1
|
Sullivan RJ, Cillo AR, Ferris RL, Jenkins RW, Kluger HM, Kok M, Lipson EJ, Paruzzo L, Redmond WL, Ruella M, Schalper KA, Thommen DS, Tolley K, Yarchoan M, Garnett-Benson C. SITC vision: Opportunities for deeper understanding of mechanisms of anti-tumor activity, toxicity, and resistance to optimize cancer immunotherapy. J Immunother Cancer 2025; 13:e011929. [PMID: 40562704 PMCID: PMC12198810 DOI: 10.1136/jitc-2025-011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 06/01/2025] [Indexed: 06/28/2025] Open
Abstract
Cancer immunotherapy has radically changed the management of several malignancies, and dozens of agents have been approved in the past 15 years. While these advances have changed the field, many challenges lie ahead and must be addressed if we are to optimize the management of cancer with these approaches. A more comprehensive understanding of the mechanisms of action, toxicity, and resistance is needed to guide the next decade of cancer immunotherapy development. To this end, members of the Society for Immunotherapy of Cancer met and identified challenges and opportunities to improve cancer immunotherapy by focusing on the mechanisms by which the specific agents work, the mechanisms of how they cause adverse effects, and the mechanisms of resistance that limit the effectiveness of these agents. The priorities of this effort were to (1) level set by describing the state of the field; (2) describe what is known about how these agents work, fail to work, and cause side effects as well as the key knowledge gaps in these areas and associated challenges for addressing them; (3) provide a patient perspective to highlight the importance of this work to the community most affected; (4) look ahead to the future by identifying and describing prioritized opportunities that the field may focus on to expand the knowledge base of the field and optimize the management of cancer with immunotherapy.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Robert L Ferris
- UNC Lineberger Comprehensive Cancer Center, UNC Health Care System, Chapel Hill, North Carolina, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marleen Kok
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Evan J Lipson
- Melanoma and Cancer Immunology Programs,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luca Paruzzo
- Department of Medicine and Division of Hematology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William L Redmond
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Marco Ruella
- Department of Medicine and Division of Hematology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kurt A Schalper
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Keith Tolley
- Patient Advocate, District of Columbia, District of Columbia, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopskins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
2
|
Gong Y, Fei P, Zhang Y, Xu Y, Wei J. From Multi-Omics to Visualization and Beyond: Bridging Micro and Macro Insights in CAR-T Cell Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501095. [PMID: 40349154 PMCID: PMC12120725 DOI: 10.1002/advs.202501095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Indexed: 05/14/2025]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapies, a cornerstone of immunotherapy, have demonstrated remarkable efficacy in treating hematological malignancies and have more recently expanded into applications for solid tumors and autoimmune diseases. Emerging multidimensional profiling technologies offer promising solutions for enhancing CAR-T efficacy, overcoming resistance, and facilitating the development of novel CAR-T constructs. The integration of genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics enables a comprehensive understanding of the intrinsic mechanisms underlying CAR-T therapy, while single-cell and spatial omics significantly improve data resolution and analytical depth. Coupled with advances in biomedical engineering, visualization technologies form the foundation for omics data generation by bridging microscopic and macroscopic scales and enabling dynamic, 3D in vivo monitoring of CAR-T behavior. Artificial intelligence (AI) further supports this framework by enabling the analysis of complex, high-dimensional datasets. This review highlights recent advances in the integration of multidimensional omics within CAR-T therapy and explores cutting-edge developments in visualization technologies and AI applications. The full convergence of multi-omics, visualization tools, and AI is poised to deliver transformative insights into the mechanisms governing CAR-T cell therapy.
