1
|
Esteves F, Madureira J, Costa C, Pires J, Barros B, Alves S, Vaz J, Oliveira M, Slezakova K, Fernandes A, Pereira MDC, Morais S, Valdiglesias V, Bonassi S, Teixeira JP, Costa S. Occupational exposure to wildland firefighting and its effects on systemic DNA damage. Int J Hyg Environ Health 2025; 266:114576. [PMID: 40203508 DOI: 10.1016/j.ijheh.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Portugal is among the European Union countries more devastated by forest fires. Wildland firefighters are at the forefront of this battle, facing exposure to a wide range of harmful pollutants. Epidemiological studies have highlighted a potential link between occupational firefighting exposure and several diseases, including cancer. To date, very few studies have explored the biological mechanisms associated with such exposure. The present longitudinal study aims to assess changes in early effect biomarkers following wildland firefighters' occupational exposure to a real wildfire event. METHODS Paired blood samples from 59 healthy Portuguese wildland firefighters were collected at two different time points: before wildfire season and after a fire event during wildfire season. Sociodemographic variables (e.g., age, sex) and work-related factors (e.g., years of service) were assessed via a self-reported questionnaire. Levels of early effect biomarkers, such as primary DNA damage and oxidative DNA damage (oxidised purines) were assessed via comet assay. DNA double-strand breaks (DSBs) were evaluated by phosphorylated H2AX (γH2AX). Moreover, hydroxylated polycyclic aromatic hydrocarbon metabolites (OHPAHs) and metal(loid)s were quantified in urine samples. The influence of urinary OHPAHs, urinary metal(loid)s, and other exposure-related factors (e.g., firefighting duration) on changes (Δ) in early effect biomarkers (post-vs. baseline levels) was investigated. RESULTS Firefighting activities led to a significant increase in both primary DNA damage and oxidative DNA damage by 22 % (95 % CI: 1.11-1.35; p < 0.05) and 23 % (95 % CI: 1.04-1.45; p < 0.05), respectively. Results from linear regression revealed that per each unit increase of urinary 2-hydroxyfluorene (2-OHFlu) (μmol/mol creatinine), the risk of ⧍ oxidative DNA damage increased by 20 % [FR: 1.20 (1.09-1.32); p < 0.01]. Additionally, each unit increase in urinary cesium (Cs) (μg/L) resulted in a significant 4 % increase in Δ primary DNA damage [FR: 1.04 (1.01-1.06); p < 0.05] and a 3 % increase in Δ oxidative DNA damage [FR: 1.03 (1.01-1.05); p < 0.05]. Post-exposure levels of γH2AX were significantly correlated with urinary 2-OHFlu levels assessed after firefighting (r = 0.30; p < 0.05). Furthermore, exposure duration and reported breathing difficulties during firefighting were significantly associated with increased levels of primary DNA damage. CONCLUSION Results obtained provide insights into the potential human health effects of wildland firefighting occupational exposure at the genetic and molecular levels, offering new and important mechanistic data. These findings are crucial for implementing health and safety measures, recommendations, and best practices to mitigate occupational risks and protect the health of wildland firefighters.
Collapse
Affiliation(s)
- Filipa Esteves
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Joana Pires
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adília Fernandes
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña, 15006, Spain
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00163, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| |
Collapse
|
2
|
Guedes Pinto T, de Aguiar GC, da Silva Avanci L, Nunes Dos Santos J, Ramos Cury P, Araki Ribeiro D. Do firefighters constitute a high-risk population for genotoxicity (DNA damage)? A systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39955632 DOI: 10.1080/09603123.2025.2464094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Firefighters regularly undertake high-risk operations in diverse environments, exposing them to extreme temperatures and hazardous pollutants resulting from combustion. For this reason, this systematic review aims to evaluate the potential genotoxicity associated with occupational exposure specific to firefighters. Methodologically, the review included 12 studies assessing genetic damage in firefighters. A thorough quality assessment was performed to account for potential confounding factors, and almost all studies were deemed as either strong or moderate (except for one), ensuring the reliability of the key findings. Likewise, more than half of the articles reviewed (7 out of 12) reported elevated levels of genotoxicity in firefighters, as evidenced by various assays employed in the studies. Taken together, the findings highlight the critical need for implementing biomonitoring strategies for early detection of genotoxicity among firefighters, emphasizing the necessity for further research in this occupational context.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Gabriel Carvalhal de Aguiar
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Lorrany da Silva Avanci
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Jean Nunes Dos Santos
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Patricia Ramos Cury
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
3
|
Raddatz MA, Pershad Y, Parker AC, Bick AG. Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Health. Cardiol Clin 2025; 43:13-23. [PMID: 39551555 DOI: 10.1016/j.ccl.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related phenomenon in which somatic mutations lead to clonal expansion of hematopoietic stem cells without the development of hematologic abnormalities. A growing body of literature demonstrates an association between CHIP and cardiovascular disease. This pathophysiology demonstrates a novel connection between global inflammation and cardiovascular morbidity. While there is limited consensus addressing the cardiovascular care of these patients, risk factor optimization and disease surveillance are advisable. Investigation into possible therapies is ongoing and provides promise for the treatment of inflammation contributing to cardiovascular disease in patients with and without CHIP.
