1
|
Eldar D, Albert S, Tatyana A, Galina S, Albert R, Yana M. Optogenetic approaches for neural tissue regeneration: A review of basic optogenetic principles and target cells for therapy. Neural Regen Res 2026; 21:521-533. [PMID: 39995064 DOI: 10.4103/nrr.nrr-d-24-00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 02/26/2025] Open
Abstract
Optogenetics has revolutionized the field of neuroscience by enabling precise control of neural activity through light-sensitive proteins known as opsins. This review article discusses the fundamental principles of optogenetics, including the activation of both excitatory and inhibitory opsins, as well as the development of optogenetic models that utilize recombinant viral vectors. A considerable portion of the article addresses the limitations of optogenetic tools and explores strategies to overcome these challenges. These strategies include the use of adeno-associated viruses, cell-specific promoters, modified opsins, and methodologies such as bioluminescent optogenetics. The application of viral recombinant vectors, particularly adeno-associated viruses, is emerging as a promising avenue for clinical use in delivering opsins to target cells. This trend indicates the potential for creating tools that offer greater flexibility and accuracy in opsin delivery. The adaptations of these viral vectors provide advantages in optogenetic studies by allowing for the restricted expression of opsins through cell-specific promoters and various viral serotypes. The article also examines different cellular targets for optogenetics, including neurons, astrocytes, microglia, and Schwann cells. Utilizing specific promoters for opsin expression in these cells is essential for achieving precise and efficient stimulation. Research has demonstrated that optogenetic stimulation of both neurons and glial cells-particularly the distinct phenotypes of microglia, astrocytes, and Schwann cells-can have therapeutic effects in neurological diseases. Glial cells are increasingly recognized as important targets for the treatment of these disorders. Furthermore, the article emphasizes the emerging field of bioluminescent optogenetics, which combines optogenetic principles with bioluminescent proteins to visualize and manipulate neural activity in real time. By integrating molecular genetics techniques with bioluminescence, researchers have developed methods to monitor neuronal activity efficiently and less invasively, enhancing our understanding of central nervous system function and the mechanisms of plasticity in neurological disorders beyond traditional neurobiological methods. Evidence has shown that optogenetic modulation can enhance motor axon regeneration, achieve complete sensory reinnervation, and accelerate the recovery of neuromuscular function. This approach also induces complex patterns of coordinated motor neuron activity and promotes neural reorganization. Optogenetic approaches hold immense potential for therapeutic interventions in the central nervous system. They enable precise control of neural circuits and may offer new treatments for neurological disorders, particularly spinal cord injuries, peripheral nerve injuries, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Davletshin Eldar
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sufianov Albert
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Research and Educational Institute of Neurosurgery, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Ageeva Tatyana
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sufianova Galina
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Rizvanov Albert
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Mukhamedshina Yana
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
2
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Tian F, Liu Y, Chen M, Schriver KE, Roe AW. Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI. CELL REPORTS METHODS 2025; 5:100961. [PMID: 39874948 PMCID: PMC11840946 DOI: 10.1016/j.crmeth.2024.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) "moving dot" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yipeng Liu
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Meixuan Chen
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kenneth Edward Schriver
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
4
|
Villamarin-Ortiz A, Reiche CF, Federer F, Clark AM, Rolston JD, Soto-Sánchez C, Fernandez E, Blair S, Angelucci A. Cortical Response to Acute Implantation of the Utah Optrode Array in Macaque Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632843. [PMID: 39868287 PMCID: PMC11761502 DOI: 10.1101/2025.01.13.632843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in vivo in NHP cortex, the Utah Optrode Array (UOA). This is a 10×10 array of penetrating glass shanks, tiling a 4×4mm 2 area, bonded to interleaved needle-aligned and interstitial µLED arrays, which allows for independent photostimulation of deep and superficial brain tissue. Here, we investigate the acute biological response to UOA implantation in NHP cortex, with the goal of optimizing device design for reduced insertion trauma and subsequent chronic response. To this goal, we systematically vary UOA shank diameter, surface texture, tip geometry, and insertion pressure, and assess their effects on astrocytes, microglia, and neuronal viability, following acute implantation. We find that UOAs with shanks of smaller diameter, smooth surface texture and round tips cause the least damage. Higher insertion pressures have limited effects on the inflammatory response, but lead to greater tissue compression. Our results highlight the importance of balancing shank diameter, tip geometry, and insertion pressure in UOA design for preserving tissue integrity and improving long-term UOA performance and biocompatibility.
Collapse
|
5
|
Berling D, Baroni L, Chaffiol A, Gauvain G, Picaud S, Antolík J. Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner. J Neurosci 2024; 44:e1215242024. [PMID: 39424369 PMCID: PMC11622177 DOI: 10.1523/jneurosci.1215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024] Open
Abstract
Single-photon optogenetics enables precise, cell-type-specific modulation of neuronal circuits, making it a crucial tool in neuroscience. Its miniaturization in the form of fully implantable wide-field stimulator arrays enables long-term interrogation of cortical circuits and bears promise for brain-machine interfaces for sensory and motor function restoration. However, achieving selective activation of functional cortical representations poses a challenge, as studies show that targeted optogenetic stimulation results in activity spread beyond one functional domain. While recurrent network mechanisms contribute to activity spread, here we demonstrate with detailed simulations of isolated pyramidal neurons from cats of unknown sex that already neuron morphology causes a complex spread of optogenetic activity at the scale of one cortical column. Since the shape of a neuron impacts its optogenetic response, we find that a single stimulator at the cortical surface recruits a complex spatial distribution of neurons that can be inhomogeneous and vary with stimulation intensity and neuronal morphology across layers. We explore strategies to enhance stimulation precision, finding that optimizing stimulator optics may offer more significant improvements than the preferentially somatic expression of the opsin through genetic targeting. Our results indicate that, with the right optical setup, single-photon optogenetics can precisely activate isolated neurons at the scale of functional cortical domains spanning several hundred micrometers.
