1
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025; 22:439-456. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
2
|
Keshavarz Sadegh R, Saleki K, Rezaei N. Immune checkpoint inhibitor (ICI) therapy in central nervous system cancers: State-of-the-art and future outlook. Int Immunopharmacol 2025; 159:114837. [PMID: 40394797 DOI: 10.1016/j.intimp.2025.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Invasive central nervous system (CNS) cancers are an area where the development of breakthrough therapies is urgently needed. For instance, conditions such as glioblastoma multiforme (GBM) are associated with poor clinical prognosis, with the majority of trials offering no improvement to marginally enhanced survival. Unleashing the potential of targeting the immune system in CNS cancers has gained attention in recent years. Inhibition of immune checkpoints such as CTLA-4, PD-1/PD-L1, TIM-3, and LAG-3 has been attempted in recent trials. While potentially offering a notable edge over other immunotherapies, multi-organ adverse events have been found with the administration of immune checkpoint inhibitors (ICIs). The present review captures the state-of-the-art evidence on ICI treatments in different CNS cancers. Also, we discuss the value of combinational therapies involving ICIs as well as next-generation therapeutics such as bispecific antibodies targeting PD-1/LAG-3/TIM-3 and CRISPR-Cas9-edited PD-1-knock-out checkpoint-resistant CAR T-cells.
Collapse
Affiliation(s)
- Roghaye Keshavarz Sadegh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN MUBabol Office, Universal Scientific Education and Research Network (USERN), Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Williams CJM, Peddle AM, Kasi PM, Seligmann JF, Roxburgh CS, Middleton GW, Tejpar S. Neoadjuvant immunotherapy for dMMR and pMMR colorectal cancers: therapeutic strategies and putative biomarkers of response. Nat Rev Clin Oncol 2024; 21:839-851. [PMID: 39317818 DOI: 10.1038/s41571-024-00943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Approximately 15% of locally advanced colorectal cancers (CRC) have DNA mismatch repair deficiency (dMMR), resulting in high microsatellite instability and a high tumour mutational burden. These cancers are frequently sensitive to therapy with immune-checkpoint inhibitors (ICIs) in the metastatic setting. This sensitivity seems to be even more pronounced in locally advanced disease, and organ preservation has become a realistic aim in ongoing clinical trials involving patients with dMMR rectal cancer. By contrast, metastatic CRCs with proficient DNA mismatch repair (pMMR) are generally resistant to ICIs, although a proportion of locally advanced pMMR tumours seem to have a high degree of sensitivity to ICIs. In this Review, we describe the current and emerging clinical evidence supporting the use of neoadjuvant ICIs in patients with dMMR and pMMR CRC, and the potential advantages (based on a biological rationale) of such an approach. We discuss how neoadjuvant 'window-of-opportunity' trials are being leveraged to progress biomarker discovery and we provide an overview of potential predictive biomarkers of response to ICIs, exploring the challenges faced when evaluating such biomarkers in biopsy-derived samples. Lastly, we describe how these discoveries might be used to drive a rational approach to trialling novel immunotherapeutic strategies in patients with pMMR CRC, with the ultimate aim of disease eradication and the generation of long-term immunosurveillance.