Collapse
Affiliation(s)
- Michael A Raddatz
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Dr. South, A2-237 CHS, Los Angeles, CA 90095, USA
| | - Yash Pershad
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 550 Robinson Research Building, Nashville, TN 37232, USA
| | - Alyssa C Parker
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 550 Robinson Research Building, Nashville, TN 37232, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 550 Robinson Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Villaume MT, Savona MR. Pathogenesis and inflammaging in myelodysplastic syndrome. Haematologica 2025; 110:283-299. [PMID: 39445405 PMCID: PMC11788632 DOI: 10.3324/haematol.2023.284944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a genetically complex and phenotypically diverse set of clonal hematologic neoplasms that occur with increasing frequency with age. MDS has long been associated with systemic inflammatory conditions and disordered inflammatory signaling is implicated in MDS pathogenesis. A rise in sterile inflammation occurs with ageing and the term "inflammaging" has been coined by to describe this phenomenon. This distinct form of sterile inflammation has an unknown role in in the pathogenesis of myeloid malignancies despite shared correlations with age and ageing-related diseases. More recent is a discovery that many cases of MDS arise from clonal hematopoiesis of indeterminate potential (CHIP), an age associated, asymptomatic pre-disease state. The interrelationship between ageing, inflammation and clonal CHIP is complex and likely bidirectional with causality between inflammaging and CHIP potentially instrumental to understanding MDS pathogenesis. Here we review the concept of inflammaging and MDS pathogenesis and explore their causal relationship by introducing a novel framing mechanism of "pre-clonal inflammaging" and "clonal inflammaging". We aim to harmonize research on ageing, inflammation and MDS pathogenesis by contextualizing the current understanding of inflammaging and the ageing hematopoietic system with what is known about the etiology of MDS via its progression from CHIP.
Collapse
Affiliation(s)
- Matthew T Villaume
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Michael R Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Program in Cancer Biology, and Center for Immunobiology Nashville, TN 37232.
| |
Collapse
|
5
|
Zeig-Owens R, Prezant DJ. Managing cancer following the World Trade Center disaster. Nat Rev Cancer 2024; 24:737-738. [PMID: 39261720 DOI: 10.1038/s41568-024-00730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Rachel Zeig-Owens
- Fire Department of the City of New York, Brooklyn, NY, USA
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
- Montefiore Medical Center, Department of Medicine, Bronx, NY, USA
| | - David J Prezant
- Fire Department of the City of New York, Brooklyn, NY, USA.
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA.
- Montefiore Medical Center, Department of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Nead KT, Kim T, Joo L, McDowell TL, Wong JW, Chan ICC, Brock E, Zhao J, Xu T, Tang C, Lee CL, Abe JI, Bolton KL, Liao Z, Scheet PA, Lin SH. Impact of cancer therapy on clonal hematopoiesis mutations and subsequent clinical outcomes. Blood Adv 2024; 8:5215-5224. [PMID: 38830141 PMCID: PMC11530395 DOI: 10.1182/bloodadvances.2024012929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
ABSTRACT Exposure to cancer therapies is associated with an increased risk of clonal hematopoiesis (CH). The objective of our study was to investigate the genesis and evolution of CH after cancer therapy. In this prospective study, we undertook error-corrected duplex DNA sequencing in blood samples collected before and at 2 time points after chemoradiation in patients with esophageal or lung cancer recruited from 2013 to 2018. We applied a customized workflow to identify the earliest changes in CH mutation count and clone size and determine their association with clinical outcomes. Our study included 29 patients (87 samples). Their median age was 67 years, and 76% (n = 22) were male; the median follow-up period was 3.9 years. The most mutated genes were DNMT3A, TET2, TP53, and ASXL1. We observed a twofold increase in the number of mutations from before to after treatment in TP53, which differed from all other genes examined (P < .001). Among mutations detected before and after treatment, we observed an increased clone size in 38% and a decreased clone size in 5% of TP53 mutations (odds ratio, 3.7; 95% confidence interval [CI], 1.75-7.84; P < .001). Changes in mutation count and clone size were not observed in other genes. Individuals with an increase in the number of TP53 mutations after chemoradiation experienced shorter overall survival (hazard ratio, 7.07; 95% CI, 1.50-33.46; P = .014). In summary, we found an increase in the number and size of TP53 CH clones after chemoradiation that were associated with adverse clinical outcomes.