Collapse
Affiliation(s)
- David Berling
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| | - Luca Baroni
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| | | | - Gregory Gauvain
- Institut de la Vision, Sorbonne Université, Paris 75012, France
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris 75012, France
| | - Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Prague 118 00, Czechia
| |
Collapse
|
6
|
Fan X, Shi J, Chen Y, Miao G, Jiang H, Song H. A Comprehensive Review of Group-III Nitride Light-Emitting Diodes: From Millimeter to Micro-Nanometer Scales. MICROMACHINES 2024; 15:1188. [PMID: 39459062 PMCID: PMC11509752 DOI: 10.3390/mi15101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024]
Abstract
This review describes the development history of group-III nitride light-emitting diodes (LEDs) for over 30 years, which has achieved brilliant achievements and changed people's lifestyles. The development process of group-III nitride LEDs is the sum of challenges and solutions constantly encountered with shrinking size. Therefore, this paper uses these challenges and solutions as clues for review. It begins with reviewing the development of group-III nitride materials and substrates. On this basis, some key technological breakthroughs in the development of group-III nitride LEDs are reviewed, mainly including substrate pretreatment and p-type doping in material growth, the proposal of new device structures such as nano-LED and quantum dot (QD) LED, and the improvement in luminous efficiency, from the initial challenge of high-efficiency blue luminescence to current challenge of high-efficiency ultraviolet (UV) and red luminescence. Then, the development of micro-LEDs based on group-III nitride LEDs is reviewed in detail. As a new type of display device, micro-LED has drawn a great deal of attention and has become a research hotspot in the current international display area. Finally, based on micro-LEDs, the development trend of nano-LEDs is proposed, which is greener and energy-saving and is expected to become a new star in the future display field.
Collapse
Affiliation(s)
- Xinye Fan
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Jiawang Shi
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiren Chen
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Guoqing Miao
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hong Jiang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hang Song
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
7
|
Bray IE, Clarke SE, Casey KM, Nuyujukian P. Neuroelectrophysiology-compatible electrolytic lesioning. eLife 2024; 12:RP84385. [PMID: 39259198 PMCID: PMC11390112 DOI: 10.7554/elife.84385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Lesion studies have historically been instrumental for establishing causal connections between brain and behavior. They stand to provide additional insight if integrated with multielectrode techniques common in systems neuroscience. Here, we present and test a platform for creating electrolytic lesions through chronically implanted, intracortical multielectrode probes without compromising the ability to acquire neuroelectrophysiology. A custom-built current source provides stable current and allows for controlled, repeatable lesions in awake-behaving animals. Performance of this novel lesioning technique was validated using histology from ex vivo and in vivo testing, current and voltage traces from the device, and measurements of spiking activity before and after lesioning. This electrolytic lesioning method avoids disruptive procedures, provides millimeter precision over the extent and submillimeter precision over the location of the injury, and permits electrophysiological recording of single-unit activity from the remaining neuronal population after lesioning. This technique can be used in many areas of cortex, in several species, and theoretically with any multielectrode probe. The low-cost, external lesioning device can also easily be adopted into an existing electrophysiology recording setup. This technique is expected to enable future causal investigations of the recorded neuronal population's role in neuronal circuit function, while simultaneously providing new insight into local reorganization after neuron loss.
Collapse
Affiliation(s)
- Iliana E Bray
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
| | - Stephen E Clarke
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford UniversityStanfordUnited States
| | - Paul Nuyujukian
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Neurosurgery, Stanford UniversityStanfordUnited States
- Wu Tsai Neuroscience Institute, Stanford UniversityStanfordUnited States
- Bio-X, Stanford UniversityStanfordUnited States
| |
Collapse
|
8
|
Kar K, DiCarlo JJ. The Quest for an Integrated Set of Neural Mechanisms Underlying Object Recognition in Primates. Annu Rev Vis Sci 2024; 10:91-121. [PMID: 38950431 DOI: 10.1146/annurev-vision-112823-030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Inferences made about objects via vision, such as rapid and accurate categorization, are core to primate cognition despite the algorithmic challenge posed by varying viewpoints and scenes. Until recently, the brain mechanisms that support these capabilities were deeply mysterious. However, over the past decade, this scientific mystery has been illuminated by the discovery and development of brain-inspired, image-computable, artificial neural network (ANN) systems that rival primates in these behavioral feats. Apart from fundamentally changing the landscape of artificial intelligence, modified versions of these ANN systems are the current leading scientific hypotheses of an integrated set of mechanisms in the primate ventral visual stream that support core object recognition. What separates brain-mapped versions of these systems from prior conceptual models is that they are sensory computable, mechanistic, anatomically referenced, and testable (SMART). In this article, we review and provide perspective on the brain mechanisms addressed by the current leading SMART models. We review their empirical brain and behavioral alignment successes and failures, discuss the next frontiers for an even more accurate mechanistic understanding, and outline the likely applications.
Collapse
Affiliation(s)
- Kohitij Kar
- Department of Biology, Centre for Vision Research, and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario, Canada;
| | - James J DiCarlo
- Department of Brain and Cognitive Sciences, MIT Quest for Intelligence, and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
9
|
McAlinden N, Reiche CF, Clark AM, Scharf R, Cheng Y, Sharma R, Rieth L, Dawson MD, Angelucci A, Mathieson K, Blair S. In vivooptogenetics using a Utah Optrode Array with enhanced light output and spatial selectivity. J Neural Eng 2024; 21:046051. [PMID: 39084245 DOI: 10.1088/1741-2552/ad69c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective.Optogenetics allows the manipulation of neural circuitsin vivowith high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models).Approach.Here, we have developed, optimised, and testedin vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181μLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies.Main results.Thinning the combinedμLED and needle backplane of the device from 300μm to 230μm improved the efficiency of light delivery to tissue by 80%, allowing lowerμLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1 °C. The device was testedin vivoin the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons.Significance.It was shown that the UOA produced the strongest optogenetic response in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling-demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential activity.