Collapse
Affiliation(s)
- Yuting Gong
- Department of HematologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubei430030China
| | - Peng Fei
- Department of HematologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- School of Optical and Electronic Information‐Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
- Advanced Biomedical Imaging FacilityHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yicheng Zhang
- Department of HematologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubei430030China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430030China
| | - Yang Xu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
- Institute of Blood and Marrow TransplantationSoochow UniversitySuzhouJiangsu215006China
| | - Jia Wei
- Department of HematologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhanHubei430030China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430030China
| |
Collapse
|
3
|
Mao S, Chen L, Li Q, Zhang L, Zhao H, Lin Y. Unveiling hypoxia-related prognostic and immunotherapeutic biomarkers in lung adenocarcinoma through single-cell and bulk RNA sequencing: Including insights into PGF. Int J Biol Macromol 2025; 309:143056. [PMID: 40228772 DOI: 10.1016/j.ijbiomac.2025.143056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Hypoxia plays a crucial role in lung adenocarcinoma (LUAD) proliferation and metastasis. However, the mechanisms underlying the interaction between the hypoxic microenvironment and immune resistance remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) data from 15 LUAD patients were used to evaluate the complexity and heterogeneity of tumor microenvironment (TME). We identified new subtypes associated with advanced LUAD, including epithelial cells, fibroblasts, and myeloid cells. Furthermore, we found that the cell subtype module 3 (AGER, TIMP3) of epithelial cells exhibited higher hypoxia scores in advanced LUAD. Meanwhile, we also observed that RSG5 + fibroblast, AOPE+macrophage, S100B + macrophage, CCL17 + macrophage, and HLA-DRB5 + macrophage cells exhibited higher hypoxia scores in advanced LUAD patients. Moreover, spatial transcriptomic analysis revealed that with the gradual decrease of hypoxia score, the cell type score also gradually decreased. Cell communication analysis identified critical receptor-ligand pairs, which were associated with the activation of the PD-1/PD-L1 pathway. Finally, we developed a novel prognostic signature based on hypoxia-related molecular clusters, which possessed predictive power for both prognosis and immunotherapy response. The experimental results confirmed that hypoxia-related genes play a significant role in driving LUAD progression. In conclusion, our study provides valuable insights into the hypoxic and immunosuppressive tumor microenvironment, which serve as a potential prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Chen
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyan Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huachang Zhao
- Department of Respiratory and Critical Care Medicine, The Fourth People's Hospital of Chengdu, No.8 Huli-West 1st-Alley, Jin-Niu District, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, China.
| | - Yidan Lin
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy. Semin Immunol 2025; 78:101956. [PMID: 40294474 DOI: 10.1016/j.smim.2025.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse
Affiliation(s)
- Magdalena Lerch
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology and Concord Clinical School, Concord Hospital, Sydney, Australia.
| |
Collapse
|
5
|
Du B, Qin J, Lin B, Zhang J, Li D, Liu M. CAR-T therapy in solid tumors. Cancer Cell 2025; 43:665-679. [PMID: 40233718 DOI: 10.1016/j.ccell.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
While chimeric antigen receptor (CAR) T cell therapy has shown great success in hematologic malignancies, the effectiveness in solid tumors has been limited by several factors, including antigenic heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). In this review, we discuss the advancements made in clinical studies and challenges faced by CAR-T therapy for solid tumors. To enhance CAR-T cell efficacy in solid tumors, we explore strategies such as enhancing T cell persistence and cytotoxicity, targeting multiple antigens, and utilizing innovative allogeneic CAR-T cell manufacturing. Additionally, we highlight the potential benefits of combining CAR-T therapies with immune checkpoint inhibitors and other treatment modalities to overcome TME limitations. We remain optimistic about the future of CAR-T cell therapy in solid tumors, emphasizing the need for continued research to refine therapeutic approaches and address the clinical needs of patients with cancer.