Collapse
Affiliation(s)
- Kevin T. Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taebeom Kim
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - LiJin Joo
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tina L. McDowell
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Justin W. Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Irenaeus C. C. Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth Brock
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ting Xu
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad Tang
- Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chang-Lung Lee
- Departments of Radiation Oncology and Pathology, Duke University School of Medicine, Durham, NC
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly L. Bolton
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zhongxing Liao
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paul A. Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven H. Lin
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
7
|
Tiu A, McKinnell Z, Liu S, Gill P, Antonio M, Shancer Z, Srinivasa N, Diao G, Subrahmanyam R, Kessler CM, Jain M. Risk of myeloproliferative neoplasms among U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol 2024; 99:1969-1978. [PMID: 39023278 DOI: 10.1002/ajh.27438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
The Promise to Address Comprehensive Toxics (PACT) Act expanded U.S. Veterans' health care and benefits for conditions linked to service-connected exposures (e.g., Burn Pits, Agent Orange). However, myeloproliferative neoplasms (MPN) are not recognized as presumptive conditions for Veterans exposed to these toxic substances. This study evaluated the development of MPN among U.S. Veterans from the Korean, Vietnam, and Persian Gulf War eras. This retrospective cohort study included 65 425 Korean War era Veterans; 211 927 Vietnam War era Veterans; and 214 007 Persian Gulf War era Veterans from January 1, 2006, to January 26, 2023. Veterans with MPN, thrombosis, bleeding, and cardiovascular risk factors were identified through ICD-9 and -10 codes. Veterans from the Persian Gulf War era had the highest risk of developing MPN compared with Veterans from the Korean and Vietnam War eras, hazard ratio (HR) 4.92, 95% confidence interval (CI) 4.20-5.75 and HR 2.49, 95% CI 2.20-2.82, both p < .0001, respectively. Vietnam War era Veterans also had a higher risk of MPN development compared with Korean War era Veterans, HR 1.97, 95% CI 1.77-2.21, p < .0001. Persian Gulf War era Veterans were diagnosed with MPN at an earlier age, had higher risks of thrombosis and bleeding, and had lower survival rates compared with Korean War and Vietnam War era Veterans. This study reinforces evidence that environmental and occupational hazards increase the risk of clonal myeloid disorders and related complications, impacting overall survival with MPN. Limitations include the inability to confirm clonality and fully verify deployment and exposure status.
Collapse
Affiliation(s)
- Andrew Tiu
- Division of Hematology-Oncology, Lombardi Comprehensive Cancer Center, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Zoe McKinnell
- Division of Hematology-Oncology, The George Washington University, Washington, DC, USA
| | - Shanshan Liu
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Puneet Gill
- Institute for Clinical Research, Washington, DC, USA
| | | | - Zoe Shancer
- The George Washington University School of Medicine, Washington, DC, USA
| | - Nandan Srinivasa
- The George Washington University School of Medicine, Washington, DC, USA
| | - Guoqing Diao
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | | | - Craig M Kessler
- Division of Hematology-Oncology, Lombardi Comprehensive Cancer Center, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Maneesh Jain
- The George Washington University School of Medicine, Washington, DC, USA
- Washington DC VA Medical Center, Washington, DC, USA
| |
Collapse
|
8
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby WE, Ganesh S, Lannery K, Schuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat Commun 2024; 15:7858. [PMID: 39251642 PMCID: PMC11385577 DOI: 10.1038/s41467-024-52302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CHIP is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CHIP. Splicing factor genes (SF3B1, SRSF2, U2AF1, and ZRSR2) and TET2 CHIP grow significantly faster than DNMT3A non-R882 clones. We find that age at baseline and sex significantly influence the incidence of CHIP, while ASCVD and other traditional ASCVD risk factors do not exhibit such associations. Additionally, baseline synonymous passenger mutations are strongly associated with CHIP status and are predictive of new CHIP clone acquisition and clonal growth over extended follow-up, providing valuable insights into clonal dynamics of aging hematopoietic stem and progenitor cells. This study also reveals associations between germline genetic variants and incident CHIP. Our comprehensive longitudinal assessment yields insights into cell-intrinsic and -extrinsic factors contributing to the development and progression of CHIP clones in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney E Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Schuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Garcia-Medina JS, Sienkiewicz K, Narayanan SA, Overbey EG, Grigorev K, Ryon KA, Burke M, Proszynski J, Tierney B, Schmidt CM, Mencia-Trinchant N, Klotz R, Ortiz V, Foox J, Chin C, Najjar D, Matei I, Chan I, Cruchaga C, Kleinman A, Kim J, Lucaci A, Loy C, Mzava O, De Vlaminck I, Singaraju A, Taylor LE, Schmidt JC, Schmidt MA, Blease K, Moreno J, Boddicker A, Zhao J, Lajoie B, Altomare A, Kruglyak S, Levy S, Yu M, Hassane DC, Bailey SM, Bolton K, Mateus J, Mason CE. Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight. PRECISION CLINICAL MEDICINE 2024; 7:pbae007. [PMID: 38634106 PMCID: PMC11022651 DOI: 10.1093/pcmedi/pbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Background The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.