Collapse
Affiliation(s)
- Niall McAlinden
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Christopher F Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Andrew M Clark
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Robert Scharf
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Yunzhou Cheng
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Rohit Sharma
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Loren Rieth
- Department of Mechanical, Materials and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Martin D Dawson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Keith Mathieson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
10
|
Gou S, Yang S, Cheng Y, Yang S, Liu H, Li P, Du Z. Applications of 2D Nanomaterials in Neural Interface. Int J Mol Sci 2024; 25:8615. [PMID: 39201302 PMCID: PMC11354839 DOI: 10.3390/ijms25168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neural interfaces are crucial conduits between neural tissues and external devices, enabling the recording and modulation of neural activity. However, with increasing demand, simple neural interfaces are no longer adequate to meet the requirements for precision, functionality, and safety. There are three main challenges in fabricating advanced neural interfaces: sensitivity, heat management, and biocompatibility. The electrical, chemical, and optical properties of 2D nanomaterials enhance the sensitivity of various types of neural interfaces, while the newly developed interfaces do not exhibit adverse reactions in terms of heat management and biocompatibility. Additionally, 2D nanomaterials can further improve the functionality of these interfaces, including magnetic resonance imaging (MRI) compatibility, stretchability, and drug delivery. In this review, we examine the recent applications of 2D nanomaterials in neural interfaces, focusing on their contributions to enhancing performance and functionality. Finally, we summarize the advantages and disadvantages of these nanomaterials, analyze the importance of biocompatibility testing for 2D nanomaterials, and propose that improving and developing composite material structures to enhance interface performance will continue to lead the forefront of this field.
Collapse
Affiliation(s)
- Shuchun Gou
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Siyi Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yuhang Cheng
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shu Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hongli Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou 510642, China;
| | - Peixuan Li
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhanhong Du
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
11
|
Griggs DJ, Bloch J, Stanis N, Zhou J, Fisher S, Jahanian H, Yazdan-Shahmorad A. A large-scale optogenetic neurophysiology platform for improving accessibility in NHP behavioral experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600719. [PMID: 38979206 PMCID: PMC11230395 DOI: 10.1101/2024.06.25.600719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Optogenetics has been a powerful scientific tool for two decades, yet its integration with non-human primate (NHP) electrophysiology has been limited due to several technical challenges. These include a lack of electrode arrays capable of supporting large-scale and long-term optical access, inaccessible viral vector delivery methods for transfection of large regions of cortex, a paucity of hardware designed for large-scale patterned cortical illumination, and inflexible designs for multi-modal experimentation. To address these gaps, we introduce a highly accessible platform integrating optogenetics and electrophysiology for behavioral and neural modulation with neurophysiological recording in NHPs. We employed this platform in two rhesus macaques and showcased its capability of optogenetically disrupting reaches, while simultaneously monitoring ongoing electrocorticography activity underlying the stimulation-induced behavioral changes. The platform exhibits long-term stability and functionality, thereby facilitating large-scale electrophysiology, optical imaging, and optogenetics over months, which is crucial for translationally relevant multi-modal studies of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devon J Griggs
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | - Julien Bloch
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Noah Stanis
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Jasmine Zhou
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Shawn Fisher
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | | | - Azadeh Yazdan-Shahmorad
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
- Weill Neurohub
| |
Collapse
|
12
|
Lu Q, Sun Y, Liang Z, Zhang Y, Wang Z, Mei Q. Nano-optogenetics for Disease Therapies. ACS NANO 2024; 18:14123-14144. [PMID: 38768091 DOI: 10.1021/acsnano.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
13
|
Cui Y, Sun M, Liu C, Deng Y. All-inorganic ultrathin high-sensitivity transparent temperature sensor based on a Mn-Co-Ni-O nanofilm. MICROSYSTEMS & NANOENGINEERING 2024; 10:70. [PMID: 38803351 PMCID: PMC11128445 DOI: 10.1038/s41378-024-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
The demand for optically transparent temperature sensors in intelligent devices is increasing. However, the performance of these sensors, particularly in terms of their sensitivity and resolution, must be further enhanced. This study introduces a novel transparent and highly sensitive temperature sensor characterized by its ultrathin, freestanding design based on a Mn-Co-Ni-O nanofilm. The Mn-Co-Ni-O-based sensor exhibits remarkable sensitivity, with a temperature coefficient of resistance of -4% °C-1, and can detect minuscule temperature fluctuations as small as 0.03 °C. Additionally, the freestanding sensor can be transferred onto any substrate for versatile application while maintaining robust structural stability and excellent resistance to interference, indicating its suitability for operation in challenging environments. Its practical utility in monitoring the surface temperature of optical devices is demonstrated through vertical integration of the sensor and a micro light-emitting diode on a polyimide substrate. Moreover, an experiment in which the sensor is implanted in rats confirms its favorable biocompatibility, highlighting the promising applications of the sensor in the biomedical domain.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| |
Collapse
|
14
|
Li Y, Chen Z, Liu Y, Liu Z, Wu T, Zhang Y, Peng L, Huang X, Huang S, Lin X, Xie X, Jiang L. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices. Natl Sci Rev 2024; 11:nwae062. [PMID: 38628571 PMCID: PMC11020258 DOI: 10.1093/nsr/nwae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
The limited lifespan of batteries is a challenge in the application of implantable electronic devices. Existing wireless power technologies such as ultrasound, near-infrared light and magnetic fields cannot charge devices implanted in deep tissues, resulting in energy attenuation through tissues and thermal generation. Herein, an ultra-low frequency magnetic energy focusing (ULFMEF) methodology was developed for the highly effective wireless powering of deep-tissue implantable devices. A portable transmitter was used to output the low-frequency magnetic field (<50 Hz), which remotely drives the synchronous rotation of a magnetic core integrated within the pellet-like implantable device, generating an internal rotating magnetic field to induce wireless electricity on the coupled coils of the device. The ULFMEF can achieve energy transfer across thick tissues (up to 20 cm) with excellent transferred power (4-15 mW) and non-heat effects in tissues, which is remarkably superior to existing wireless powering technologies. The ULFMEF is demonstrated to wirelessly power implantable micro-LED devices for optogenetic neuromodulation, and wirelessly charged an implantable battery for programmable electrical stimulation on the sciatic nerve. It also bypassed thick and tough protective shells to power the implanted devices. The ULFMEF thus offers a highly advanced methodology for the generation of wireless powered biodevices.