Collapse
Affiliation(s)
- Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Boxu Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Kuchenreuther I, Clausen FN, Mazurie J, Paul S, Czubayko F, Mittelstädt A, Koch AK, Karabiber A, Hansen FJ, Arnold LS, Weisel N, Merkel S, Brunner M, Krautz C, Vera J, Grützmann R, Weber GF, David P. Increased Herpesvirus Entry Mediator Expression on Circulating Monocytes and Subsets Predicts Poor Outcomes in Pancreatic Ductal Adenocarcinoma Patients. Int J Mol Sci 2025; 26:2875. [PMID: 40243455 PMCID: PMC11988668 DOI: 10.3390/ijms26072875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is aggressive, with a 5-year survival rate of only 12.8%, and its increasing incidence in Western countries highlights the urgent need for better early-stage detection and treatment methods. Early diagnosis significantly improves the chances of survival, but non-specific symptoms and undetectable precursor lesions pose a major challenge. To date, there are no reliable screening tools to detect PDAC at an early stage. Herpesvirus entry mediator (HVEM) has already been proposed as a prognostic marker in numerous cancer types. Therefore, we investigated the role of HVEM in PDAC. Flow cytometry was used to analyze HVEM expression in immune cells and its inhibitory receptors (CD160 and BTLA) on T-cells, as well as its subsets in the peripheral blood of 57 diagnosed PDAC patients and 17 clinical controls. In addition, survival analyses were performed within the PDAC cohort, changes in HVEM expression were analyzed in relation to clinicopathological parameters, and a correlation analysis between HVEM expression and cytokine levels of IL-6 and IL-10 was conducted. Furthermore, HVEM expression on monocytes and their subsets was evaluated as a potential prognostic marker and compared with the prognostic utility of CA19-9. We found that HVEM expression is significantly elevated on immune cells, particularly on monocytes (p < 0.0001) and their subsets, in PDAC patients, and is associated with reduced survival (p = 0.0067) and clinicopathological features such as perineural, lymphovascular, and vascular invasion. Moreover, HVEM-expressing monocytes demonstrated superior predictive value compared to CA19-9, highlighting their potential as part of a combined screening tool for PDAC. In conclusion, HVEM on monocytes could serve as a novel prognostic marker for PDAC.
Collapse
MESH Headings
- Humans
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/blood
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/diagnosis
- Female
- Male
- Middle Aged
- Monocytes/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/mortality
- Prognosis
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Antigens, CD/metabolism
- Receptors, Immunologic/metabolism
- Interleukin-10
- Adult
- Interleukin-6
- GPI-Linked Proteins
Collapse
Affiliation(s)
- Isabelle Kuchenreuther
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johanne Mazurie
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sushmita Paul
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.V.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Ann-Kathrin Koch
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Alara Karabiber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Frederik J. Hansen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Lisa-Sophie Arnold
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Nadine Weisel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Maximilian Brunner
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Christian Krautz
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.V.)
| | - Robert Grützmann
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Paul David
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
7
|
Yao Y, Li B, Chen C, Wang J, Yao F, Li Z. HVEM as a tumor-intrinsic regulator in non-small cell lung cancer: Suppression of metastasis via glycolysis inhibition and modulation of macrophage polarization. Pharmacol Res 2025; 213:107604. [PMID: 39832683 DOI: 10.1016/j.phrs.2025.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Herpes virus entry mediator (HVEM) is a novel costimulatory molecule which mediates stimulatory or inhibitory signals in immune responses which makes it an attractive target in cancer therapeutics. However, the role of tumor cell intrinsic HVEM on tumor biology remains largely unknown. In this study, We demonstrated that CK+HVEM+ tumor correlates with better survival using Multiplex immuno histochemistry (mIHC) in Human Lung Adenocarcinoma Tissue microarray. Next, we showed that HVEM knockdown promoted NSCLC cell invasion and metastasis in vitro whereas exhibited no effect on proliferation. Conversely, HVEM overexpression results in the opposite phenotype. Meanwhile, the conclusion were further confirmed in vivo experiment that overexpression of HVEM reduced the invasion and metastasis of NSCLC whereas no effect on tumor mass. Besides, vivo experiment showed that M1 TAMs in the HVEM overxrpression group was increased and the proportion of M2 macrophages was decreased compared to the vector group. Mechanistically, The C-terminal 228-283 amino acid segment of HVEM protein interacts with the N-terminal 1-383 amino acid segment of MPRIP protein, inhibiting its downstream glycolysis signaling pathway and suppressing NSCLC cells progression. In addition, macrophage coculture assay suggested that HVEM overexpression inhibited M2 macrophage polarization through GM-CSF/GM-CSFRα axis. In summary, our study has demonstrated that tumor cell intrinsic HVEM is a potential tumour metastasis suppressor, which may serve as a potential target for immunotherapy.