Collapse
Affiliation(s)
- J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Karolina Sienkiewicz
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Marissa Burke
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Nuria Mencia-Trinchant
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Irenaeus Chan
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Carlos Cruchaga
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Anvita Singaraju
- Department of Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
| | | | - Juan Moreno
- Element Biosciences, San Diego, CA 10055, USA
| | | | - Junhua Zhao
- Element Biosciences, San Diego, CA 10055, USA
| | | | | | | | - Shawn Levy
- Element Biosciences, San Diego, CA 10055, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Duane C Hassane
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kelly Bolton
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA 90250, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
10
|
Singh A, Balasubramanian S. The crossroads of cancer therapies and clonal hematopoiesis. Semin Hematol 2024; 61:16-21. [PMID: 38403501 DOI: 10.1053/j.seminhematol.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
The intricate interplay between Clonal Hematopoiesis (CH) and the repercussions of cancer therapies has garnered significant research focus in recent years. Previously perceived as an age-related phenomenon, CH is now closely linked to inflammation ("Inflammaging") and cancer, impacting leukemogenesis, cancer progression, and treatment responses. This review explores the complex interplay between CH and diverse cancer therapies, including chemotherapy, targeted treatments, radiation, stem cell transplants, CAR-T cell therapy, and immunotherapy, like immune checkpoint inhibitors. Notably, knowledge about post-chemotherapy CH mutation/acquisition has evolved from a de novo incident to more of a clonal selection process. Chemotherapy and radiation exposure, whether therapeutic or environmental, increases CH risk, particularly in genes like TP53 and PPM1D. Environmental toxins, especially in high-risk environments like post-disaster sites or space exploration, are associated with CH. CH affects clinical outcomes in stem cell transplant scenarios, including engraftment, survival, and t-MN development. The presence of CH also alters CAR-T cell therapy responses and impacts the efficacy and toxicity of immunotherapies. Furthermore, specific mutations like DNMT3A and TET2 thrive under inflammatory stress, influencing therapy outcomes and justifying the ongoing tailored interventions in clinical trials. This review underscores the critical need to integrate CH analysis into personalized medicine, enhancing risk assessments and refining treatment strategies. As we progress, multidisciplinary collaboration and comprehensive studies are imperative. Understanding CH's impact, especially concerning genotoxic stressors, will inform screening, surveillance, and early detection strategies, decreasing the risk of therapy-related myeloid neoplasms and revolutionizing cancer treatment paradigms.
Collapse
Affiliation(s)
- Abhay Singh
- Leukemia and Myeloid Disorder Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Suresh Balasubramanian
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Hematology and Medical Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI
| |
Collapse
|
11
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Madireddy A, Gerhardt J. Visualizing DNA replication by single-molecule analysis of replicated DNA. STAR Protoc 2023; 4:102721. [PMID: 38048218 PMCID: PMC10730367 DOI: 10.1016/j.xpro.2023.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Single-molecule analysis of replicated DNA (SMARD) is a unique technique that enables visualization of DNA replication at specific genomic regions at single-molecule resolution. Here, we present a protocol for visualizing DNA replication by SMARD. We describe steps for pulse labeling DNA, followed by isolating and stretching of genomic DNA. We then detail the detection of the replication at chromosomal regions through immunostaining and fluorescence in situ hybridization. Using SMARD, we can visualize replication initiation, progression, termination, and fork stalling. For complete details on the use and execution of this protocol, please refer to Norio et al. (2001) and Gerhardt et al. (2014).1,2.
Collapse
Affiliation(s)
- Advaitha Madireddy
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Department of Pediatrics Hematology/Oncology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Nathan DI, Dougherty M, Bhatta M, Mascarenhas J, Marcellino BK. Clonal hematopoiesis and inflammation: A review of mechanisms and clinical implications. Crit Rev Oncol Hematol 2023; 192:104187. [PMID: 37879493 DOI: 10.1016/j.critrevonc.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined by the presence of somatic mutations in hematopoietic stem and progenitor cells (HSPC). CH is associated primarily with advancing age and confers an elevated risk of progression to overt hematologic malignancy and cardiovascular disease. Increasingly, CH is associated with a wide range of diseases driven by, and sequelae of, inflammation. Accordingly, there is great interest in better understanding the pathophysiologic and clinical relationship between CH, aging, and disease. Both observational and experimental findings support the concept that CH is a potential common denominator in the inflammatory outcomes of aging. However, there is also evidence that local and systemic inflammatory states promote the growth and select for CH clones. In this review, we aim to provide an up-to-date summary of the nature of the relationship between inflammation and CH, which is central to unlocking potential therapeutic opportunities to prevent progression to myeloid malignancy.