Collapse
Affiliation(s)
| | | | - Pashtoon M Kasi
- Department of Gastrointestinal Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA, USA
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Gary W Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
4
|
Dharmapuri S, Cabal R, Akturk G, Ioannou G, Ozbey S, Paulsen J, Raina S, Ang C, Sarpel U, Sung MW, Kozuch P, Schwartz ME, Cohen DJ, Gnjatic S, Pintova S. Multiplexed immunohistochemical analysis of the immune microenvironment of biliary tract cancers pre- & post-neoadjuvant chemotherapy: case series. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:78. [PMID: 39118963 PMCID: PMC11304425 DOI: 10.21037/atm-23-1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/17/2024] [Indexed: 08/10/2024]
Abstract
Background Neoadjuvant chemotherapy (NACT) is increasingly being used in the management of locally advanced biliary tract cancer (BTC). The evidence suggests a contributing role of tumor infiltrating immune cells in the prognosis and response. We set out to characterize immune modulation of tumor immune microenvironment in BTC following NACT. Case Description Patients with BTC who underwent diagnostic biopsy, then NACT then resection between 2014-2018 were identified. Multiplexed immunohistochemical consecutive staining on single slide (MICSSS) analysis was performed with a series of immune markers to characterize T-cells, immune checkpoints etc. on pre- & post-NACT tumor tissue. Density was calculated for each marker. The final analysis included five patients. Median age was 48 (range, 41-56) years, with 4 female, 4 intrahepatic cholangiocarcinoma and 1 gallbladder. All patients received gemcitabine/cisplatin as NACT (median of 5 cycles). Median time from diagnosis to surgery was 4.3 (range, 1.4-7.8) months. All patients were mismatch repair proficient (pMMR). NACT on average produced a depletion of all immune markers. Given small sample size, each patient was considered their own control and changes in mean cell densities post-NACT were calculated. Patient #2 with a 40-fold increase in PD-L1 expression & 5-fold decrease in CD8:FOXP3 ratio after NACT notably had the shortest disease-free interval (DFI). Patient #3 with the longest DFI had the largest increase in CD8:FOXP3 by about 8-fold with a decrease in PD-L1. Conclusions Preliminary results suggest NACT may differentially modulate various compartments of the immune tumor contexture despite overall cell depletion. Future studies should focus on strategies to expand immune modulation of tumor microenvironment, including immune-oncology agents to augment the effects of chemotherapy.
Collapse
Affiliation(s)
- Sirish Dharmapuri
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Rafael Cabal
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Guray Akturk
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Giorgio Ioannou
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sinem Ozbey
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - John Paulsen
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sheen Raina
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Celina Ang
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Umut Sarpel
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Max W. Sung
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Peter Kozuch
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Myron E. Schwartz
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Deirdre Jill Cohen
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Sacha Gnjatic
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sofya Pintova
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
5
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Ali HR, West RB. Spatial Biology of Breast Cancer. Cold Spring Harb Perspect Med 2024; 14:a041335. [PMID: 38110242 PMCID: PMC11065165 DOI: 10.1101/cshperspect.a041335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Spatial findings have shaped on our understanding of breast cancer. In this review, we discuss how spatial methods, including spatial transcriptomics and proteomics and the resultant understanding of spatial relationships, have contributed to concepts regarding cancer progression and treatment. In addition to discussing traditional approaches, we examine how emerging multiplex imaging technologies have contributed to the field and how they might influence future research.
Collapse
Affiliation(s)
- H Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Robert B West
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA
| |
Collapse
|
7
|
Kürten CHL, Ferris RL. Neoadjuvant immunotherapy for head and neck squamous cell carcinoma. Laryngorhinootologie 2024; 103:S167-S187. [PMID: 38697147 DOI: 10.1055/a-2183-5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The neoadjuvant immunotherapy approach marks a significant shift in the treatment paradigm of potentially curable HNSCC. Here, current therapies, despite being highly individualized and advanced, often fall short in achieving satisfactory long-term survival rates and are frequently associated with substantial morbidity.The primary advantage of this approach lies in its potential to intensify and enhance treatment regimens, offering a distinct modality that complements the existing triad of surgery, radiotherapy, and chemotherapy. Checkpoint inhibitors have been at the forefront of this evolution. Demonstrating moderate yet significant survival benefits in the recurrent-metastatic setting with a relatively better safety profile compared to conventional treatments, these agents hold promise when considered for earlier stages of HNSCC.On the other hand, a significant potential