1
|
Lesch KP, Gorbunov N. Antisocial personality disorder:Failure to balance excitation/inhibition? Neuropharmacology 2025; 268:110321. [PMID: 39855295 DOI: 10.1016/j.neuropharm.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While healthy brain function relies on a dynamic but tightly regulated interaction between excitation (E) and inhibition (I), a spectrum of social cognition disorders, including antisocial behavior and antisocial personality disorder (ASPD), frequently ensuing from irregular neurodevelopment, may be associated with E/I imbalance and concomitant alterations in neural connectivity. Technological advances in the evaluation of structural and functional E/I balance proxies in clinical settings and in human cell culture models provide a general basis for identification of biomarkers providing a powerful concept for prevention and intervention across different dimensions of mental health and disease. In this perspective we outline a framework for research to characterize neurodevelopmental pathways to antisocial behavior and ASPD driven by (epi)genetic factors across life, and to identify molecular targets for preventing the detrimental effects of cognitive dysfunction and maladaptive social behavior, considering psychosocial experience; to validate signatures of E/I imbalance and altered myelination proxies as biomarkers of pathogenic neural circuitry mechanisms to determine etiological processes in the transition from mental health to antisocial behavior and ASPD and in the switch from prevention to treatment; to develop a neurobiologically-grounded integrative model of antisocial behavior and ASPD resultant of disrupted E/I balance, allowing to establish objective diagnoses and monitoring tools, to personalize prevention and therapeutic decisions, to predict treatment response, and thus counteract relapse; and finally, to promote transformation of dimensional disorder taxonomy and to enhance societal awareness and reception of the neurobiological basis of antisocial behavior and ASPD.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Child- and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Zamberletti E, Manenti C, Prini P, Gabaglio M, Grimaldi A, Pulze L, Grassi R, Rubino T. Perturbations of CB1 receptor signalling during adolescence impair cortical myelination in female rats. Pharmacol Res 2025; 216:107758. [PMID: 40306605 DOI: 10.1016/j.phrs.2025.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
The constant increase in cannabis use among adolescents raises concerns about its potential neurobehavioral effects. Adolescence is a critical period for brain development, involving significant changes in grey and white matter. Grey matter decreases as the brain undergoes synaptic pruning, while white matter increases due to myelination. Cannabis use during this developmental window, particularly its active ingredient delta-9-tetrahydrocannabinol (THC), may disrupt these processes, increasing the risk of developing psychiatric disorders later in life. While the impact of THC on grey matter has been explored, the specific role of CB1 receptors as well as the effect of THC exposure in adolescent myelination remain unclear. This study investigates how CB1 receptor blockade and THC exposure during adolescence affect myelination in the prefrontal cortex of female rats. Blocking CB1 receptors during adolescence hindered myelination in the prefrontal cortex. Behaviourally, this disruption in myelin formation was associated with increased risk-taking behaviour. Notably, our data suggest that alterations in the AKT/Hippo/YAP signalling pathway may play a crucial role in mediating these effects. Supporting the involvement of the endocannabinoid system in cortical myelination during adolescence, we found that administering exogenous THC impaired myelin formation only when given during early to mid-adolescence. Moreover, when a more intensive THC exposure protocol was applied during this developmental period, the effects on myelination were long-lasting and persisted into adulthood. Overall, these data support a role for CB1 receptors in shaping cortical myelination in adolescent female rats and show that adolescent exposure to THC might adversely impact this developmental process.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Cristina Manenti
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Annalisa Grimaldi
- Dept. of Biotechnology and Life Sciences (DBSV), Università degli Studi dell'Insubria, Varese, Italy
| | - Laura Pulze
- Dept. of Biotechnology and Life Sciences (DBSV), Università degli Studi dell'Insubria, Varese, Italy
| | - Riccardo Grassi
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, Università degli Studi dell'Insubria, Busto Arsizio, Italy.