Collapse
Affiliation(s)
- Daniel I Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manasa Bhatta
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby W, Ganesh S, Lannery K, Shuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals new insights into determinants of incident clonal hematopoiesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.05.23295093. [PMID: 37732181 PMCID: PMC10508802 DOI: 10.1101/2023.09.05.23295093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Clonal hematopoiesis (CH), characterized by blood cells predominantly originating from a single mutated hematopoietic stem cell, is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CH is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CH. We found that age at baseline, sex, and dyslipidemia significantly influence the incidence of CH, while ASCVD and other traditional risk factors for ASCVD did not exhibit such associations. Our study also revealed associations between germline genetic variants and incident CH, prioritizing genes in CH development. Our comprehensive longitudinal assessment yields novel insights into the factors contributing to incident CH in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Shuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C. Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Nathan DI, Mascarenhas J. A smoking gun? Clonal expansion in response to cigarette exposure. Front Oncol 2023; 13:1252643. [PMID: 37601662 PMCID: PMC10435733 DOI: 10.3389/fonc.2023.1252643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
| | - John Mascarenhas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Goldfarb DG, Hall CB, Choi J, Zeig-Owens R, Cohen HW, Cannon M, Prezant DJ, Weiden MD. Association of Lung Function Decline with All-Cause and Cancer-Cause Mortality after World Trade Center Dust Exposure. Ann Am Thorac Soc 2023; 20:1136-1143. [PMID: 36961515 PMCID: PMC10405606 DOI: 10.1513/annalsats.202212-1011oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 03/25/2023] Open
Abstract
Rationale: In numerous cohorts, lung function decline is associated with all-cause and cardiovascular-cause mortality, but the association between the decrease in forced expiratory volume in 1 second (FEV1) and cancer-cause mortality, particularly after occupational/environmental exposure(s), is unclear. Exposure to dust/smoke from the World Trade Center (WTC) disaster caused inflammation and lung injury in Fire Department of the City of New York rescue/recovery workers. In addition, prior research found that >10% of the cohort experienced greater than twice the age-related decrease in FEV1 (⩾64 ml/yr). Objectives: To evaluate the association of longitudinal lung function with all-cause and cancer-cause mortality after exposure to the WTC disaster. Methods: We conducted a prospective cohort study using longitudinal prebronchodilator FEV1 data for 12,264 WTC-exposed firefighters and emergency medical service providers. All-cause and cancer-cause mortality were ascertained using National Death Index data from September 12, 2001, through December 31, 2021. Joint longitudinal survival models evaluated the association of baseline FEV1 and change in FEV1 from baseline with all-cause and cancer-cause mortality adjusted for age, race/ethnicity, height, smoking, work assignment (firefighters vs. emergency medical service providers), and WTC exposure. Results: By December 31, 2021, 607 of the 12,264 individuals in the cohort (4.9%) had died (crude rate = 259.5 per 100,000 person-years), and 190 of 12,264 (1.5%) had died from cancer (crude rate = 81.2 per 100,000 person-years). Baseline FEV1 was ⩾80% predicted in 10,970 of the 12,264 (89.4%); final FEV1 was ⩾80% in 9,996 (81.5%). Lower FEV1 at baseline was associated with greater risk for all-cause mortality (hazard ratio [HR] per liter = 2.32; 95% confidence interval [95% CI] = 1.98-2.72) and cancer-cause mortality (HR per liter = 1.99; 95% CI = 1.49-2.66). Longitudinally, each 100-ml/yr decrease in FEV1 was associated with an 11% increase in all-cause mortality (HR = 1.11; 95% CI = 1.06-1.15) and a 7% increase in cancer-cause mortality (HR = 1.07; 95% CI = 1.00-1.15). Compared with FEV1 decrease <64 ml/yr, those with FEV1 decrease ⩾64 ml/yr had higher all-cause (HR = 2.91; 95% CI = 2.37-3.56) and cancer-cause mortality (HR = 2.68; 95% CI = 1.90-3.79). Conclusions: Baseline FEV1 and longitudinal FEV1 decrease are associated with increased risk of all-cause and cancer-cause mortality in a previously healthy occupational cohort, the majority of whom had normal lung function, after intense exposure to dust/smoke. Further investigation is needed to define pathways by which lung function impacts mortality after an irritant exposure.
