1
|
Langeberg CJ, Szucs MJ, Sherlock ME, Vicens Q, Kieft JS. Tick-borne flavivirus exoribonuclease-resistant RNAs contain a double loop structure. Nat Commun 2025; 16:4515. [PMID: 40374626 PMCID: PMC12081666 DOI: 10.1038/s41467-025-59657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
Viruses from the Flaviviridae family contain human relevant pathogens that generate subgenomic noncoding RNAs during infection using structured exoribonuclease resistant RNAs (xrRNAs). These xrRNAs block progression of host cell's 5' to 3' exoribonucleases. The structures of several xrRNAs from mosquito-borne and insect-specific flaviviruses reveal a conserved fold in which a ring-like motif encircles the 5' end of the xrRNA. However, the xrRNAs found in tick-borne and no known vector flaviviruses have distinct characteristics, and their 3-D fold was unsolved. Here, we verify the presence of xrRNAs in the encephalitis-causing tick-borne Powassan Virus. We characterize their secondary structure and obtain a mid-resolution map of one of these xrRNAs using cryo-EM, revealing a unique double-loop ring element. Integrating these results with covariation analysis, biochemical data, and existing high-resolution structural information yields a model in which the core of the fold matches the previously solved xrRNA fold, but the expanded double loop ring is remodeled upon encountering the exoribonuclease. These results are representative of a broad class of xrRNAs and reveal a conserved strategy of structure-based exoribonuclease resistance achieved through a unique topology across a viral family of importance to global health.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Matthew J Szucs
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- New York Structural Biology Center, New York, NY, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- New York Structural Biology Center, New York, NY, USA.
| |
Collapse
|
2
|
Liu T, Xu L, Chung K, Sisto LJ, Hwang J, Zhang C, Van Zandt MC, Pyle AM. Molecular insights into de novo small-molecule recognition by an intron RNA structure. Proc Natl Acad Sci U S A 2025; 122:e2502425122. [PMID: 40339124 PMCID: PMC12088405 DOI: 10.1073/pnas.2502425122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/01/2025] [Indexed: 05/10/2025] Open
Abstract
Despite the promise of vastly expanding the druggable genome, rational design of RNA-targeting ligands remains challenging as it requires the rapid identification of hits and visualization of the resulting cocomplexes for guiding optimization. Here, we leveraged high-throughput screening, medicinal chemistry, and structural biology to identify a de novo splicing inhibitor against a large and highly folded fungal group I intron. High-resolution cryoEM structures of the intron in different liganded states not only reveal molecular interactions that rationalize experimental structure-activity relationship but also shed light on a unique strategy whereby RNA-associated metal ions and RNA conformation exhibit exceptional plasticity in response to small-molecule binding. This study reveals general principles that govern RNA-ligand recognition, the interplay between chemical bonding specificity, and dynamic responses within an RNA target.
Collapse
Affiliation(s)
- Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Ling Xu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- HHMI, Chevy Chase, MD 20815
| | - Kevin Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Luke J Sisto
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- New England Discovery Partners, Branford, CT 06405
| | - Jimin Hwang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Chengxin Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | | | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- HHMI, Chevy Chase, MD 20815
- Department of Chemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
3
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Biela AD, Nowak JS, Biela AP, Mukherjee S, Moafinejad SN, Maiti S, Chramiec-Głąbik A, Mehta R, Jeżowski J, Dobosz D, Dahate P, Arluison V, Wien F, Indyka P, Rawski M, Bujnicki JM, Lin TY, Glatt S. Determining the effects of pseudouridine incorporation on human tRNAs. EMBO J 2025:10.1038/s44318-025-00443-y. [PMID: 40301665 DOI: 10.1038/s44318-025-00443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
Transfer RNAs (tRNAs) are ubiquitous non-coding RNA molecules required to translate mRNA-encoded sequence information into nascent polypeptide chains. Their relatively small size and heterogenous patterns of their RNA modifications have impeded the systematic structural characterization of individual tRNAs. Here, we use single-particle cryo-EM to determine the structures of four human tRNAs before and after incorporation of pseudouridines (Ψ). Following post-transcriptional modifications by distinct combinations of human pseudouridine synthases, we find that tRNAs become stabilized and undergo specific local structural changes. We establish interactions between the D- and T-arms as the key linchpin in the tertiary structure of tRNAs. Our structures of human tRNAs highlight the vast potential of cryo-EM combined with biophysical measurements and computational simulations for structure-function analyses of tRNAs and other small, folded RNA domains.