Collapse
Affiliation(s)
- Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zijian Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
15
|
Tchoe Y, Wu T, U HS, Roth DM, Kim D, Lee J, Cleary DR, Pizarro P, Tonsfeldt KJ, Lee K, Chen PC, Bourhis AM, Galton I, Coughlin B, Yang JC, Paulk AC, Halgren E, Cash SS, Dayeh SA. An electroencephalogram microdisplay to visualize neuronal activity on the brain surface. Sci Transl Med 2024; 16:eadj7257. [PMID: 38657026 PMCID: PMC11093107 DOI: 10.1126/scitranslmed.adj7257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Functional mapping during brain surgery is applied to define brain areas that control critical functions and cannot be removed. Currently, these procedures rely on verbal interactions between the neurosurgeon and electrophysiologist, which can be time-consuming. In addition, the electrode grids that are used to measure brain activity and to identify the boundaries of pathological versus functional brain regions have low resolution and limited conformity to the brain surface. Here, we present the development of an intracranial electroencephalogram (iEEG)-microdisplay that consists of freestanding arrays of 2048 GaN light-emitting diodes laminated on the back of micro-electrocorticography electrode grids. With a series of proof-of-concept experiments in rats and pigs, we demonstrate that these iEEG-microdisplays allowed us to perform real-time iEEG recordings and display cortical activities by spatially corresponding light patterns on the surface of the brain in the surgical field. Furthermore, iEEG-microdisplays allowed us to identify and display cortical landmarks and pathological activities from rat and pig models. Using a dual-color iEEG-microdisplay, we demonstrated coregistration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The iEEG-microdisplay holds promise to facilitate monitoring of pathological brain activity in clinical settings.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Tianhai Wu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David M Roth
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dongwoo Kim
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for the Future of Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patricia Pizarro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurological Surgery, Oregon Health & Science University, Mail code CH8N, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Po Chun Chen
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ian Galton
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Coughlin
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurological Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Halgren
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Shahbazi E, Ma T, Pernuš M, Scheirer W, Afraz A. Perceptography unveils the causal contribution of inferior temporal cortex to visual perception. Nat Commun 2024; 15:3347. [PMID: 38637553 PMCID: PMC11026389 DOI: 10.1038/s41467-024-47356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Neurons in the inferotemporal (IT) cortex respond selectively to complex visual features, implying their role in object perception. However, perception is subjective and cannot be read out from neural responses; thus, bridging the causal gap between neural activity and perception demands independent characterization of perception. Historically, though, the complexity of the perceptual alterations induced by artificial stimulation of IT cortex has rendered them impossible to quantify. To address this old problem, we tasked male macaque monkeys to detect and report optical impulses delivered to their IT cortex. Combining machine learning with high-throughput behavioral optogenetics, we generated complex and highly specific images that were hard for the animal to distinguish from the state of being cortically stimulated. These images, named "perceptograms" for the first time, reveal and depict the contents of the complex hallucinatory percepts induced by local neural perturbation in IT cortex. Furthermore, we found that the nature and magnitude of these hallucinations highly depend on concurrent visual input, stimulation location, and intensity. Objective characterization of stimulation-induced perceptual events opens the door to developing a mechanistic theory of visual perception. Further, it enables us to make better visual prosthetic devices and gain a greater understanding of visual hallucinations in mental disorders.
Collapse
Affiliation(s)
- Elia Shahbazi
- National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Timothy Ma
- Center for Neural Science, New York University, New York, NY, USA
| | - Martin Pernuš
- Laboratory for Machine Intelligence (LMI), University of Ljubljana, Ljubljana, Slovenia
| | - Walter Scheirer
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Arash Afraz
- National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
McAlinden N, Reiche CF, Clark AM, Scharf R, Cheng Y, Sharma R, Rieth L, Dawson MD, Angelucci A, Mathieson K, Blair S. In vivo optogenetics using a Utah Optrode Array with enhanced light output and spatial selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585479. [PMID: 38562871 PMCID: PMC10983961 DOI: 10.1101/2024.03.18.585479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Optogenetics allows manipulation of neural circuits in vivo with high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models). Here, we have developed, optimised, and tested in vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181 µLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies. Thinning the combined µLED and needle backplane of the device from 300 µm to 230 µm improved the efficiency of light delivery to tissue by 80%, allowing lower µLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1°C. The device was tested in vivo in the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons. It was shown that the strongest optogenetic response occurred in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling - demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential (LFP) activity.
Collapse
|
18
|
Clark AM, Ingold A, Reiche CF, Cundy D, Balsor JL, Federer F, McAlinden N, Cheng Y, Rolston JD, Rieth L, Dawson MD, Mathieson K, Blair S, Angelucci A. An optrode array for spatiotemporally-precise large-scale optogenetic stimulation of deep cortical layers in non-human primates. Commun Biol 2024; 7:329. [PMID: 38485764 PMCID: PMC10940688 DOI: 10.1038/s42003-024-05984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Optogenetics has transformed studies of neural circuit function, but remains challenging to apply to non-human primates (NHPs). A major challenge is delivering intense, spatiotemporally-precise, patterned photostimulation across large volumes in deep tissue. Such stimulation is critical, for example, to modulate selectively deep-layer corticocortical feedback circuits. To address this need, we have developed the Utah Optrode Array (UOA), a 10×10 glass needle waveguide array fabricated atop a novel opaque optical interposer, and bonded to an electrically addressable µLED array. In vivo experiments with the UOA demonstrated large-scale, spatiotemporally precise, activation of deep circuits in NHP cortex. Specifically, the UOA permitted both focal (confined to single layers/columns), and widespread (multiple layers/columns) optogenetic activation of deep layer neurons, as assessed with multi-channel laminar electrode arrays, simply by varying the number of activated µLEDs and/or the irradiance. Thus, the UOA represents a powerful optoelectronic device for targeted manipulation of deep-layer circuits in NHP models.
Collapse
Affiliation(s)
- Andrew M Clark
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexander Ingold
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Christopher F Reiche
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Donald Cundy
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Justin L Balsor
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Niall McAlinden
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Yunzhou Cheng
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - John D Rolston
- Departments of Neurosurgery and Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loren Rieth
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin D Dawson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Keith Mathieson
- SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK
| | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
20
|
Qiao N, Ma L, Zhang Y, Wang L. Update on Nonhuman Primate Models of Brain Disease and Related Research Tools. Biomedicines 2023; 11:2516. [PMID: 37760957 PMCID: PMC10525665 DOI: 10.3390/biomedicines11092516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The aging of the population is an increasingly serious issue, and many age-related illnesses are on the rise. These illnesses pose a serious threat to the health and safety of elderly individuals and create a serious economic and social burden. Despite substantial research into the pathogenesis of these diseases, their etiology and pathogenesis remain unclear. In recent decades, rodent models have been used in attempts to elucidate these disorders, but such models fail to simulate the full range of symptoms. Nonhuman primates (NHPs) are the most ideal neuroscientific models for studying the human brain and are more functionally similar to humans because of their high genetic similarities and phenotypic characteristics in comparison with humans. Here, we review the literature examining typical NHP brain disease models, focusing on NHP models of common diseases such as dementia, Parkinson's disease, and epilepsy. We also explore the application of electroencephalography (EEG), magnetic resonance imaging (MRI), and optogenetic study methods on NHPs and neural circuits associated with cognitive impairment.