Collapse
Affiliation(s)
- David G. Goldfarb
- Department of Medicine, Montefiore Medical Center, Bronx, New York
- Bureau of Health Services, Fire Department of the City of New York, Brooklyn, New York
| | - Charles B. Hall
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York; and
| | - Jaeun Choi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York; and
| | - Rachel Zeig-Owens
- Department of Medicine, Montefiore Medical Center, Bronx, New York
- Bureau of Health Services, Fire Department of the City of New York, Brooklyn, New York
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York; and
| | - Hillel W. Cohen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York; and
| | - Madeline Cannon
- Department of Medicine, Montefiore Medical Center, Bronx, New York
- Bureau of Health Services, Fire Department of the City of New York, Brooklyn, New York
| | - David J. Prezant
- Department of Medicine, Montefiore Medical Center, Bronx, New York
- Bureau of Health Services, Fire Department of the City of New York, Brooklyn, New York
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York; and
| | - Michael D. Weiden
- Bureau of Health Services, Fire Department of the City of New York, Brooklyn, New York
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
17
|
Jakubek YA, Reiner AP, Honigberg MC. Risk factors for clonal hematopoiesis of indeterminate potential and mosaic chromosomal alterations. Transl Res 2023; 255:171-180. [PMID: 36414227 PMCID: PMC10135440 DOI: 10.1016/j.trsl.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) of the autosomes, X, and Y chromosomes are aging-related somatic mutations detectable in peripheral blood. The presence of these acquired mutations predisposes otherwise healthy adults to increased risk of several chronic aging-related conditions including hematologic cancers, atherosclerotic cardiovascular diseases, other inflammatory conditions, and mortality. While the public health impact and disease associations of these blood-derived somatic mutations continue to expand, the inherited, behavioral/lifestyle, environmental risk factors and comorbid conditions that influence their occurrence and progression have been less well characterized. Age is the strongest risk factor for all types of CHIP and mCAs. CHIP and mCAs are generally more common in individuals of European than non-European ancestry. Evidence for a genetic predisposition has been strongest for mosaic loss of Y chromosome in men. Genome-wide association studies have recently begun to identify common and rare germline genetic variants associated with CHIP and mCAs. These loci include genes involving cell cycle regulation, cell proliferation/survival, hematopoietic progenitor cell regulation, DNA damage repair, and telomere maintenance. Some loci, such as TERT, ATM, TP53, CHEK2, and TCL1A, have overlapping associations with different types of CHIP, mCAs, and cancer predisposition. Various environmental or co-morbid contexts associated with presence or expansion of specific CHIP or mCA mutations are beginning to be elucidated, such as cigarette smoking, diet, cancer chemotherapy, particulate matter, and premature menopause. Further characterization of the germline genetic and environmental correlates of CHIP/mCAs may inform our ability to modify their progression and ultimately reduce the risk and burden of chronic diseases associated with these clonal somatic phenomena.
Collapse
Affiliation(s)
- Yasminka A Jakubek
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Center Research Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Michael C Honigberg
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
18
|
Barreto-Galvez A, Niljikar M, Gagliardi J, Zhang R, Kumar V, Juruwala A, Pradeep A, Shaikh A, Tiwari P, Sharma K, Gerhardt J, Cao J, Kataoka K, Durbin A, Qi J, Ye BH, Madireddy A. Acetyl transferase EP300 deficiency leads to chronic replication stress mediated by defective fork protection at stalled replication forks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538781. [PMID: 37163075 PMCID: PMC10168362 DOI: 10.1101/2023.04.29.538781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the epigenetic regulator and global transcriptional activator, E1A binding protein (EP300), is being increasingly reported in aggressive hematological malignancies including adult T-cell leukemia/lymphoma (ATLL). However, the mechanistic contribution of EP300 dysregulation to cancer initiation and progression are currently unknown. Independent inhibition of EP300 in human cells results in the differential expression of genes involved in regulating the cell cycle, DNA replication and DNA damage response. Nevertheless, specific function played by EP300 in DNA replication initiation, progression and replication fork integrity has not been studied. Here, using ATLL cells as a model to study EP300 deficiency and an p300-selective PROTAC degrader, degrader as a pharmacologic tool, we reveal that EP300-mutated cells display prolonged cell cycle kinetics, due to pronounced dysregulations in DNA replication dynamics leading to persistent genomic instability. Aberrant DNA replication in EP300-mutated cells is characterized by elevated replication origin firing due to increased replisome pausing genome-wide. We demonstrate that EP300 deficiency results in nucleolytic degradation of nascently synthesized DNA at stalled forks due to a prominent defect in fork stabilization and protection. This in turn results in the accumulation of single stranded DNA gaps at collapsed replication forks, in EP300-deficient cells. Inhibition of Mre11 nuclease rescues the ssDNA accumulation indicating a dysregulation in downstream mechanisms that restrain nuclease activity at stalled forks. Importantly, we find that the absence of EP300 results in decreased expression of BRCA2 protein expression and a dependency on POLD3-mediated error-prone replication restart mechanisms. The overall S-phase abnormalities observed lead to under-replicated DNA in G2/M that instigates mitotic DNA synthesis. This in turn is associated with mitotic segregation defects characterized by elevated micronuclei formation, accumulation of cytosolic DNA and transmission of unrepaired inherited DNA lesions in the subsequent G1-phase in EP300-deficient cells. We demonstrate that the DNA replication dynamics of EP300-mutated cells ATLL cells recapitulate features of BRCA-deficient cancers. Altogether these results suggest that mutations in EP300 cause chronic DNA replication stress and defective replication fork restart results in persistent genomic instability that underlie aggressive chemo-resistant tumorigenesis in humans.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis (CH) is an age-dependent process detectable using advanced sequencing technologies and is associated with multiple adverse health outcomes including cardiovascular disease and cancer. The purpose of this review is to summarize known causes of CH mutations and to identify key areas and considerations for future research on CH. RECENT FINDINGS Studies have identified multiple potential causes of CH mutations including smoking, cancer therapies, cardiometabolic disease, inflammation, and germline risk factors. Additionally, large-scale studies have facilitated the identification of gene-specific effects of CH mutation risk factors that may have unique downstream health implications. For example, cancer therapies and sources of environmental radiation appear to cause CH through their impact on DNA damage repair genes. There is a growing body of evidence defining risk factors for CH mutations. Standardization in the identification of CH mutations may have important implications for future research. Additional studies in underrepresented populations and their diverse environmental exposures are needed to facilitate broad public health impact of the study of CH mutations.