Collapse
Affiliation(s)
- Anna D Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Seyed Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Satyabrata Maiti
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | | | - Rahul Mehta
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Krakow, Poland
| | - Jakub Jeżowski
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Dominika Dobosz
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Priyanka Dahate
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Veronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du vivant, 75006, Paris, Cedex, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Paulina Indyka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392, Krakow, Poland
| | - Michal Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392, Krakow, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland.
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
- Department of Biosciences, Durham University, DH1 3LE, Durham, UK.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
- University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
5
|
Kretsch RC, Li S, Pintilie G, Palo MZ, Case DA, Das R, Zhang K, Chiu W. Complex water networks visualized by cryogenic electron microscopy of RNA. Nature 2025:10.1038/s41586-025-08855-w. [PMID: 40068818 DOI: 10.1038/s41586-025-08855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The stability and function of biomolecules are directly influenced by their myriad interactions with water1-16. Here we investigated water through cryogenic electron microscopy (cryo-EM) on a highly solvated molecule: the Tetrahymena ribozyme. By using segmentation-guided water and ion modelling (SWIM)17,18, an approach combining resolvability and chemical parameters, we automatically modelled and cross-validated water molecules and Mg2+ ions in the ribozyme core, revealing the extensive involvement of water in mediating RNA non-canonical interactions. Unexpectedly, in regions where SWIM does not model ordered water, we observed highly similar densities in both cryo-EM maps. In many of these regions, the cryo-EM densities superimpose with complex water networks predicted by molecular dynamics, supporting their assignment as water and suggesting a biophysical explanation for their elusiveness to conventional atomic coordinate modelling. Our study demonstrates an approach to unveil both rigid and flexible waters that surround biomolecules through cryo-EM map densities, statistical and chemical metrics, and molecular dynamics simulations.
Collapse
Affiliation(s)
- Rachael C Kretsch
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Grigore Pintilie
- Department of Bioengineering and James Clark Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering and James Clark Center, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
6
|
Liu ZX, Liu JJG. Hydrolytic endonucleolytic ribozyme (HYER): Systematic identification, characterization and potential application in nucleic acid manipulation. Methods Enzymol 2025; 712:197-223. [PMID: 40121073 DOI: 10.1016/bs.mie.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Group II introns are transposable elements that can propagate in host genomes through the "copy and paste" mechanism. They usually comprise RNA and protein components for effective propagation. Recently, we found that some bacterial GII-C introns without protein components had multiple copies in their resident genomes, implicating their potential transposition activity. We demonstrated that some of these systems are active for hydrolytic DNA cleavage and proved their DNA manipulation capability in bacterial or mammalian cells. These introns are therefore named HYdrolytic Endonucleolytic Ribozymes (HYERs). Here, we provide a detailed protocol for the systematic identification and characterization of HYERs and present our perspectives on its potential application in nucleic acid manipulation.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Beijing Frontier Research Center for Biological Structure, Center of Synthetic and Systems Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| | - Jun-Jie Gogo Liu
- Beijing Frontier Research Center for Biological Structure, Center of Synthetic and Systems Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| |
Collapse
|
7
|
Kretsch RC, Li S, Pintilie G, Palo MZ, Case DA, Das R, Zhang K, Chiu W. Complex Water Networks Visualized through 2.2-2.3 Å Cryogenic Electron Microscopy of RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634578. [PMID: 39896454 PMCID: PMC11785237 DOI: 10.1101/2025.01.23.634578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The stability and function of biomolecules are directly influenced by their myriad interactions with water. In this study, we investigated water through cryogenic electron microscopy (cryo-EM) on a highly solvated molecule, the Tetrahymena ribozyme, determined at 2.2 and 2.3 Å resolutions. By employing segmentation-guided water and ion modeling (SWIM), an approach combining resolvability and chemical parameters, we automatically modeled and cross-validated water molecules and Mg2+ ions in the ribozyme core, revealing the extensive involvement of water in mediating RNA non-canonical interactions. Unexpectedly, in regions where SWIM does not model ordered water, we observed highly similar densities in both cryo-EM maps. In many of these regions, the cryo-EM densities superimpose with complex water networks predicted by molecular dynamics (MD), supporting their assignment as water and suggesting a biophysical explanation for their elusiveness to conventional atomic coordinate modeling. Our study demonstrates an approach to unveil both rigid and flexible waters that surround biomolecules through cryo-EM map densities, statistical and chemical metrics, and MD simulations.