Collapse
Affiliation(s)
- Nan Qiao
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Yi Zhang
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Lifeng Wang
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| |
Collapse
|
21
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Tchoe Y, Wu T, U HS, Roth DM, Kim D, Lee J, Cleary DR, Pizarro P, Tonsfeldt KJ, Lee K, Chen PC, Bourhis AM, Galton I, Coughlin B, Yang JC, Paulk AC, Halgren E, Cash SS, Dayeh SA. The Brain Electroencephalogram Microdisplay for Precision Neurosurgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549735. [PMID: 37503216 PMCID: PMC10370209 DOI: 10.1101/2023.07.19.549735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6" diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (μLEDs) in polyimide substrates. We then laminated the μLED arrays on the back of micro-electrocorticography (μECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Tianhai Wu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - David M Roth
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Center for the Future of Surgery, Department of Surgery, University of California San Diego, La Jolla, California 92093, United States
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, United States
| | - Dongwoo Kim
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Neurological Surgery, Oregon Health & Science University, Mail code CH8N, 3303 SW Bond Avenue, Portland, Oregon 97239- 3098, United States
| | - Patricia Pizarro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Center for the Future of Surgery, Department of Surgery, University of California San Diego, La Jolla, California 92093, United States
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Po Chun Chen
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ian Galton
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Brian Coughlin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Neurological Surgery, Ohio State University, Columbus, Ohio 43210, United States
| | - Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eric Halgren
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| | - Sydney S Cash
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Kwan WC, Brunton EK, Begeng JM, Richardson RT, Ibbotson MR, Tong W. Timing is Everything: Stochastic Optogenetic Stimulation Reduces Adaptation in Retinal Ganglion Cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083106 DOI: 10.1109/embc40787.2023.10340849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Optogenetics gives us unprecedented power to investigate brain connectivity. The ability to activate neural circuits with single cell resolution and its ease of application has provided a wealth of knowledge in brain function. More recently, optogenetics has shown tremendous utility in prosthetics applications, including vision restoration for patients with retinitis pigmentosa. One of the disadvantages of optogenetics, however, is its poor temporal bandwidth, i.e. the cell's inability to fire at a rate that matches the optical stimulation rate at high frequencies (>30 Hz). This research proposes a new strategy to overcome the temporal limits of optogenetic stimulation. Using whole-cell current clamp recordings in mouse retinal ganglion cells expressing channelrhodopsin-2 (H134R variant), we observed that randomizing inter-pulse intervals can significantly increase a retinal ganglion cell's temporal response to high frequency stimulation.Clinical Relevance- A significant disadvantage of optogenetic stimulation is its poor temporal dynamics which prohibit its widespread use in retinal prosthetics. We have shown that randomizing the interval between stimulation pulses reduces adaptation in retinal ganglion cells. This stimulation strategy may contribute to new levels of functional restoration in therapeutics which incorporate optogenetics.
Collapse
|
24
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Cushnie AK, Tang W, Heilbronner SR. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int J Mol Sci 2023; 24:9083. [PMID: 37240428 PMCID: PMC10219092 DOI: 10.3390/ijms24109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Human neuroimaging has demonstrated the existence of large-scale functional networks in the cerebral cortex consisting of topographically distant brain regions with functionally correlated activity. The salience network (SN), which is involved in detecting salient stimuli and mediating inter-network communication, is a crucial functional network that is disrupted in addiction. Individuals with addiction display dysfunctional structural and functional connectivity of the SN. Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the relationship between the two, there are still many unknowns, and there are fundamental limitations to human neuroimaging studies. At the same time, advances in molecular and systems neuroscience techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing precision. Here, we describe attempts to translate human functional networks to nonhuman animals to uncover circuit-level mechanisms. To do this, we review the structural and functional connections of the salience network and its homology across species. We then describe the existing literature in which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate, both within and outside the context of addiction. Finally, we highlight key outstanding opportunities for mechanistic studies of the SN.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
| | - Wei Tang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207436. [PMID: 36929323 PMCID: PMC10190591 DOI: 10.1002/advs.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Indexed: 05/18/2023]
Abstract
Temporal-spatial precision has attracted increasing attention for the clinical intervention of neurological disorders (NDs) to mitigate adverse effects of traditional treatments and achieve point-of-care medicine. Inspiring steps forward in this field have been witnessed in recent years, giving the credit to multi-discipline efforts from neurobiology, bioengineering, chemical materials, artificial intelligence, and so on, exhibiting valuable clinical translation potential. In this review, the latest progress in advanced temporally-spatially precise clinical intervention is highlighted, including localized parenchyma drug delivery, precise neuromodulation, as well as biological signal detection to trigger closed-loop control. Their clinical potential in both central and peripheral nervous systems is illustrated meticulously related to typical diseases. The challenges relative to biosafety and scaled production as well as their future perspectives are also discussed in detail. Notably, these intelligent temporally-spatially precision intervention systems could lead the frontier in the near future, demonstrating significant clinical value to support billions of patients plagued with NDs.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Yusheng Gong
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Wei Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| |
Collapse
|
27
|
Ortiz-Rios M, Agayby B, Balezeau F, Haag M, Rima S, Cadena-Valencia J, Schmid MC. Optogenetic stimulation of the primary visual cortex drives activity in the visual association cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100087. [PMID: 37397814 PMCID: PMC10313868 DOI: 10.1016/j.crneur.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 07/04/2023] Open
Abstract
Developing optogenetic methods for research in non-human primates (NHP) is important for translational neuroscience and for delineating brain function with unprecedented specificity. Here we assess, in macaque monkeys, the selectivity by which optogenetic stimulation of the primary visual cortex (V1) drives the local laminar and widespread cortical connectivity related to visual perception. Towards this end, we transfected neurons with light-sensitive channelrhodopsin in dorsal V1. fMRI revealed that optogenetic stimulation of V1 using blue light at 40 Hz increased functional activity in the visual association cortex, including areas V2/V3, V4, motion-sensitive area MT and frontal eye fields, although nonspecific heating and eye movement contributions to this effect could not be ruled out. Neurophysiology and immunohistochemistry analyses confirmed optogenetic modulation of spiking activity and opsin expression with the strongest expression in layer 4-B in V1. Stimulating this pathway during a perceptual decision task effectively elicited a phosphene percept in the receptive field of the stimulated neurons in one monkey. Taken together, our findings demonstrate the great potential of optogenetic methods to drive the large-scale cortical circuits of the primate brain with high functional and spatial specificity.