Collapse
MESH Headings
- Humans
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Animals
- Glycolysis
- Macrophages/metabolism
- Macrophages/immunology
- Cell Line, Tumor
- Male
- Neoplasm Metastasis
- Mice
- Female
- Mice, Nude
- Mice, Inbred BALB C
- Cell Movement
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing Wang
- Department of Thoracic Surgery, Huadong Hospital affiliated to Fudan University, Shanghai 200040, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China.
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China.
| |
Collapse
|
8
|
Du F, Wang G, Dai Q, Huang J, Li J, Liu C, Du K, Tian H, Deng Q, Xie L, Zhao X, Zhang Q, Yang L, Li Y, Wu Z, Zhang Z. Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2025; 13:35. [PMID: 40012016 DOI: 10.1186/s40364-025-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The battle against cancer has evolved over centuries, from the early stages of surgical resection to contemporary treatments including chemotherapy, radiation, targeted therapies, and immunotherapies. Despite significant advances in cancer treatment over recent decades, these therapies remain limited by various challenges. Immune checkpoint inhibitors (ICIs), a cornerstone of tumor immunotherapy, have emerged as one of the most promising advancements in cancer treatment. Although ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, have demonstrated clinical efficacy, their therapeutic impact remains suboptimal due to patient-specific variability and tumor immune resistance. Cell death is a fundamental process for maintaining tissue homeostasis and function. Recent research highlights that the combination of induced regulatory cell death (RCD) and ICIs can substantially enhance anti-tumor responses across multiple cancer types. In cells exhibiting high levels of recombinant solute carrier family 7 member 11 (SLC7A11) protein, glucose deprivation triggers a programmed cell death (PCD) pathway characterized by disulfide bond formation and REDOX (reduction-oxidation) reactions, termed "disulfidptosis." Studies suggest that disulfidptosis plays a critical role in the therapeutic efficacy of SLC7A11high cancers. Therefore, to investigate the potential synergy between disulfidptosis and ICIs, this study will explore the mechanisms of both processes in tumor progression, with the goal of enhancing the anti-tumor immune response of ICIs by targeting the intracellular disulfidptosis pathway.