Collapse
|
20
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
21
|
DeMarini DM, Warren SH, Brooks LR. Mutagenicity of the organic fraction of World Trade Center dust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:16-25. [PMID: 36433931 PMCID: PMC9989947 DOI: 10.1002/em.22519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 05/07/2023]
Abstract
Most studies of the health effects and chemical characterization of the dust resulting from the catastrophic collapse of the World Trade Center (WTC) on September 11, 2001, have focused on the large inorganic fraction of the dust; however, chemical analyses have identified mutagens and carcinogens in the smaller organic fraction. Here, we determined the mutagenicity of the organic fraction of WTC dust in Salmonella. Only 0.74% of the mass of the particulate matter (PM) <53 μm in diameter was extractable organic matter (EOM). Because the EOM was 10 times more mutagenic in TA100 +S9 than in TA98 +S9 and was negative in TA98 -S9, we inferred, respectively, that polycyclic aromatic hydrocarbons (PAHs) played a role in the mutagenicity and not nitroarenes. In TA98 +S9, the mutagenic potency of the EOM (0.1 revertant/μg EOM) was within the range of EOMs from air and combustion emissions. However, the EOM-based mutagenic potency of the particles (0.0007 revertants/μg PM) was 1-2 orders of magnitude lower than values from a review of 50 combustion emissions and various air samples. We calculated that 37 PAHs analyzed previously in WTC EOM were 5.4% of the EOM mass and 0.04% of the PM mass; some air contained 0.3 μg WTC EOM/m3 (0.02 μg PAHs/m3 ). Populations exposed to WTC dust have elevated levels of prostate and thyroid cancer but not lung cancer. Our data support earlier estimates that PAH-associated cancer risk among this population, for example, PAH-associated lung cancer, was unlikely to be significantly elevated relative to background PAH exposures.
Collapse
Affiliation(s)
- David M. DeMarini
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and ExposureOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - Sarah H. Warren
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and ExposureOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - Lance R. Brooks
- Homeland Security and Materials Management Division, Center for Environmental Solutions and Emergency ResponseOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
22
|
Ferastraoaru D, Zeig-Owens R, Goldfarb DG, Mueller AK, Hall CB, Weiden MD, Schwartz T, Prezant DJ, Rosenstreich D. Relationship between low serum immunoglobulin E levels and malignancies in 9/11 World Trade Center responders. Ann Allergy Asthma Immunol 2022; 129:769-775. [PMID: 35872243 DOI: 10.1016/j.anai.2022.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Individuals with very low immunoglobulin E (IgE) levels have a high risk of developing malignancy. Previous studies have revealed that World Trade Center (WTC) responders exposed to carcinogens have an elevated risk of some cancers. OBJECTIVE To evaluate the association between low-serum IgE levels and cancer development in WTC-exposed responders. METHODS IgE levels were measured in 1851 WTC responders after September 11, 2001. This is the first pilot study in humans comparing the odds of developing cancer in this high-risk population, between the "low-IgE" (IgE in the lowest third percentile) vs "non-low-IgE" participants. RESULTS A significantly higher proportion of hematologic malignancies was found in low-IgE (4/55, 7.3%) compared with non-low-IgE (26/1796, 1.5%, P < .01) responders. The proportion of solid tumors were similar in both groups (5.5% vs 11.4%, P > .05). After adjustment for relevant confounders (race, sex, age at blood draw, WTC arrival time, smoking status), the low-IgE participants had 7.81 times greater odds (95% confidence interval, 1.77-29.35) of developing hematologic cancer when compared with non-low-IgE participants. The hematologic cancers found in this cohort were leukemia (n = 1), multiple myeloma (n = 1), and lymphoma (n = 2). No statistical significance was found when estimating the odds ratio for solid tumors in relation to IgE levels. CONCLUSION WTC responders with low serum IgE levels had the highest odds of developing hematologic malignancies. This hypothesis-generating study suggests that low serum IgE levels might be associated with the development of specific malignancies in at-risk individuals exposed to carcinogens. Larger, multicenter studies with adequate follow-up of individuals with different IgE levels are needed to better evaluate this relationship.
Collapse
Affiliation(s)
- Denisa Ferastraoaru
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York.