Collapse
Affiliation(s)
- Michael Ortiz-Rios
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Functional Imaging Laboratory, Deutsches Primatenzentrum (DPZ), Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Beshoy Agayby
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fabien Balezeau
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcus Haag
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Samy Rima
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Jaime Cadena-Valencia
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Michael C. Schmid
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| |
Collapse
|
28
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
29
|
Angelucci A, Clark A, Ingold A, Reiche C, Cundy D, Balsor J, Federer F, McAlinden N, Cheng Y, Rolston J, Rieth L, Dawson M, Mathieson K, Blair S. An Optrode Array for Spatiotemporally Precise Large-Scale Optogenetic Stimulation of Deep Cortical Layers in Non-human Primates. RESEARCH SQUARE 2023:rs.3.rs-2322768. [PMID: 36909489 PMCID: PMC10002840 DOI: 10.21203/rs.3.rs-2322768/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Optogenetics has transformed studies of neural circuit function, but remains challenging to apply in non-human primates (NHPs). A major challenge is delivering intense and spatially precise patterned photostimulation across large volumes in deep tissue. Here, we have developed and validated the Utah Optrode Array (UOA) to meet this critical need. The UOA is a 10×10 glass waveguide array bonded to an electrically-addressable μLED array. In vivo electrophysiology and immediate early gene (c-fos) immunohistochemistry demonstrated the UOA allows for large-scale spatiotemporally precise neuromodulation of deep tissue in macaque primary visual cortex. Specifically, the UOA permits both focal (single layers or columns), and large-scale (across multiple layers or columns) photostimulation of deep cortical layers, simply by varying the number of simultaneously activated μLEDs and/or the light irradiance. These results establish the UOA as a powerful tool for studying targeted neural populations within single or across multiple deep layers in complex NHP circuits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John Rolston
- Brigham & Women's Hospital and Harvard Medical School
| | | | | | | | | |
Collapse
|
30
|
Azadi R, Bohn S, Lopez E, Lafer-Sousa R, Wang K, Eldridge MAG, Afraz A. Image-dependence of the detectability of optogenetic stimulation in macaque inferotemporal cortex. Curr Biol 2023; 33:581-588.e4. [PMID: 36610394 PMCID: PMC9905296 DOI: 10.1016/j.cub.2022.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/24/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Artificial activation of neurons in early visual areas induces perception of simple visual flashes.1,2 Accordingly, stimulation in high-level visual cortices is expected to induce perception of complex features.3,4 However, results from studies in human patients challenge this expectation. Stimulation rarely induces any detectable visual event, and never a complex one, in human subjects with closed eyes.2 Stimulation of the face-selective cortex in a human patient led to remarkable hallucinations only while the subject was looking at faces.5 In contrast, stimulations of color- and face-selective sites evoke notable hallucinations independent of the object being viewed.6 These anecdotal observations suggest that stimulation of high-level visual cortex can evoke perception of complex visual features, but these effects depend on the availability and content of visual input. In this study, we introduce a novel psychophysical task to systematically investigate characteristics of the perceptual events evoked by optogenetic stimulation of macaque inferior temporal (IT) cortex. We trained macaque monkeys to detect and report optogenetic impulses delivered to their IT cortices7,8,9 while holding fixation on object images. In a series of experiments, we show that detection of cortical stimulation is highly dependent on the choice of images presented to the eyes and it is most difficult when fixating on a blank screen. These findings suggest that optogenetic stimulation of high-level visual cortex results in easily detectable distortions of the concurrent contents of vision.
Collapse
Affiliation(s)
- Reza Azadi
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | - Simon Bohn
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lopez
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rosa Lafer-Sousa
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Karen Wang
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Belloir T, Montalgo-Vargo S, Ahmed Z, Griggs DJ, Fisher S, Brown T, Chamanzar M, Yazdan-Shahmorad A. Large-scale multimodal surface neural interfaces for primates. iScience 2023; 26:105866. [PMID: 36647381 PMCID: PMC9840154 DOI: 10.1016/j.isci.2022.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the function of neural circuits can help with the understanding of brain function and treating neurological disorders. Progress toward this goal relies on the development of chronically stable neural interfaces capable of recording and modulating neural circuits with high spatial and temporal precision across large areas of the brain. Advanced innovations in designing high-density neural interfaces for small animal models have enabled breakthrough discoveries in neuroscience research. Developing similar neurotechnology for larger animal models such as nonhuman primates (NHPs) is critical to gain significant insights for translation to humans, yet still it remains elusive due to the challenges in design, fabrication, and system-level integration of such devices. This review focuses on implantable surface neural interfaces with electrical and optical functionalities with emphasis on the required technological features to realize scalable multimodal and chronically stable implants to address the unique challenges associated with nonhuman primate studies.