Collapse
Affiliation(s)
| | - Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Grigore Pintilie
- Department of Bioengineering and James Clark Center, Stanford University School of Medicine, CA USA
| | - Michael Z. Palo
- Department of Structural Biology, Stanford University School of Medicine, CA USA
| | - David A. Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, CA USA
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, CA USA
- Department of Bioengineering and James Clark Center, Stanford University School of Medicine, CA USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| |
Collapse
|
8
|
Haack DB, Rudolfs B, Jin S, Khitun A, Weeks KM, Toor N. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. Nat Commun 2025; 16:880. [PMID: 39837824 PMCID: PMC11751092 DOI: 10.1038/s41467-024-55699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA. We demonstrate this technology by determining the structures of the 86-nucleotide (nt) thiamine pyrophosphate (TPP) riboswitch aptamer domain and the recently described 210-nt raiA bacterial non-coding RNA involved in sporulation and biofilm formation. In the case of the TPP riboswitch aptamer domain, the scaffolding approach allowed visualization of the riboswitch ligand binding pocket at 2.5 Å resolution. We also determined the structure of the ligand-free apo state and observe that the aptamer domain of the riboswitch adopts an open Y-shaped conformation in the absence of ligand. Using this scaffold approach, we determined the structure of raiA at 2.5 Å in the core. Our versatile scaffolding strategy enables efficient RNA structure determination for a broad range of small to moderate-sized RNAs, which were previously intractable for high-resolution cryo-EM studies.
Collapse
Affiliation(s)
- Daniel B Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Shouhong Jin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Alexandra Khitun
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
9
|
Li T, He J, Cao H, Zhang Y, Chen J, Xiao Y, Huang SY. All-atom RNA structure determination from cryo-EM maps. Nat Biotechnol 2025; 43:97-105. [PMID: 38396075 DOI: 10.1038/s41587-024-02149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Many methods exist for determining protein structures from cryogenic electron microscopy maps, but this remains challenging for RNA structures. Here we developed EMRNA, a method for accurate, automated determination of full-length all-atom RNA structures from cryogenic electron microscopy maps. EMRNA integrates deep learning-based detection of nucleotides, three-dimensional backbone tracing and scoring with consideration of sequence and secondary structure information, and full-atom construction of the RNA structure. We validated EMRNA on 140 diverse RNA maps ranging from 37 to 423 nt at 2.0-6.0 Å resolutions, and compared EMRNA with auto-DRRAFTER, phenix.map_to_model and CryoREAD on a set of 71 cases. EMRNA achieves a median accuracy of 2.36 Å root mean square deviation and 0.86 TM-score for full-length RNA structures, compared with 6.66 Å and 0.58 for auto-DRRAFTER. EMRNA also obtains a high residue coverage and sequence match of 93.30% and 95.30% in the built models, compared with 58.20% and 42.20% for phenix.map_to_model and 56.45% and 52.3% for CryoREAD. EMRNA is fast and can build an RNA structure of 100 nt within 3 min.
Collapse
Affiliation(s)
- Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Chen
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Shen T, Hu Z, Sun S, Liu D, Wong F, Wang J, Chen J, Wang Y, Hong L, Xiao J, Zheng L, Krishnamoorthi T, King I, Wang S, Yin P, Collins JJ, Li Y. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat Methods 2024; 21:2287-2298. [PMID: 39572716 PMCID: PMC11621015 DOI: 10.1038/s41592-024-02487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Collapse
Affiliation(s)
- Tao Shen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| | - Felix Wong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- OneAIM Ltd, Hong Kong SAR, China
| | - Jiayang Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jin Xiao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tejas Krishnamoorthi
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China.
- Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
11
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
12
|
Li T, Cao H, He J, Huang SY. Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps. Nat Commun 2024; 15:9367. [PMID: 39477926 PMCID: PMC11525807 DOI: 10.1038/s41467-024-53721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) is one of the most powerful experimental methods for macromolecular structure determination. However, accurate DNA/RNA structure modeling from cryo-EM maps is still challenging especially for protein-DNA/RNA or multi-chain DNA/RNA complexes. Here we propose a deep learning-based method for accurate de novo structure determination of DNA/RNA from cryo-EM maps at <5 Å resolutions, which is referred to as EM2NA. EM2NA is extensively evaluated on a diverse test set of 50 experimental maps at 2.0-5.0 Å resolutions, and compared with state-of-the-art methods including CryoREAD, ModelAngelo, and phenix.map_to_model. On average, EM2NA achieves a residue coverage of 83.15%, C4' RMSD of 1.06 Å, and sequence recall of 46.86%, which outperforms the existing methods. Moreover, EM2NA is applied to build the DNA/RNA structures with 10 to 5347 nt from an EMDB-wide data set of 263 unmodeled raw maps, demonstrating its ability in the blind model building of DNA/RNA from cryo-EM maps. EM2NA is fast and can normally build a DNA/RNA structure of <500 nt within 10 minutes.
Collapse
Affiliation(s)
- Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Cao
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Stagno JR, Wang YX. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Int J Mol Sci 2024; 25:10682. [PMID: 39409011 PMCID: PMC11477058 DOI: 10.3390/ijms251910682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices. Generally speaking, a riboswitch consists of a ligand-sensing aptamer domain and an expression platform, whose genetic control is achieved through the formation of mutually exclusive secondary structures in a ligand-dependent manner. For most riboswitches, this involves formation of the aptamer's P1 helix and the regulation of its stability, whose competing structure turns gene expression ON/OFF at the level of transcription or translation. Structural knowledge of the conformational changes involving the P1 regulatory helix, therefore, is essential in understanding the structural basis for ligand-induced conformational switching. This review provides a summary of riboswitch cases for which ligand-free and ligand-bound structures have been determined. Comparative analyses of these structures illustrate the uniqueness of these riboswitches, not only in ligand sensing but also in the various structural mechanisms used to achieve the same end of regulating switch helix stability. In all cases, the ligand stabilizes the P1 helix primarily through coaxial stacking interactions that promote helical continuity.
Collapse
Affiliation(s)
- Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | | |
Collapse
|
14
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Bonilla SL, Jang K. Challenges, advances, and opportunities in RNA structural biology by Cryo-EM. Curr Opin Struct Biol 2024; 88:102894. [PMID: 39121532 DOI: 10.1016/j.sbi.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
RNAs are remarkably versatile molecules that can fold into intricate three-dimensional (3D) structures to perform diverse cellular and viral functions. Despite their biological importance, relatively few RNA 3D structures have been solved, and our understanding of RNA structure-function relationships remains in its infancy. This limitation partly arises from challenges posed by RNA's complex conformational landscape, characterized by structural flexibility, formation of multiple states, and a propensity to misfold. Recently, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for the visualization of conformationally dynamic RNA-only 3D structures. However, RNA's characteristics continue to pose challenges. We discuss experimental methods developed to overcome these hurdles, including the engineering of modular modifications that facilitate the visualization of small RNAs, improve particle alignment, and validate structural models.
Collapse
Affiliation(s)
- Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, NY, 10065, USA.
| | - Karen Jang
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
16
|
Bonilla SL, Jones AN, Incarnato D. Structural and biophysical dissection of RNA conformational ensembles. Curr Opin Struct Biol 2024; 88:102908. [PMID: 39146886 DOI: 10.1016/j.sbi.2024.102908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.
Collapse
Affiliation(s)
- Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| | - Alisha N Jones
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
Qi S, Wang H, Liu G, Qin Q, Gao P, Ying B. Efficient circularization of protein-encoding RNAs via a novel cis-splicing system. Nucleic Acids Res 2024; 52:10400-10415. [PMID: 39162233 PMCID: PMC11417360 DOI: 10.1093/nar/gkae711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as a promising alternative to linear mRNA, owing to their unique properties and potential therapeutic applications, driving the development of novel approaches for their production. This study introduces a cis-splicing system that efficiently produces circRNAs by incorporating a ribozyme core at one end of the precursor, thereby eliminating the need for additional spacer elements between the ribozyme and the gene of interest (GOI). In this cis-splicing system, sequences resembling homologous arms at both ends of the precursor are crucial for forming the P9.0 duplex, which in turn facilitates effective self-splicing and circularization. We demonstrate that the precise recognition of the second transesterification site depends more on the structural characteristics of P9.0 adjacent to the ωG position than on the nucleotide composition of the P9.0-ωG itself. Further optimization of structural elements, like P10 and P1-ex, significantly improves circularization efficiency. The circRNAs generated through the cis-splicing system exhibit prolonged protein expression and minimal activation of the innate immune response. This study provides a comprehensive exploration of circRNA generation via a novel strategy and offers valuable insights into the structural engineering of RNA, paving the way for future advancements in circRNA-based applications.