benefit of introducing immunotherapy in the neoadjuvant phase is the possibility of treatment de-escalation. By reducing the tumor burden before surgery, this strategy could lead to less invasive surgical interventions. The prospect of organ-sparing protocols becomes a realistic and highly valued goal in this context. Further, the early application of immunotherapy might catalyze a more effective and durable immune response. The induction of an immune memory may potentially lead to a more effective surveillance of residual disease, decreasing the rates of local, regional, and distant recurrences, thereby enhancing overall and recurrence-free survival.However, neoadjuvant immunotherapy is not without its challenges. One of the primary concerns is the safety and adverse events profile. While data suggest that adverse events are relatively rare and manageable, the long-term safety profile in the neoadjuvant setting, especially in the context of curative intent, remains a subject for ongoing research. Another unsolved issue lies in the accurate assessment of treatment response. The discrepancy between radiographic assessment using RECIST criteria and histological findings has been noted, indicating a gap in current imaging techniques' ability to accurately reflect the true efficacy of immunotherapy. This gap underscores the necessity for improved imaging methodologies and the development of new radiologic and pathologic criteria tailored to evaluate the response to immunotherapy accurately.Treatment combinations and timing represent another layer of complexity. There is a vast array of possibilities in combining immunotherapy agents with conventional chemotherapy, targeted therapy, radiation, and other experimental treatments. Determining the optimal treatment regimen for individual patients becomes an intricate task, especially when comparing small, single-arm, non-randomized trials with varying regimens and outcome measures.Moreover, one needs to consider the importance of pre- and intraoperative decision-making in the context of neoadjuvant immunotherapy. As experience with this treatment paradigm grows, there is potential for more tailored surgical approaches based on the patient's remaining disease post-neoadjuvant treatment. This consideration is particularly relevant in extensive surgeries, where organ-sparing protocols could be evaluated.In practical terms, the multi-modal nature of this treatment strategy introduces complexities, especially outside clinical trial settings. Patients face challenges in navigating the treatment landscape, which involves coordination across multiple medical disciplines, highlighting the necessity for streamlined care pathways at specialized centers to facilitate effective treatment management if the neoadjuvant approach is introduced to the real-world.These potential harms and open questions underscore the critical need for meticulously designed clinical trials and correlational studies to ensure patient safety and efficacy. Only these can ensure that this new treatment approach is introduced in a safe way and fulfils the promise it theoretically holds.
Collapse
Affiliation(s)
- Cornelius H L Kürten
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Benzekry S, Mastri M, Nicolò C, Ebos JML. Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment. PLoS Comput Biol 2024; 20:e1012088. [PMID: 38701089 PMCID: PMC11095706 DOI: 10.1371/journal.pcbi.1012088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet neoadjuvant clinical trials are rarely preceded by preclinical testing involving neoadjuvant treatment, surgery, and post-surgery monitoring of the disease. Here we used a mouse model of spontaneous metastasis occurring after surgical removal of orthotopically implanted primary tumors to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Treatment outcomes were used to validate a novel mathematical kinetics-pharmacodynamics model predictive of perioperative disease progression. Longitudinal measurements of presurgical primary tumor size and postsurgical metastatic burden were compiled using 128 mice receiving variable neoadjuvant treatment doses and schedules (released publicly at https://zenodo.org/records/10607753). A non-linear mixed-effects modeling approach quantified inter-animal variabilities in metastatic dynamics and survival, and machine-learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our computational simulations show that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery and treatment cessation. Machine learning algorithms that included support vector machines, random forests, and artificial neural networks, confirmed a lack of definitive biomarkers, which shows the value of preclinical modeling studies to identify potential failures that should be avoided clinically.
Collapse
Affiliation(s)
- Sebastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Chiara Nicolò
- InSilicoTrials Technologies S.P.A, Riva Grumula, Trieste, Italy
| | - John M. L. Ebos
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| |
Collapse
|
9
|
Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, Pikarsky E, Kudo M, Finn RS. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol 2024; 21:294-311. [PMID: 38424197 PMCID: PMC11984461 DOI: 10.1038/s41571-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the sixth most common cancer and the third leading cause of cancer mortality worldwide. The development of effective systemic therapies, particularly those involving immune-checkpoint inhibitors (ICIs), has substantially improved the outcomes of patients with advanced-stage HCC. Approximately 30% of patients are diagnosed with early stage disease and currently receive potentially curative therapies, such as resection, liver transplantation or local ablation, which result in median overall survival durations beyond 60 months. Nonetheless, up to 70% of these patients will have disease recurrence within 5 years of resection or local ablation. To date, the results of randomized clinical trials testing adjuvant therapy in patients with HCC have been negative. This major unmet need has been addressed with the IMbrave 050 trial, demonstrating a recurrence-free survival benefit in patients with a high risk of relapse after resection or local ablation who received adjuvant atezolizumab plus bevacizumab. In parallel, studies testing neoadjuvant ICIs alone or in combination in patients with early stage disease have also reported efficacy. In this Review, we provide a comprehensive overview of the current approaches to manage patients with early stage HCC. We also describe the tumour immune microenvironment and the mechanisms of action of ICIs and cancer vaccines in this setting. Finally, we summarize the available evidence from phase II/III trials of neoadjuvant and adjuvant approaches and discuss emerging clinical trials, identification of biomarkers and clinical trial design considerations for future studies.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mark Yarchoan
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit G Singal
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas U Marron
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myron Schwartz
- Department of Liver Surgery, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
10
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
11
|
Stravodimou A, Voutsadakis IA. Neo-adjuvant therapies for ER positive/HER2 negative breast cancers: from chemotherapy to hormonal therapy, CDK inhibitors, and beyond. Expert Rev Anticancer Ther 2024; 24:117-135. [PMID: 38475990 DOI: 10.1080/14737140.2024.2330601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Chemotherapy has been traditionally used as neo-adjuvant therapy in breast cancer for down-staging of locally advanced disease in all sub-types. In the adjuvant setting, genomic assays have shown that a significant proportion of ER positive/HER2 negative patients do not derive benefit from the addition of chemotherapy to adjuvant endocrine therapy. An interest in hormonal treatments as neo-adjuvant therapies in ER positive/HER2 negative cancers has been borne by their documented success in the adjuvant setting. Moreover, cytotoxic chemotherapy is less effective in ER positive/HER2 negative disease compared with other breast cancer subtypes in obtaining pathologic complete responses. AREAS COVERED Neo-adjuvant therapies for ER positive/HER2 negative breast cancers and associated biomarkers are reviewed, using a Medline survey. A focus of discussion is the prediction of patients that are unlikely to derive extra benefit from chemotherapy and have the highest probabilities of benefiting from hormonal and other targeted therapies. EXPERT OPINION Predictive biomarkers of response to neo-adjuvant chemotherapy and hormonal therapies are instrumental for selecting ER positive/HER2 negative breast cancer patients for each treatment. Chemotherapy remains the standard of care for many of those patients requiring neo-adjuvant treatment, but other neo-adjuvant therapies are increasingly used.
Collapse
Affiliation(s)
- Athina Stravodimou
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
12
|
Bejjani A, Finn RS. Evolution of Systemic Therapy in Advanced Hepatocellular Carcinoma. Surg Oncol Clin N Am 2024; 33:73-85. [PMID: 37945146 DOI: 10.1016/j.soc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The recognition that hepatocellular carcinoma (HCC) is a rising problem globally dates back decades; however, the development of effective medical treatment for the disease has only led to robust improvements in patient outcomes in the recent past. As knowledge evolves and regimens are proven to be more active, the importance of multidisciplinary management in patients with all stages of HCC will become more important to optimize patient outcomes. Key to optimizing patient outcomes is an understanding of the evolution and current role of these therapies in the HCC landscape.
Collapse
Affiliation(s)
- Anthony Bejjani
- Hematology/Oncology, VA Greater Los Angeles Health System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Richard S Finn
- Department of Medicine, Division of Hematology/ Oncology, Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA.
| |
Collapse
|
13
|
Nair SS, Chakravarty D, Patel V, Bhardwaj N, Tewari AK. Genitourinary cancer neoadjuvant therapies: current and future approaches. Trends Cancer 2023; 9:1041-1057. [PMID: 37684128 DOI: 10.1016/j.trecan.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 09/10/2023]
Abstract
Neoadjuvant therapies can improve tolerability, reduce tumor volume to facilitate surgery, and assess subsequent treatment response. Therefore, there is much enthusiasm for expanding the benefits of cancer therapies to the neoadjuvant setting to reduce recurrence and improve survival in patients with localized or locally advanced genitourinary (GU) cancer. This approach is clinically pertinent because these treatments are administered primarily to treatment-naive patients and can elicit the greatest drug response. In addition, the results are not impacted by other anticancer treatments. While neoadjuvant therapies have been the standard treatment for bladder cancer in the past, they are presently restricted to clinical trials for renal and prostate cancer (PCa); however, changes are imminent. Precision neoadjuvant therapies will be ushered in by biomarker-stratified neoadjuvant trials with appropriate survival endpoints and comprehensive correlative and imaging studies. This review discusses neoadjuvant studies in GU malignancies and how they inform future study design considerations.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Dimple Chakravarty