Collapse
Affiliation(s)
- Tiphaine Belloir
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Sergio Montalgo-Vargo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Shawn Fisher
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Timothy Brown
- Department of Bioethics & Humanities, University of Washington, Seattle, WA, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. J Neurotrauma 2023. [PMID: 36305381 DOI: 10.1089/neu.2022.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. In particular, the emerging technique of optogenetics has exhibited promising therapeutic methods for CNS injuries. In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
Collapse
Affiliation(s)
- Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
33
|
Lafer-Sousa R, Wang K, Azadi R, Lopez E, Bohn S, Afraz A. Behavioral detectability of optogenetic stimulation of inferior temporal cortex varies with the size of concurrently viewed objects. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100063. [PMID: 36578652 PMCID: PMC9791129 DOI: 10.1016/j.crneur.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that macaque monkeys can behaviorally detect a subtle optogenetic impulse delivered to their inferior temporal (IT) cortex. We have also shown that the ability to detect the cortical stimulation impulse varies depending on some characteristics of the visual images viewed at the time of brain stimulation, revealing the visual nature of the perceptual events induced by stimulation of the IT cortex. Here we systematically studied the effect of the size of viewed objects on behavioral detectability of optogenetic stimulation of the central IT cortex. Surprisingly, we found that behavioral detection of the same optogenetic impulse highly varies with the size of the viewed object images. Reduction of the object size in four steps from 8 to 1 degree of visual angle significantly decreased detection performance. These results show that identical stimulation impulses delivered to the same neural population induce variable perceptual events depending on the mere size of the objects viewed at the time of brain stimulation.
Collapse
Affiliation(s)
- Rosa Lafer-Sousa
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Karen Wang
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Reza Azadi
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Emily Lopez
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Simon Bohn
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Griggs DJ, Garcia AD, Au WY, Ojemann WKS, Johnson AG, Ting JT, Buffalo EA, Yazdan-Shahmorad A. Improving the Efficacy and Accessibility of Intracranial Viral Vector Delivery in Non-Human Primates. Pharmaceutics 2022; 14:1435. [PMID: 35890331 PMCID: PMC9323200 DOI: 10.3390/pharmaceutics14071435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Non-human primates (NHPs) are precious resources for cutting-edge neuroscientific research, including large-scale viral vector-based experimentation such as optogenetics. We propose to improve surgical outcomes by enhancing the surgical preparation practices of convection-enhanced delivery (CED), which is an efficient viral vector infusion technique for large brains such as NHPs'. Here, we present both real-time and next-day MRI data of CED in the brains of ten NHPs, and we present a quantitative, inexpensive, and practical bench-side model of the in vivo CED data. Our bench-side model is composed of food coloring infused into a transparent agar phantom, and the spread of infusion is optically monitored over time. Our proposed method approximates CED infusions into the cortex, thalamus, medial temporal lobe, and caudate nucleus of NHPs, confirmed by MRI data acquired with either gadolinium-based or manganese-based contrast agents co-infused with optogenetic viral vectors. These methods and data serve to guide researchers and surgical team members in key surgical preparations for intracranial viral delivery using CED in NHPs, and thus improve expression targeting and efficacy and, as a result, reduce surgical risks.
Collapse
Affiliation(s)
- Devon J. Griggs
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA;
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
| | - Aaron D. Garcia
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Wing Yun Au
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (W.Y.A.); (W.K.S.O.)
| | - William K. S. Ojemann
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (W.Y.A.); (W.K.S.O.)
| | - Andrew Graham Johnson
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA;
- Bellevue School District, Bellevue, WA 98005, USA
| | - Jonathan T. Ting
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Elizabeth A. Buffalo
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA;
- Washington National Primate Research Center, Seattle, WA 98195, USA; (A.D.G.); (J.T.T.); (E.A.B.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; (W.Y.A.); (W.K.S.O.)
| |
Collapse
|
35
|
Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Adv Drug Deliv Rev 2022; 188:114419. [PMID: 35810884 DOI: 10.1016/j.addr.2022.114419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/24/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022]
Abstract
In the past decade, upconversion (UC) nanomaterials have been extensively investigated for the applications to photomedicines with their unique features including biocompatibility, near-infrared (NIR) to visible conversion, photostability, controllable emission bands, and facile multi-functionality. These characteristics of UC nanomaterials enable versatile light delivery for deep tissue biophotonic applications. Among various stimuli-responsive delivery systems, the light-responsive delivery process has been greatly advantageous to develop spatiotemporally controllable on-demand "smart" photonic medicines. UC nanomaterials are classified largely to two groups depending on the photon UC pathway and compositions: inorganic lanthanide-doped UC nanoparticles and organic triplet-triplet annihilation UC (TTA-UC) nanomaterials. Here, we review the current-state-of-art inorganic and organic UC nanomaterials for photo-medicinal applications including photothermal therapy (PTT), photodynamic therapy (PDT), photo-triggered chemo and gene therapy, multimodal immunotherapy, NIR mediated neuromodulations, and photochemical tissue bonding (PTB). We also discuss the future research direction of this field and the challenges for further clinical development.
Collapse
|
36
|
Gao X, Liu P, Yin Q, Wang H, Fu J, Hu F, Jiang Y, Zhu H, Wang Y. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system. COMMUNICATIONS ENGINEERING 2022; 1:16. [PMCID: PMC10956059 DOI: 10.1038/s44172-022-00016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 10/20/2024]
Abstract
Wireless technologies can be used to track and observe freely moving animals. InGaN/GaN light-emitting diodes (LEDs) allow for underwater optical wireless communication due to the small water attenuation in the blue-green spectrum region. GaN-based quantum well diodes can also harvest and detect light. Here, we report a monolithic GaN optoelectronic system (MGOS) that integrates an energy harvester, LED and SiO2/TiO2 distributed Bragg reflector (DBR) into a single chip. The DBR serves as waterproof layer as well as optical filter. The waterproof MGOS can operate in boiling water and ice without external interconnect circuits. The units transform coded information from an external light source into electrical energy and directly activate the LEDs for illumination and relaying light information. We demonstrate that our MGOS chips, when attached to Carassius auratus fish freely swimming in a water tank, simultaneously conduct wireless energy harvesting and light communication. Our devices could be useful for tracking, observation and interacting with aquatic animals. Xumin Gao and colleagues report a robust and waterproof monolithic GaN optoelectronic chip that integrates an energy harvester, light emitting diode and Bragg reflector. The units transform external light into electrical energy and directly activate the integrated LEDs even when attached to freely swimming Carassius auratus fish.