Collapse
Affiliation(s)
- Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Guojun Wang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qian Dai
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junxin Li
- Department of pharmacy, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Congxing Liu
- Department of Pharmacy, Chengfei Hospital, Chengdu, 610000, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People's Hospital, Luzhou, 646000, Sichuan, China
| | - Hua Tian
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qiwei Deng
- Heruida Pharmaceutical Co.,ltd, Haikou, Hainan, 570100, China
| | - Longxiang Xie
- The TCM Hospital of Longquanyi District, Chengdu, 610100, Sichuan, China
| | - Xin Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qimin Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Lan Yang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Bian K, Yang C, Zhang F, Huang L. A Novel Prognostic Signature of Mitophagy-Related E3 Ubiquitin Ligases in Breast Cancer. Int J Mol Sci 2025; 26:1551. [PMID: 40004017 PMCID: PMC11855622 DOI: 10.3390/ijms26041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Mitophagy plays a critical role in maintaining mitochondrial quality and cellular homeostasis. But the specific contribution of mitophagy-related E3 ubiquitin ligases to prognoses remains largely unexplored. In this study, we identified a novel mitophagy-related E3 ubiquitin ligase prognostic signature using least absolute shrinkage and selector operator (LASSO) and multivariate Cox regression analyses in breast cancer. Based on median risk scores, patients were divided into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore the biological differences between the two groups. Immune infiltration, drug sensitivity, and mitochondrial-related phenotypes were also analyzed to evaluate the clinical implications of the model. A four-gene signature (ARIH1, SIAH2, UBR5, and WWP2) was identified, and Kaplan-Meier analysis demonstrated that the high-risk group had significantly worse overall survival (OS). The high-risk patients exhibited disrupted mitochondrial metabolism and immune dysregulation with upregulated immune checkpoint molecules. Additionally, the high-risk group exhibited higher sensitivity to several drugs targeting the Akt/PI3K/mTORC1 signaling axis. Accompanying mitochondrial metabolic dysregulation, mtDNA stress was elevated, contributing to activation of the senescence-associated secretory phenotype (SASP) in the high-risk group. In conclusion, the identified signature provides a robust tool for risk stratification and offers insights into the interplay between mitophagy, immune modulation, and therapeutic responses for breast cancer.
Collapse
Affiliation(s)
| | | | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2025; 25:9-25. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
11
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
12
|
Zhao Y, Jiang L. Targeting SHP1 and SHP2 to suppress tumors and enhance immunosurveillance. Trends Cell Biol 2024:S0962-8924(24)00214-9. [PMID: 39578115 DOI: 10.1016/j.tcb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
The nonreceptor tyrosine phosphatases (PTPS) SHP1 and SHP2 have crucial roles in dephosphorylating an array of substrates involved in pathways comprising receptor tyrosine kinases (RTKs) and immune receptors. This regulation maintains a delicate balance between the activation and inhibition of signal transduction, ensuring appropriate biological outcomes. In this review, we summarize research focused on elucidating the functions of SHP1 and SHP2 in hematopoiesis, immune regulation, and tumor biology, emphasizing recent findings related to cancer-driven immune evasion. Furthermore, we highlight the significant effects of SHP1 and SHP2 inhibitors in enhancing cancer treatment, specifically through the facilitation of chemotherapy and augmentation of immune activation.
Collapse
Affiliation(s)
- Yijun Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
13
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
14
|
Patel RP, Ghilardi G, Zhang Y, Chiang YH, Xie W, Guruprasad P, Kim KH, Chun I, Angelos MG, Pajarillo R, Hong SJ, Lee YG, Shestova O, Shaw C, Cohen I, Gupta A, Vu T, Qian D, Yang S, Nimmagadda A, Snook AE, Siciliano N, Rotolo A, Inamdar A, Harris J, Ugwuanyi O, Wang M, Carturan A, Paruzzo L, Chen L, Ballard HJ, Blanchard T, Xu C, Abdel-Mohsen M, Gabunia K, Wysocka M, Linette GP, Carreno B, Barrett DM, Teachey DT, Posey AD, Powell DJ, Sauter CT, Pileri S, Pillai V, Scholler J, Rook AH, Schuster SJ, Barta SK, Porazzi P, Ruella M. CD5 deletion enhances the antitumor activity of adoptive T cell therapies. Sci Immunol 2024; 9:eadn6509. [PMID: 39028827 PMCID: PMC11917452 DOI: 10.1126/sciimmunol.adn6509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.
Collapse
Affiliation(s)
- Ruchi P Patel
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Hao Chiang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei Xie
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Inkook Chun
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew G Angelos
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Hong
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Trang Vu
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Dean Qian
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Steven Yang
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | | | | | | | - Antonia Rotolo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Khatuna Gabunia
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz Carreno
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Barrett
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - C Tor Sauter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Pileri
- Division of Haematopathology, Istituto Europeo di Oncologia IRCCS, Italy
| | - Vinodh Pillai
- Division of Hemato-pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan K Barta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|