| |
Collapse
|
3
|
Hu S, Wang Y, Wang X, Ji Y, Li C, Qiu B. Transcriptomic profiles link corticostriatal microarchitecture to genetics of neurodevelopment and neuropsychiatric risks. Transl Psychiatry 2025; 15:48. [PMID: 39934135 PMCID: PMC11814317 DOI: 10.1038/s41398-025-03260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Many studies on macroscale organization have focused on only the cerebral cortex or striatum, leaving a large gap in the microstructural gradient of corticostriatal covariance. Here, we partitioned the striatum into seven distinct parcels and computed the microstructural covariance between each parcel and the cerebral cortex using T1-weighted/T2-weighted mapping. We found that corticostriatal microstructural covariance exhibited a microstructural gradient along the anterior-posterior axis of the striatum. The patterns of corticostriatal microstructural covariance are linked to geodesic distance and cell type-specific gene expression profiles, revealing a gradually attenuated relationship along the anterior-posterior axis of the striatum. Linking gene expression profile to corticostriatal microstructural patterns showed that the transcriptional variations in cell type-specific genes are different between the anterior and posterior striatum and suggested that anterior striatum are more enriched in psychiatric disorders. Moreover, at the genetic level, the corticostriatal microarchitecture showed a spatiotemporal trait during neurodevelopment. Finally, we identified the neural circuits from limbic and medial frontal cortex to striatum that contributes to the common neuropsychiatric disorders. Collectively, our findings reveal spatially covarying of transcriptional specializations with microarchitecture of corticostriatal covariance, highlighting the mechanisms underlying that neurodevelopmental corticostriatal circuits may be involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sheng Hu
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, China
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanming Wang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoxiao Wang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Ji
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanfu Li
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Bensheng Qiu
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Wan B, Saberi A, Paquola C, Schaare HL, Hettwer MD, Royer J, John A, Dorfschmidt L, Bayrak Ş, Bethlehem RAI, Eickhoff SB, Bernhardt BC, Valk SL. Microstructural asymmetry in the human cortex. Nat Commun 2024; 15:10124. [PMID: 39578424 PMCID: PMC11584796 DOI: 10.1038/s41467-024-54243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The human cerebral cortex shows hemispheric asymmetry, yet the microstructural basis of this asymmetry remains incompletely understood. Here, we probe layer-specific microstructural asymmetry using one post-mortem male brain. Overall, anterior and posterior regions show leftward and rightward asymmetry respectively, but this pattern varies across cortical layers. A similar anterior-posterior pattern is observed using in vivo Human Connectome Project (N = 1101) T1w/T2w microstructural data, with average cortical asymmetry showing the strongest similarity with post-mortem-based asymmetry of layer III. Moreover, microstructural asymmetry is found to be heritable, varies as a function of age and sex, and corresponds to intrinsic functional asymmetry. We also observe a differential association of language and markers of mental health with microstructural asymmetry patterns at the individual level, illustrating a functional divergence between inferior-superior and anterior-posterior microstructural axes, possibly anchored in development. Last, we could show concordant evidence with alternative in vivo microstructural measures: magnetization transfer (N = 286) and quantitative T1 (N = 50). Together, our study highlights microstructural asymmetry in the human cortex and its functional and behavioral relevance.
Collapse
Grants
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Graduate Academy Leipzig, and Mitacs Globalink Research Award.
- German Ministry for Education and Research (BMBF) and the Max Planck Society
- National Science and Engineering Research Council of Canada (NSERC Discovery-1304413), Canadian Institutes of Health Research (FDN-154298, PJT-174995), SickKids Foundation (NI17-039), BrainCanada, FRQ-S, the Tier-2 Canada Research Chairs program, and Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL).
- Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) and Otto Hahn Award at Max Planck Society.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
| | - Amin Saberi
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - H Lina Schaare
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Meike D Hettwer
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Alexandra John
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Lena Dorfschmidt
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Şeyma Bayrak
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Scholz V, Waltmann M, Herzog N, Horstmann A, Deserno L. Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain. PLoS Biol 2024; 22:e3002877. [PMID: 39541313 PMCID: PMC11563475 DOI: 10.1371/journal.pbio.3002877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.