Collapse
Affiliation(s)
- Xumin Gao
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Pengzhan Liu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Qingxi Yin
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hao Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Jianwei Fu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Fangren Hu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yuan Jiang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hongbo Zhu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yongjin Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| |
Collapse
|
37
|
Griggs DJ, Bloch J, Fisher S, Ojemann WKS, Coubrough KM, Khateeb K, Chu M, Yazdan-Shahmorad A. Demonstration of an Optimized Large-scale Optogenetic Cortical Interface for Non-human Primates. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3081-3084. [PMID: 36086548 DOI: 10.1109/embc48229.2022.9871332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Optogenetics is a powerful neuroscientific tool which allows neurons to be modulated by optical stimulation. Despite widespread optogenetic experimentation in small animal models, optogenetics in non-human primates (NHPs) remains a niche field, particularly at the large scales necessary for multi-regional neural research. We previously published a large-scale, chronic optogenetic cortical interface for NHPs which was successful but came with a number of limitations. In this work, we present an optimized interface which improves upon the stability and scale of our previous interface while using more easily replicable methods to increase our system's availability to the scientific community. Specifically, we (1) demonstrate the long-term (~3 months) optical access to the brain achievable using a commercially-available transparent artificial dura with embedded electrodes, (2) showcase large-scale optogenetic expression achievable with simplified (magnetic resonance-free) surgical techniques, and (3) effectively modulated the expressing areas at large scales (~1 cm2) by light emitting diode (LED) arrays assembled in-house.
Collapse
|
38
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
39
|
Chen W, Li C, Liang W, Li Y, Zou Z, Xie Y, Liao Y, Yu L, Lin Q, Huang M, Li Z, Zhu X. The Roles of Optogenetics and Technology in Neurobiology: A Review. Front Aging Neurosci 2022; 14:867863. [PMID: 35517048 PMCID: PMC9063564 DOI: 10.3389/fnagi.2022.867863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Optogenetic is a technique that combines optics and genetics to control specific neurons. This technique usually uses adenoviruses that encode photosensitive protein. The adenovirus may concentrate in a specific neural region. By shining light on the target nerve region, the photosensitive protein encoded by the adenovirus is controlled. Photosensitive proteins controlled by light can selectively allow ions inside and outside the cell membrane to pass through, resulting in inhibition or activation effects. Due to the high precision and minimally invasive, optogenetics has achieved good results in many fields, especially in the field of neuron functions and neural circuits. Significant advances have also been made in the study of many clinical diseases. This review focuses on the research of optogenetics in the field of neurobiology. These include how to use optogenetics to control nerve cells, study neural circuits, and treat diseases by changing the state of neurons. We hoped that this review will give a comprehensive understanding of the progress of optogenetics in the field of neurobiology.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Wanmin Liang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunqi Li
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zhuoheng Zou
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunxuan Xie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yangzeng Liao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Lin Yu
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Meiying Huang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
40
|
Bianco M, Pisanello M, Balena A, Montinaro C, Pisano F, Spagnolo B, Sabatini BL, De Vittorio M, Pisanello F. Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue. APL PHOTONICS 2022; 7:026106. [PMID: 35224188 PMCID: PMC8865573 DOI: 10.1063/5.0073594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The field of implantable optical neural interfaces has recently enabled the interrogation of neural circuitry with both cell-type specificity and spatial resolution in sub-cortical structures of the mouse brain. This generated the need to integrate multiple optical channels within the same implantable device, motivating the requirement of multiplexing and demultiplexing techniques. In this article, we present an orthogonalization method of the far-field space to introduce mode-division demultiplexing for collecting fluorescence from the implantable tapered optical fibers. This is achieved by exploiting the correlation between the transversal wavevector k t of the guided light and the position of the fluorescent sources along the implant, an intrinsic property of the taper waveguide. On these bases, we define a basis of orthogonal vectors in the Fourier space, each of which is associated with a depth along the taper, to simultaneously detect and demultiplex the collected signal when the probe is implanted in fixed mouse brain tissue. Our approach complements the existing multiplexing techniques used in silicon-based photonics probes with the advantage of a significant simplification of the probe itself.
Collapse
Affiliation(s)
- Marco Bianco
- Author to whom correspondence should be addressed:
| | - Marco Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy
| | | | - Filippo Pisano
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy
| | - Bernardo L. Sabatini
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | | | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, Arnesano, 73010 Lecce, Italy
| |
Collapse
|
41
|
Provansal M, Marazova K, Sahel JA, Picaud S. Vision Restoration by Optogenetic Therapy and Developments Toward Sonogenetic Therapy. Transl Vis Sci Technol 2022; 11:18. [PMID: 35024784 PMCID: PMC8762673 DOI: 10.1167/tvst.11.1.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
After revolutionizing neuroscience, optogenetic therapy has entered successfully in clinical trials for restoring vision to blind people with degenerative eye diseases, such as retinitis pigmentosa. These clinical trials still have to evaluate the visual acuity achieved by patients and to determine if it reaches its theoretical limit extrapolated from ex vivo experiments. Different strategies are developed in parallel to reduce required light levels and improve information processing by targeting various cell types. For patients with vision loss due to optic atrophy, as in the case of glaucoma, optogenetic cortical stimulation is hampered by light absorption and scattering by the brain tissue. By contrast, ultrasound waves can diffuse widely through the dura mater and the brain tissue as indicated by ultrasound imaging. Based on our recent results in rodents, we propose the sonogenetic therapy relying on activation of the mechanosensitive channel as a very promising vision restoration strategy with a suitable spatiotemporal resolution. Genomic approaches may thus provide efficient brain machine interfaces for sight restoration.
Collapse
Affiliation(s)
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Centre Hospitalier National d'Ophtalmologie des XV-XX, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
42
|
Ahmed Z, Reddy JW, Malekoshoaraie MH, Hassanzade V, Kimukin I, Jain V, Chamanzar M. Flexible optoelectric neural interfaces. Curr Opin Biotechnol 2021; 72:121-130. [PMID: 34826682 PMCID: PMC9741731 DOI: 10.1016/j.copbio.2021.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Understanding the neural basis of brain function and dysfunction and designing effective therapeutics require high resolution targeted stimulation and recording of neural activity. Optical methods have been recently developed for neural stimulation as well as functional and structural imaging. These methods call for implantable devices to deliver light into the neural tissue at depth with high spatiotemporal resolution. To address this need, rigid and flexible neurophotonic implants have been recently designed. This article reviews the state-of-the-art flexible passive and active penetrating optical neural probes developed for light delivery with minimal damage to the tissue. Passive and active flexible neurophotonic implants are compared and insights about future directions are provided.
Collapse
Affiliation(s)
- Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Mohammad H Malekoshoaraie
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vahid Hassanzade
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ibrahim Kimukin
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|