms of Immune Cell Development and Function (MMICDF) meeting sponsored by the Federation of American Societies of Experimental Biology (FASEB) occupies a special niche because of its focus on the molecular mechanisms that underpin immunological processes. This biennial meeting with small groupings of participants and interactive nature has provided a forum for intense, informative, and influential scientific discussions. The meeting is unique for its focus on molecular mechanisms that control the exceptional processes of DNA recombination, somatic hypermutation (SHM), and gene expression during immune cell development, activation, and differentiation. The organizers of the foundational meeting reflect on the coalescence of scientific advances that catalyzed its origin, review meeting highlights to celebrate its 20th anniversary, and project into the future.
Collapse
Affiliation(s)
- Amy Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Harinder Singh
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Jay A, Pondevida CM, Vahedi G. The epigenetic landscape of fate decisions in T cells. Nat Immunol 2025; 26:544-556. [PMID: 40108419 DOI: 10.1038/s41590-025-02113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Specialized T cell subsets mediate adaptive immunity in response to cytokine signaling and specific transcription factor activity. The epigenetic landscape of T cells has an important role in facilitating and establishing T cell fate decisions. Here, we review the interplay between transcription factors, histone modifications, DNA methylation and three-dimensional chromatin organization to define key elements of the epigenetic landscape in T cells. We introduce key technologies in the areas of sequencing, microscopy and proteomics that have enabled the multi-scale profiling of the epigenetic landscape. We highlight the dramatic changes of the epigenetic landscape as multipotent progenitor cells commit to the T cell lineage during development and discuss the epigenetic changes that favor the emergence of CD4+ and CD8+ T cells. Finally, we discuss the inheritance of epigenetic marks and its potential effects on immune responses as well as therapeutic strategies with potential for epigenetic regulation.
Collapse
Affiliation(s)
- Atishay Jay
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos M Pondevida
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
6
|
Liu Y, Chen J, Li A, Wu Y, Ge J, Yuan M, Xu B, Zheng X, Chen L, Jiang J. Novel biomarkers: the RUNX family as prognostic predictors in colorectal cancer. Front Immunol 2024; 15:1430136. [PMID: 39822248 PMCID: PMC11736411 DOI: 10.3389/fimmu.2024.1430136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/21/2024] [Indexed: 01/30/2025] Open
Abstract
While biomarkers have been shown to enhance the prognosis of patients with colorectal cancer (CRC) compared to conventional treatments, there is a pressing need to discover novel biomarkers that can assist in assessing the prognostic impact of immunotherapy and in formulating individualized treatment plans. The RUNX family, consisting of RUNX1, RUNX2, and RUNX3, has been recognized as crucial regulators in developmental processes, with dysregulation of these genes also being implicated in tumorigenesis and cancer progression. In our present study, we demonstrated a crucial regulatory role of RUNX in CD8+T and CD103+CD8+T cell-mediated anti-tumor response within the tumor microenvironment (TME) of human CRC. Specifically, RUNXs were significantly differentially expressed between tumor and normal tissues in CRC. Patients with a greater proportion of infiltrating CD8+RUNX1+, CD103+CD8+RUNX1+, CD8+RUNX2+, CD103+CD8+RUNX2+, CD8+RUNX3+, or CD103+CD8+RUNX3+ T cells demonstrated improved outcomes compared to those with lower proportions. Additionally, the proportions of infiltrating CD8+RUNX1+T and CD8+RUNX3+T cells may serve as valuable prognostic predictors for CRC patients, independent of other clinicopathological factors. Moreover, further bioinformatic analysis conducted utilizing the TISIDB and TIMER platforms demonstrated significant associations between the members of the RUNX family and immune-infiltrating cells, specifically diverse subpopulations of CD8+TILs. Our study of human colorectal cancer tissue microarray (TMA) also revealed positive and statistically significant correlations between the expressions of RUNX1, RUNX2, and RUNX3 in both CD8+T cells and CD103+CD8+T cells. Our study comprehensively revealed the varied expressions and prognostic importance of the RUNX family in human colorectal cancer tissues. It underscored their potential as vital biomarkers for prognostic evaluation in colorectal cancer patients and as promising targets for immunotherapy in treating this disease.
Collapse
Affiliation(s)
- Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Maoling Yuan
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Tran VL, Haltalli MLR, Li J, Lin DS, Yamashita M, Naik SH, Rothenberg EV. Ever-evolving insights into the cellular and molecular drivers of lymphoid cell development. Exp Hematol 2024; 140:104667. [PMID: 39454745 PMCID: PMC11624110 DOI: 10.1016/j.exphem.2024.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Lymphocytes play a critical role in adaptive immunity and defense mechanisms, but the molecular mechanisms by which hematopoietic stem and progenitor cells differentiate into T and B lymphocytes are not fully established. Pioneer studies identify several transcription factors essential for lymphoid lineage determination. Yet, many questions remain unanswered about how these transcription factors interact with each other and with chromatin at different developmental stages. This interaction regulates a network of genes and proteins, promoting lymphoid lineage differentiation while suppressing other lineages. Throughout this intricate biological process, any genetic or epigenetic interruptions can derail normal differentiation trajectories, potentially leading to various human pathologic conditions. Here, we summarize recent advances in understanding lymphoid cell development, which was the focus of the Winter 2024 International Society for Experimental Hematology webinar.