Collapse
Affiliation(s)
- Shaojun Qi
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Huiming Wang
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Guopeng Liu
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Qianshan Qin
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Peng Gao
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Bo Ying
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| |
Collapse
|
18
|
Haack DB, Rudolfs B, Jin S, Weeks KM, Toor N. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598011. [PMID: 38915706 PMCID: PMC11195047 DOI: 10.1101/2024.06.10.598011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA, which we demonstrate with the 86-nucleotide thiamine pyrophosphate (TPP) riboswitch, and visualizing the riboswitch ligand binding pocket at 2.5 Å resolution. We also determined the structure of the ligand-free apo state and observe that the aptamer domain of the riboswitch undergoes a large-scale conformational change upon ligand binding, illustrating how small molecule binding to an RNA can induce large effects on gene expression. This study both sets a new standard for cryo-EM riboswitch visualization and offers a versatile strategy applicable to a broad range of small to moderate-sized RNAs, which were previously intractable for high-resolution cryo-EM studies.
Collapse
Affiliation(s)
- Daniel B. Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Shouhong Jin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| |
Collapse
|
19
|
Langeberg CJ, Kieft JS. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res 2023; 51:e100. [PMID: 37791881 PMCID: PMC10639074 DOI: 10.1093/nar/gkad784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules (≤50 kDa) remain challenging targets due to their intrinsic low signal to noise ratio. Methods to help resolve small proteins have been applied but development of similar approaches to aid in structural determination of small, structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5-5.0 Å. While lacking the detail of true high-resolution maps, these maps are suitable for model building and preliminary structure determination. We demonstrate this method helped faithfully recover the structure of several RNA elements of known structure, and that it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a robust system to aid in RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
20
|
Ding J, Deme J, Stagno JR, Yu P, Lea S, Wang YX. Capturing heterogeneous conformers of cobalamin riboswitch by cryo-EM. Nucleic Acids Res 2023; 51:9952-9960. [PMID: 37534568 PMCID: PMC10570017 DOI: 10.1093/nar/gkad651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.
Collapse
Affiliation(s)
- Jienyu Ding
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein–Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
22
|
Langeberg CJ, Kieft JS. A Generalizable Scaffold-Based Approach for Structure Determination of RNAs by Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547879. [PMID: 37461535 PMCID: PMC10350027 DOI: 10.1101/2023.07.06.547879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules remain challenging targets due to their intrinsic low signal to noise ratio. Methods to resolve small proteins have been applied but development of similar approaches for small structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5 - 5.0 Å. While lacking the detail of true high-resolution maps, these are suitable for model building and preliminary structure determination. We demonstrate this method faithfully recovers the structure of several RNA elements of known structure, and it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a system for RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
|
23
|
McRae EKS, Rasmussen HØ, Liu J, Bøggild A, Nguyen MTA, Sampedro Vallina N, Boesen T, Pedersen JS, Ren G, Geary C, Andersen ES. Structure, folding and flexibility of co-transcriptional RNA origami. NATURE NANOTECHNOLOGY 2023; 18:808-817. [PMID: 36849548 PMCID: PMC10566746 DOI: 10.1038/s41565-023-01321-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
RNA origami is a method for designing RNA nanostructures that can self-assemble through co-transcriptional folding with applications in nanomedicine and synthetic biology. However, to advance the method further, an improved understanding of RNA structural properties and folding principles is required. Here we use cryogenic electron microscopy to study RNA origami sheets and bundles at sub-nanometre resolution revealing structural parameters of kissing-loop and crossover motifs, which are used to improve designs. In RNA bundle designs, we discover a kinetic folding trap that forms during folding and is only released after 10 h. Exploration of the conformational landscape of several RNA designs reveal the flexibility of helices and structural motifs. Finally, sheets and bundles are combined to construct a multidomain satellite shape, which is characterized by individual-particle cryo-electron tomography to reveal the domain flexibility. Together, the study provides a structural basis for future improvements to the design cycle of genetically encoded RNA nanodevices.