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vaibhav Patel
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nina Bhardwaj
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ashutosh K Tewari
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Kasi PM, Hidalgo M, Jafari MD, Yeo H, Lowenfeld L, Khan U, Nguyen ATH, Siolas D, Swed B, Hyun J, Khan S, Wood M, Samstein B, Rocca JP, Ocean AJ, Popa EC, Hunt DH, Uppal NP, Garrett KA, Pigazzi A, Zhou XK, Shah MA, Hissong E. Neoadjuvant botensilimab plus balstilimab response pattern in locally advanced mismatch repair proficient colorectal cancer. Oncogene 2023; 42:3252-3259. [PMID: 37731056 PMCID: PMC10611560 DOI: 10.1038/s41388-023-02835-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
In patients with locally advanced cancer without distant metastases, the neoadjuvant setting presents a platform to evaluate new drugs. For mismatch repair proficient/microsatellite stable (pMMR/MSS) colon and rectal cancer, immunotherapy has shown limited efficacy. Herein, we report exceptional responses observed with neoadjuvant botensilimab (BOT), an Fc-enhanced next-generation anti-CTLA-4 antibody, alongside balstilimab (BAL; an anti-PD-1 antibody) in two patients with pMMR/MSS colon and rectal cancer. The histological pattern of rapid immune response observed ("inside-out" (serosa-to-mucosa) tumor regression) has not been described previously in this setting. Spatial biology analyses (RareCyte Inc.) reveal mechanisms of actions of BOT, a novel innate-adaptive immune activator. These observations have downstream implications for clinical trial designs using neoadjuvant immunotherapy and potentially sparing patients chemotherapy.
Collapse
Affiliation(s)
- Pashtoon Murtaza Kasi
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA.
| | - Manuel Hidalgo
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Mehraneh D Jafari
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Heather Yeo
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lea Lowenfeld
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Uqba Khan
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Alana T H Nguyen
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Despina Siolas
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Brandon Swed
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Jini Hyun
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Sahrish Khan
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Madeleine Wood
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Benjamin Samstein
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Juan P Rocca
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Allyson J Ocean
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Elizabeta C Popa
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Daniel H Hunt
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Nikhil P Uppal
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Kelly A Garrett
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Alessio Pigazzi
- Department of Surgery, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Manish A Shah
- Department of Oncology/Hematology, New York Presbyterian/Weill Cornell Medicine New York, New York, NY, 10021, USA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medicine, New York, NY, 10021, USA
| |
Collapse
|
15
|
Wang XQ, Danenberg E, Huang CS, Egle D, Callari M, Bermejo B, Dugo M, Zamagni C, Thill M, Anton A, Zambelli S, Russo S, Ciruelos EM, Greil R, Győrffy B, Semiglazov V, Colleoni M, Kelly CM, Mariani G, Del Mastro L, Biasi O, Seitz RS, Valagussa P, Viale G, Gianni L, Bianchini G, Ali HR. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 2023; 621:868-876. [PMID: 37674077 PMCID: PMC10533410 DOI: 10.1038/s41586-023-06498-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2023] [Indexed: 09/08/2023]
Abstract
Immune checkpoint blockade (ICB) benefits some patients with triple-negative breast cancer, but what distinguishes responders from non-responders is unclear1. Because ICB targets cell-cell interactions2, we investigated the impact of multicellular spatial organization on response, and explored how ICB remodels the tumour microenvironment. We show that cell phenotype, activation state and spatial location are intimately linked, influence ICB effect and differ in sensitive versus resistant tumours early on-treatment. We used imaging mass cytometry3 to profile the in situ expression of 43 proteins in tumours from patients in a randomized trial of neoadjuvant ICB, sampled at three timepoints (baseline, n = 243; early on-treatment, n = 207; post-treatment, n = 210). Multivariate modelling showed that the fractions of proliferating CD8+TCF1+T cells and MHCII+ cancer cells were dominant predictors of response, followed by cancer-immune interactions with B cells and granzyme B+ T cells. On-treatment, responsive tumours contained abundant granzyme B+ T cells, whereas resistant tumours were characterized by CD15+ cancer cells. Response was best predicted by combining tissue features before and on-treatment, pointing to a role for early biopsies in guiding adaptive therapy. Our findings show that multicellular spatial organization is a major determinant of ICB effect and suggest that its systematic enumeration in situ could help realize precision immuno-oncology.