Collapse
Affiliation(s)
- Vanessa Scholz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nadine Herzog
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Psychiatry and Psychotherapy, Technical University Dresden, Dresden, Germany
| |
Collapse
|
6
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Zhu J, Garin CM, Qi XL, Machado A, Wang Z, Hamed SB, Stanford TR, Salinas E, Whitlow CT, Anderson AW, Zhou XM, Calabro FJ, Luna B, Constantinidis C. Brain structure and activity predicting cognitive maturation in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.608315. [PMID: 39229176 PMCID: PMC11370567 DOI: 10.1101/2024.08.23.608315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive abilities of primates, including humans, continue to improve through adolescence 1,2. While a range of changes in brain structure and connectivity have been documented 3,4, how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development. The developmental trajectory of neural activity in the prefrontal cortex accounted remarkably well for working memory improvements. While complex aspects of activity changed progressively during adolescence, such as the rotation of stimulus representation in multidimensional neuronal space, which has been implicated in cognitive flexibility, even simpler attributes, such as the baseline firing rate in the period preceding a stimulus appearance had predictive power over behavior. Unexpectedly, decreases in brain volume and thickness, which are widely thought to underlie cognitive changes in humans 5 did not predict well the trajectory of neural activity or cognitive performance changes. Whole brain cortical volume in particular, exhibited an increase and reached a local maximum in late adolescence, at a time of rapid behavioral improvement. Maturation of long-distance white matter tracts linking the frontal lobe with areas of the association cortex and subcortical regions best predicted changes in neuronal activity and behavior. Our results provide evidence that optimization of neural activity depending on widely distributed circuitry effects cognitive development in adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Clément M Garin
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Xue-Lian Qi
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Anna Machado
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Zhengyang Wang
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Terrence R Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
8
|
Guo D, Yao Y, Liu X, Han Y. Clemastine improves emotional and social deficits in adolescent social isolation mice by reversing demyelination. Pharmacol Biochem Behav 2024; 242:173824. [PMID: 39002803 DOI: 10.1016/j.pbb.2024.173824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Adolescence is a critical period for social experience-dependent oligodendrocyte maturation and myelination. Adolescent stress predisposes to cause irreversible changes in brain structure and function with lasting effects on adulthood or beyond. However, the molecular mechanisms linking adolescent social isolation stress with emotional and social competence remain largely unknown. In our study, we found that social isolation during adolescence leads to anxiety-like behaviors, depression-like behaviors, impaired social memory and altered patterns of social ultrasonic vocalizations in mice. In addition, adolescent social isolation stress induces demyelination in the prefrontal cortex and hippocampus of mice, with decreased myelin-related gene expression and disrupted myelin structure. More importantly, clemastine was sufficient to rescue the impairment of emotional and social memory by promoting remyelination. These findings reveal the demyelination mechanism of emotional and social deficits caused by social isolation stress in adolescence, and provides potential therapeutic targets for treating stress-related mental disorders.