Collapse
Affiliation(s)
- Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Helena Østergaard Rasmussen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Michael T A Nguyen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Li S, Palo MZ, Zhang X, Pintilie G, Zhang K. Snapshots of the second-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM. Nat Commun 2023; 14:1294. [PMID: 36928031 PMCID: PMC10020454 DOI: 10.1038/s41467-023-36724-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Group I introns are catalytic RNAs that coordinate two consecutive transesterification reactions for self-splicing. To understand how the group I intron promotes catalysis and coordinates self-splicing reactions, we determine the structures of L-16 Tetrahymena ribozyme in complex with a 5'-splice site analog product and a 3'-splice site analog substrate using cryo-EM. We solve six conformations from a single specimen, corresponding to different splicing intermediates after the first ester-transfer reaction. The structures reveal dynamics during self-splicing, including large conformational changes of the internal guide sequence and the J5/4 junction as well as subtle rearrangements of active-site metals and the hydrogen bond formed between the 2'-OH group of A261 and the N2 group of guanosine substrate. These results help complete a detailed structural and mechanistic view of this paradigmatic group I intron undergoing the second step of self-splicing.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Michael Z Palo
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Xiaojing Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
25
|
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov 2023; 18:207-226. [PMID: 36322542 DOI: 10.1080/17460441.2022.2134852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The field of RNA-targeted small molecules is rapidly evolving, owing to the advances in experimental and computational technologies. With the identification of several bioactive small molecules that target RNA, including the FDA-approved risdiplam, the biopharmaceutical industry is gaining confidence in the field. This review, based on the literature obtained from PubMed, aims to disseminate information about the various technologies developed for targeting RNA with small molecules and propose areas for improvement to develop drugs more efficiently, particularly those linked to diseases with unmet medical needs. AREAS COVERED The technologies for the identification of RNA targets, screening of chemical libraries against RNA, assessing the bioactivity and target engagement of the hit compounds, structure determination, and hit-to-lead optimization are reviewed. Along with the description of the technologies, their strengths, limitations, and examples of how they can impact drug discovery are provided. EXPERT OPINION Many existing technologies employed for protein targets have been repurposed for use in the discovery of RNA-targeted small molecules. In addition, technologies tailored for RNA targets have been developed. Nevertheless, more improvements are necessary, such as artificial intelligence to dissect important RNA structures and RNA-small-molecule interactions and more powerful chemical probing and structure prediction techniques.
Collapse
|
26
|
Abstract
Nucleic-acid nanostructures, which have been designed and constructed with atomic precision, have been used as scaffolds for different molecules and proteins, as nanomachines, as computational components, and more. In particular, RNA has garnered tremendous interest as a building block for the self-assembly of sophisticated and functional nanostructures by virtue of its ease of synthesis by in vivo or in vitro transcription, its superior mechanical and thermodynamic properties, and its functional roles in nature. In this Topical Review, we describe recent developments in the use of RNA for the design and construction of nanostructures. We discuss the differences between RNA and DNA that make RNA attractive as a building block for the construction of nucleic-acid nanostructures, and we present the uses of different nanostructures─RNA alone, RNA-DNA, and functional RNA nanostructures.
Collapse
Affiliation(s)
- Ofer I Wilner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Zhang D, Hermann T. Metalated Nucleic Acid Nanostructures. Methods Mol Biol 2023; 2709:97-103. [PMID: 37572274 DOI: 10.1007/978-1-0716-3417-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Nucleic acid nanotechnology takes advantage of the self-assembling property of nucleic acids to form a variety of shapes and structures. The incorporation of metal ions into these structures introduces functionality for sensor and molecular electronic applications. Here, we describe a protocol for the incorporation of silver ions into polygonal nanoshapes that self-assemble from RNA and DNA modules.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
- Center for Drug Discovery Innovation, University of California, San Diego, CA, USA.