Collapse
Affiliation(s)
- Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| | - Myriam L R Haltalli
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
8
|
Pease NA, Denecke KM, Chen L, Gerges PH, Kueh HY. A timed epigenetic switch balances T and ILC lineage proportions in the thymus. Development 2024; 151:dev203016. [PMID: 39655434 PMCID: PMC11664168 DOI: 10.1242/dev.203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
How multipotent progenitors give rise to multiple cell types in defined numbers is a central question in developmental biology. Epigenetic switches, acting at single gene loci, can generate extended delays in the activation of lineage-specifying genes and impact lineage decisions and cell type output. Here, we analyzed a timed epigenetic switch controlling expression of mouse Bcl11b, a transcription factor that drives T-cell commitment, but only after a multi-day delay. To investigate roles for this delay in controlling lineage decision making, we analyzed progenitors with a deletion in a distal Bcl11b enhancer, which extends this delay by ∼3 days. Strikingly, delaying Bcl11b activation reduces T-cell output but enhances innate lymphoid cell (ILC) generation in the thymus by redirecting uncommitted progenitors to the ILC lineages. Mechanistically, delaying Bcl11b activation promoted ILC redirection by enabling upregulation of the ILC-specifying transcription factor PLZF. Despite the upregulation of PLZF, committed ILC progenitors could subsequently express Bcl11b, which is also needed for type 2 ILC differentiation. These results show that epigenetic switches can control the activation timing and order of lineage-specifying genes to modulate cell type numbers and proportions.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Kathryn M. Denecke
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lihua Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Peter Habib Gerges
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
9
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
10
|
Gamble N, Bradu A, Caldwell JA, McKeever J, Bolonduro O, Ermis E, Kaiser C, Kim Y, Parks B, Klemm S, Greenleaf WJ, Crabtree GR, Koh AS. PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape. Nat Immunol 2024; 25:860-872. [PMID: 38632339 PMCID: PMC11089574 DOI: 10.1038/s41590-024-01807-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.
Collapse
Affiliation(s)
- Noah Gamble
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jason A Caldwell
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Joshua McKeever
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, USA
| | - Olubusayo Bolonduro
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL, USA
| | - Ebru Ermis
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - YeEun Kim
- Immunology Program, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benjamin Parks
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Andersson E, Rothenberg EV, Peterson C, Olariu V. T-cell commitment inheritance-an agent-based multi-scale model. NPJ Syst Biol Appl 2024; 10:40. [PMID: 38632273 PMCID: PMC11024127 DOI: 10.1038/s41540-024-00368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
T-cell development provides an excellent model system for studying lineage commitment from a multipotent progenitor. The intrathymic development process has been thoroughly studied. The molecular circuitry controlling it has been dissected and the necessary steps like programmed shut off of progenitor genes and T-cell genes upregulation have been revealed. However, the exact timing between decision-making and commitment stage remains unexplored. To this end, we implemented an agent-based multi-scale model to investigate inheritance in early T-cell development. Treating each cell as an agent provides a powerful tool as it tracks each individual cell of a simulated T-cell colony, enabling the construction of lineage trees. Based on the lineage trees, we introduce the concept of the last common ancestors (LCA) of committed cells and analyse their relations, both at single-cell level and population level. In addition to simulating wild-type development, we also conduct knockdown analysis. Our simulations predicted that the commitment is a three-step process that occurs on average over several cell generations once a cell is first prepared by a transcriptional switch. This is followed by the loss of the Bcl11b-opposing function approximately two to three generations later. This is when our LCA analysis indicates that the decision to commit is taken even though in general another one to two generations elapse before the cell actually becomes committed by transitioning to the DN2b state. Our results showed that there is decision inheritance in the commitment mechanism.
Collapse
Affiliation(s)
- Emil Andersson
- Computational Science for Health and Environment, Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Carsten Peterson
- Computational Science for Health and Environment, Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Victor Olariu
- Computational Science for Health and Environment, Centre for Environmental and Climate Science, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Andersson E, Rothenberg EV, Peterson C, Olariu V. T-cell commitment inheritance - an agent-based multi-scale model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562905. [PMID: 37905091 PMCID: PMC10614897 DOI: 10.1101/2023.10.18.562905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
T-cell development provides an excellent model system for studying lineage commitment from a multipotent progenitor. The intrathymic development process has been thoroughly studied. The molecular circuitry controlling it has been dissected and the necessary steps like programmed shut off of progenitor genes and T-cell genes upregulation have been revealed. However, the exact timing between decision-making and commitment stage remains unexplored. To this end, we implemented an agent-based multi-scale model to investigate inheritance in early T-cell development. Treating each cell as an agent provides a powerful tool as it tracks each individual cell of a simulated T-cell colony, enabling the construction of lineage trees. Based on the lineage trees, we introduce the concept of the last common ancestors (LCA) of committed cells and analyse their relations, both at single-cell level and population level. In addition to simulating wild-type development, we also conduct knockdown analysis. Our simulations showed that the commitment is a three-step process over several cell generations where a cell is first prepared by a transcriptional switch. This is followed by the loss of the Bcl11b-opposing function two to three generations later which is when the decision to commit is taken. Finally, after another one to two generations, the cell becomes committed by transitioning to the DN2b state. Our results showed that there is inheritance in the commitment mechanism.
Collapse
Affiliation(s)
- Emil Andersson
- Computational Biology and Biological Physics, Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carsten Peterson
- Computational Biology and Biological Physics, Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Victor Olariu
- Computational Biology and Biological Physics, Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| |
Collapse
|