| | - Rachel Zeig-Owens
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York; Fire Department of the City of New York (FDNY), Brooklyn, New York
| | - David G Goldfarb
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York; Fire Department of the City of New York (FDNY), Brooklyn, New York
| | - Alexandra K Mueller
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York; Fire Department of the City of New York (FDNY), Brooklyn, New York
| | - Charles B Hall
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Michael D Weiden
- Fire Department of the City of New York (FDNY), Brooklyn, New York; New York University Grossman School of Medicine, New York, New York
| | - Theresa Schwartz
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York; Fire Department of the City of New York (FDNY), Brooklyn, New York
| | - David J Prezant
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York; Fire Department of the City of New York (FDNY), Brooklyn, New York
| | - David Rosenstreich
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
23
|
Nannya Y. Factors associated with clonal hematopoiesis and interaction with marrow environment. J Bone Miner Metab 2022; 41:380-387. [PMID: 36346484 DOI: 10.1007/s00774-022-01380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Clonal hematopoiesis (CH) is an expansion of clones in individuals without any hematologic abnormalities, often carrying the driver mutations implicated in myeloid tumors, such as DNMT3A, TET2, and ASXL1. Most notably, CH is an age-related event, accounting for ~ 10% of cases in people over 60 years old. CH may also be correlated with a previous history of cancer treatment with chemotherapeutic drugs/radiation and infection episodes. The link between aging and CH acquisition is best explained by the enhanced inflammatory level in the bone marrow environment, which in turn expands hematopoietic cell clones with mutations in myeloid drivers. This positive feedback accounts for not only increased incidence of subsequent myeloid tumors in CH carriers but also for increased all-cause mortality and cardiovascular diseases (CVD). Recent evidence from large-scale epidemiological studies with genetic profiles, and mice models that recapitulate hematopoietic clones harboring driver gene mutations has revealed the detailed pathophysiology of CH clones represented by specific driver mutations, especially regarding expansion mechanisms under environmental factors and how they alter the environment. This review introduces the current knowledge of CH with a special focus on its interaction with the marrow environment.
Collapse
Affiliation(s)
- Yasuhito Nannya
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Hochman MJ, DeZern AE. Myelodysplastic syndrome and autoimmune disorders: two sides of the same coin? Lancet Haematol 2022; 9:e523-e534. [PMID: 35772431 DOI: 10.1016/s2352-3026(22)00138-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Systemic inflammatory and autoimmune diseases and myelodysplastic syndromes have been linked in individual patients and in larger case series for at least 25 years. These associations frequently include thyroid disease, neutrophilic dermatoses, polyarthritis, connective tissue diseases, vasculitis, and autoimmune cytopenias. Studies have found that autoimmune disease (or its therapy) is a risk factor for the development of myelodysplastic syndromes, but such syndromes might also be an instigator of autoimmune disease. Epidemiological studies examining disease risk in myelodysplastic syndromes with and without comorbid autoimmune illness have reached mixed conclusions. The pathophysiology of myelodysplastic syndromes is tightly linked to excessive inflammatory activity in the bone marrow microenvironment, which could promote systemic inflammatory and autoimmune diseases directly or by stimulation of the adaptive immune response. Alternatively, autoimmune diseases could promote clonal evolution and disordered bone marrow growth, promoting the development of myeloid malignancy. Additionally, therapy-related myeloid neoplasms-including myelodysplastic syndromes-have been diagnosed after treatment of autoimmune diseases with immunosuppressant therapies. These associations raise the following question: are myelodysplastic syndromes and systemic inflammatory and autoimmune diseases two sides of the same coin-that is, do they share an underlying disease state that can manifest as a myeloid neoplasm, an autoinflammatory illness, or both? VEXAS syndrome, which was first reported in 2020, is caused by a mutation that affects myeloid-restricted cells and manifests with both myelodysplasia and autoinflammation, and could give insight into this biological possibility. We note that systemic inflammatory and autoimmune diseases are often steroid-dependent; however, studies have also evaluated the roles of other immunomodulating therapies. In this Viewpoint, we critically appraise and review the literature on the epidemiology, pathophysiology, and management of systemic inflammatory and autoimmune diseases that are associated with myelodysplastic syndromes and related diseases.
Collapse
Affiliation(s)
- Michael J Hochman
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy E DeZern
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Characteristics of Women with Lung Adenocarcinoma in the World Trade Center Environmental Health Center. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137618. [PMID: 35805276 PMCID: PMC9265949 DOI: 10.3390/ijerph19137618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022]
Abstract
The destruction of the World Trade Center towers on 11 September 2001 exposed local residents, workers, and individuals in the area (Survivors) to dust and fumes that included known and suspected carcinogens. Given the potential for inhalation of toxic substances and the long latency after exposure, the incidence of lung cancer is expected to increase in WTC-exposed individuals. We describe the characteristics of women WTC Survivors with lung adenocarcinoma who were enrolled in the WTC Environmental Health Center (WTC EHC) between May 2002 and July 2021. A total of 173 women in WTC EHC had a diagnosis of any type of lung cancer, representing 10% of all cancers in women. Most of the lung cancers (87%) were non-small cell carcinomas, with adenocarcinoma (77%) being the most common subtype. Nearly half (46%) of these patients were exposed to dust clouds on 11 September 2001. Race and ethnicity varied by smoking status, as follows: 44% of Asian women compared with 29% of non-Hispanic White women were never-smokers (p < 0.001). There was no significant difference between the pathologic characteristics of adenocarcinomas between never and ever smokers. We also summarize EGFR, ALK, KRAS, ROS-1 and BRAF mutation status stratified by smoking, race and ethnicity. The identification of a relatively high proportion of women never-smokers with lung cancer warrants further investigation into the role of WTC dust exposure.
Collapse
|