- Program in Materials Science and Engineering, University of California, San Diego, CA, USA.
| |
Collapse
|
28
|
Lu B, Vecchioni S, Ohayon YP, Canary JW, Sha R. The wending rhombus: Self-assembling 3D DNA crystals. Biophys J 2022; 121:4759-4765. [PMID: 36004779 PMCID: PMC9808540 DOI: 10.1016/j.bpj.2022.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, New York
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, New York
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York
| | - James W Canary
- Department of Chemistry, New York University, New York, New York.
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York.
| |
Collapse
|
29
|
Elonen A, Natarajan AK, Kawamata I, Oesinghaus L, Mohammed A, Seitsonen J, Suzuki Y, Simmel FC, Kuzyk A, Orponen P. Algorithmic Design of 3D Wireframe RNA Polyhedra. ACS NANO 2022; 16:16608-16616. [PMID: 36178116 PMCID: PMC9620399 DOI: 10.1021/acsnano.2c06035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
We address the problem of de novo design and synthesis of nucleic acid nanostructures, a challenge that has been considered in the area of DNA nanotechnology since the 1980s and more recently in the area of RNA nanotechnology. Toward this goal, we introduce a general algorithmic design process and software pipeline for rendering 3D wireframe polyhedral nanostructures in single-stranded RNA. To initiate the pipeline, the user creates a model of the desired polyhedron using standard 3D graphic design software. As its output, the pipeline produces an RNA nucleotide sequence whose corresponding RNA primary structure can be transcribed from a DNA template and folded in the laboratory. As case examples, we design and characterize experimentally three 3D RNA nanostructures: a tetrahedron, a triangular bipyramid, and a triangular prism. The design software is openly available and also provides an export of the targeted 3D structure into the oxDNA molecular dynamics simulator for easy simulation and visualization.
Collapse
Affiliation(s)
- Antti Elonen
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
| | | | - Ibuki Kawamata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Natural
Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Lukas Oesinghaus
- Physics
Department E14, Technical University Munich, 85748 Garching, Germany
| | - Abdulmelik Mohammed
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
- Department
of Biomedical Engineering, San José
State University, San José, California 95192, United States
| | - Jani Seitsonen
- Department
of Applied Physics and Nanomicroscopy Center, Aalto University, 00076 Aalto, Finland
| | - Yuki Suzuki
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan
- Division
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Friedrich C. Simmel
- Physics
Department E14, Technical University Munich, 85748 Garching, Germany
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Pekka Orponen
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
30
|
Westhof E. Data, data, burning deep, in the forests of the net. Biochem Biophys Res Commun 2022; 633:42-44. [DOI: 10.1016/j.bbrc.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
|
31
|
Bonilla SL, Vicens Q, Kieft JS. Cryo-EM reveals an entangled kinetic trap in the folding of a catalytic RNA. SCIENCE ADVANCES 2022; 8:eabq4144. [PMID: 36026457 PMCID: PMC9417180 DOI: 10.1126/sciadv.abq4144] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
Functional RNAs fold through complex pathways that can contain misfolded "kinetic traps." A complete model of RNA folding requires understanding the formation of these misfolded states, but they are difficult to characterize because of their transient and potentially conformationally dynamic nature. We used cryo-electron microscopy (cryo-EM) to visualize a long-lived misfolded state in the folding pathway of the Tetrahymena thermophila group I intron, a paradigmatic RNA structure-function model system. The structure revealed how this state forms native-like secondary structure and tertiary contacts but contains two incorrectly crossed strands, consistent with a previous model. This incorrect topology mispositions a critical catalytic domain and cannot be resolved locally as extensive refolding is required. This work provides a structural framework for interpreting decades of biochemical and functional studies and demonstrates the power of cryo-EM for the exploration of RNA folding pathways.
Collapse
Affiliation(s)
- Steve L. Bonilla
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. J Biosci Bioeng 2022; 134:195-202. [PMID: 35810135 DOI: 10.1016/j.jbiosc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Naturally occurring ribozymes with defined three-dimensional (3D) structures serve as promising platforms for the design and construction of artificial RNA nanostructures. We constructed a hexameric ribozyme nanostructure by face-to-face dimerization of a pair of triangular ribozyme trimers, unit RNAs of which were derived from the Tetrahymena group I ribozyme. In this study, we have expanded the dimerization strategy to a square-shaped ribozyme tetramer by introducing four pillar units. The resulting box-shaped nanostructures, which contained eight ribozyme units, can be assembled from either four or two components of their unit RNAs.
Collapse
|