Collapse
Affiliation(s)
- Xiao Qian Wang
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Esther Danenberg
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Chiun-Sheng Huang
- National Taiwan University Hospital, College of Medicine, National Taiwan University and Taiwan Breast Cancer Consortium, Taipei, Taiwan
| | - Daniel Egle
- Department of Gynecology, Brust Gesundheit Zentrum Tirol, Medical University Innsbruck, Innsbruck, Austria
| | | | - Begoña Bermejo
- Medical Oncology, Hospital Clínico Universitario de Valencia, Biomedical Research Institute INCLIVA, Valencia, Spain
- Medicine Department, Universidad de Valencia, Valencia, Spain
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain
| | | | - Claudio Zamagni
- IRCCS Azienda Ospedaliero-universitaria di Bologna, Bologna, Italy
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Anton Anton
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Stefania Russo
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | | | - Richard Greil
- 3rd Medical Department, Paracelsus Medical University Salzburg, Salzburg, Austria
- Salzburg Cancer Research Institute-CCCIT, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | | | | | - Catherine M Kelly
- Mater Private Hospital, Dublin and Cancer Trials Ireland Breast Group, Dublin, Ireland
| | | | - Lucia Del Mastro
- IRCCS Ospedale Policlinico San Martino, UO Clinica di Oncologia Medica, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche (Di.M.I.), Università di Genova, Genoa, Italy
| | - Olivia Biasi
- IEO, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
| | | | | | - Giuseppe Viale
- IEO, Istituto Europeo di Oncologia, IRCCS, Milan, Italy
- University of Milan, Milan, Italy
| | | | | | - H Raza Ali
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Histopathology, Addenbrookes Hospital, Cambridge, UK.
| |
Collapse
|
16
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
17
|
Magen A, Hamon P, Fiaschi N, Soong BY, Park MD, Mattiuz R, Humblin E, Troncoso L, D'souza D, Dawson T, Kim J, Hamel S, Buckup M, Chang C, Tabachnikova A, Schwartz H, Malissen N, Lavin Y, Soares-Schanoski A, Giotti B, Hegde S, Ioannou G, Gonzalez-Kozlova E, Hennequin C, Le Berichel J, Zhao Z, Ward SC, Fiel I, Kou B, Dobosz M, Li L, Adler C, Ni M, Wei Y, Wang W, Atwal GS, Kundu K, Cygan KJ, Tsankov AM, Rahman A, Price C, Fernandez N, He J, Gupta NT, Kim-Schulze S, Gnjatic S, Kenigsberg E, Deering RP, Schwartz M, Marron TU, Thurston G, Kamphorst AO, Merad M. Intratumoral dendritic cell-CD4 + T helper cell niches enable CD8 + T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med 2023; 29:1389-1399. [PMID: 37322116 PMCID: PMC11027932 DOI: 10.1038/s41591-023-02345-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023]
Abstract
Despite no apparent defects in T cell priming and recruitment to tumors, a large subset of T cell rich tumors fail to respond to immune checkpoint blockade (ICB). We leveraged a neoadjuvant anti-PD-1 trial in patients with hepatocellular carcinoma (HCC), as well as additional samples collected from patients treated off-label, to explore correlates of response to ICB within T cell-rich tumors. We show that ICB response correlated with the clonal expansion of intratumoral CXCL13+CH25H+IL-21+PD-1+CD4+ T helper cells ("CXCL13+ TH") and Granzyme K+ PD-1+ effector-like CD8+ T cells, whereas terminally exhausted CD39hiTOXhiPD-1hiCD8+ T cells dominated in nonresponders. CD4+ and CD8+ T cell clones that expanded post-treatment were found in pretreatment biopsies. Notably, PD-1+TCF-1+ (Progenitor-exhausted) CD8+ T cells shared clones mainly with effector-like cells in responders or terminally exhausted cells in nonresponders, suggesting that local CD8+ T cell differentiation occurs upon ICB. We found that these Progenitor CD8+ T cells interact with CXCL13+ TH within cellular triads around dendritic cells enriched in maturation and regulatory molecules, or "mregDC". These results suggest that discrete intratumoral niches that include mregDC and CXCL13+ TH control the differentiation of tumor-specific Progenitor exhasuted CD8+ T cells following ICB.
Collapse
Affiliation(s)
- Assaf Magen
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathalie Fiaschi
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Brian Y Soong
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Hamel
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Buckup
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie Chang
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hara Schwartz
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nausicaa Malissen
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonit Lavin
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandra Soares-Schanoski
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez-Kozlova
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen Zhao
- The Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen C Ward
- The Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isabel Fiel
- The Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baijun Kou
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Michael Dobosz
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Lianjie Li
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Christina Adler
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yi Wei
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Wei Wang
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Gurinder S Atwal
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Kunal Kundu
- VI NEXT, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Kamil J Cygan
- VI NEXT, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Namita T Gupta
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Seunghee Kim-Schulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raquel P Deering
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Myron Schwartz
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Thomas U Marron
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gavin Thurston
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Alice O Kamphorst
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Miriam Merad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Bigarré C, Bertucci F, Finetti P, Macgrogan G, Muracciole X, Benzekry S. Mechanistic modeling of metastatic relapse in early breast cancer to investigate the biological impact of prognostic biomarkers. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107401. [PMID: 36804267 DOI: 10.1016/j.cmpb.2023.107401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Estimating the risk of metastatic relapse is a major challenge to decide adjuvant treatment options in early-stage breast cancer (eBC). To date, distant metastasis-free survival (DMFS) analysis mainly relies on classical, agnostic, statistical models (e.g., Cox regression). Instead, we propose here to derive mechanistic models of DMFS. METHODS The present series consisted of eBC patients who did not receive adjuvant systemic therapy from three datasets, composed respectively of 692 (Bergonié Institute), 591 (Paoli-Calmettes Institute, IPC), and 163 (Public Hospital Marseille, AP-HM) patients with routine clinical annotations. The last dataset also contained expression of three non-routine biomarkers. Our mechanistic model of DMFS relies on two mathematical parameters that represent growth (α) and dissemination (μ). We identified their population distributions using mixed-effects modeling. Critically, we propose a novel variable selection procedure allowing to: (i) identify the association of biological parameters with either α, μ or both, and (ii) generate an optimal candidate model for DMFS prediction. RESULTS We found that Ki67 and Thymidine Kinase-1 were associated with α, and nodal status and Plasminogen Activator Inhibitor-1 with μ. The predictive performances of the model were excellent in calibration but moderate in discrimination, with c-indices of 0.72 (95% CI [0.48, 0.95], AP-HM), 0.63 ([0.44, 0.83], Bergonié) and 0.60 (95% CI [0.54, 0.80], IPC). CONCLUSIONS Overall, we demonstrate that our novel method combining mechanistic and advanced statistical modeling is able to unravel the biological roles of clinicopathological parameters from DMFS data.
Collapse
Affiliation(s)
- Célestin Bigarré
- COMPO, Inria Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France.
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Equipe labellisée Ligue Nationale Contre Le Cancer, Aix-Marseille University, Marseille, France; Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, CNRS, Inserm, Aix-Marseille University, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Equipe labellisée Ligue Nationale Contre Le Cancer, Aix-Marseille University, Marseille, France
| | - Gaëtan Macgrogan
- Department of Biopathology, Institut Bergonié, Regional Comprehensive Cancer Centre, Bordeaux, France; Inserm U1218, Bordeaux Public Health, University of Bordeaux, Bordeaux, France
| | - Xavier Muracciole
- COMPO, Inria Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France; Radiotherapy Department, Assistance Publique - Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - Sébastien Benzekry
- COMPO, Inria Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| |
Collapse
|
19
|
Saidak Z, Galmiche A, Ouendo M, Chatelain D, Constans JM, Testelin S. Principe et applicabilité de la chirurgie de précision aux cancers de la tête et du cou. Med Sci (Paris) 2022; 38:562-569. [DOI: 10.1051/medsci/2022082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La chirurgie est la modalité de traitement curatif la plus fréquemment utilisée dans les cancers de la tête et du cou. Elle est intégrée dans des schémas de stratification thérapeutique précis, mais la conduite de l’acte chirurgical et son évaluation ne tiennent, la plupart du temps, pas compte de la biologie tumorale. Nous présentons dans cette revue plusieurs études qui montrent comment les analyses de la biologie tumorale pourraient préciser les indications et le contour d’une résection chirurgicale, personnaliser la prise en charge péri-opératoire du patient, et faciliter la détection des récurrences tumorales. Ces études apportent ainsi une preuve de principe qu’une chirurgie de précision, c’est-à-dire adossée à la biologie tumorale, à la façon de la médecine de précision pour d’autres cancers, est applicable aux cancers de la tête et du cou.
Collapse
|