Collapse
Affiliation(s)
- Dan Guo
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yuan Yao
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Xiumin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
9
|
Adams RA, Zor C, Mihalik A, Tsirlis K, Brudfors M, Chapman J, Ashburner J, Paulus MP, Mourão-Miranda J. Voxelwise Multivariate Analysis of Brain-Psychosocial Associations in Adolescents Reveals 6 Latent Dimensions of Cognition and Psychopathology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:915-927. [PMID: 38588854 DOI: 10.1016/j.bpsc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Adolescence heralds the onset of considerable psychopathology, which may be conceptualized as an emergence of altered covariation between symptoms and brain measures. Multivariate methods can detect such modes of covariation or latent dimensions, but none specifically relating to psychopathology have yet been found using population-level structural brain data. Using voxelwise (instead of parcellated) brain data may strengthen latent dimensions' brain-psychosocial relationships, but this creates computational challenges. METHODS We obtained voxelwise gray matter density and psychosocial variables from the baseline (ages 9-10 years) Adolescent Brain Cognitive Development (ABCD) Study cohort (N = 11,288) and employed a state-of-the-art segmentation method, sparse partial least squares, and a rigorous machine learning framework to prevent overfitting. RESULTS We found 6 latent dimensions, 4 of which pertain specifically to mental health. The mental health dimensions were related to overeating, anorexia/internalizing, oppositional symptoms (all ps < .002) and attention-deficit/hyperactivity disorder symptoms (p = .03). Attention-deficit/hyperactivity disorder was related to increased and internalizing symptoms related to decreased gray matter density in dopaminergic and serotonergic midbrain areas, whereas oppositional symptoms were related to increased gray matter in a noradrenergic nucleus. Internalizing symptoms were related to increased and oppositional symptoms to reduced gray matter density in the insular, cingulate, and auditory cortices. Striatal regions featured strongly, with reduced caudate nucleus gray matter in attention-deficit/hyperactivity disorder and reduced putamen gray matter in oppositional/conduct problems. Voxelwise gray matter density generated stronger brain-psychosocial correlations than brain parcellations. CONCLUSIONS Voxelwise brain data strengthen latent dimensions of brain-psychosocial covariation, and sparse multivariate methods increase their psychopathological specificity. Internalizing and externalizing symptoms are associated with opposite gray matter changes in similar cortical and subcortical areas.
Collapse
Affiliation(s)
- Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| | - Cemre Zor
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Konstantinos Tsirlis
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Mikael Brudfors
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
10
|
Hettwer MD, Dorfschmidt L, Puhlmann LMC, Jacob LM, Paquola C, Bethlehem RAI, Bullmore ET, Eickhoff SB, Valk SL. Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence. Nat Commun 2024; 15:6283. [PMID: 39075054 PMCID: PMC11286871 DOI: 10.1038/s41467-024-50292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Adolescence is a period of dynamic brain remodeling and susceptibility to psychiatric risk factors, mediated by the protracted consolidation of association cortices. Here, we investigated whether longitudinal variation in adolescents' resilience to psychosocial stressors during this vulnerable period is associated with ongoing myeloarchitectural maturation and consolidation of functional networks. We used repeated myelin-sensitive Magnetic Transfer (MT) and resting-state functional neuroimaging (n = 141), and captured adversity exposure by adverse life events, dysfunctional family settings, and socio-economic status at two timepoints, one to two years apart. Development toward more resilient psychosocial functioning was associated with increasing myelination in the anterolateral prefrontal cortex, which showed stabilized functional connectivity. Studying depth-specific intracortical MT profiles and the cortex-wide synchronization of myeloarchitectural maturation, we further observed wide-spread myeloarchitectural reconfiguration of association cortices paralleled by attenuated functional reorganization with increasingly resilient outcomes. Together, resilient/susceptible psychosocial functioning showed considerable intra-individual change associated with multi-modal cortical refinement processes at the local and system-level.
Collapse
Affiliation(s)
- Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lara M C Puhlmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Linda M Jacob
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | | | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
11
|
Weeland CJ, Vriend C, Tiemeier H, van den Heuvel OA, White T. The Longitudinal Relationship Between Brain Morphology and Obsessive-Compulsive Symptoms in Children From the General Population. JAACAP OPEN 2024; 2:126-134. [PMID: 39554206 PMCID: PMC11562553 DOI: 10.1016/j.jaacop.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 11/19/2024]
Abstract
Objective Cross-sectional studies in children with obsessive-compulsive disorder (OCD) have found larger thalamic volume, which is not found at later ages. We previously found that 9- to 12-year-old children from the general population with clinical-level obsessive-compulsive symptoms (OCS) also have a larger thalamus. Thus, using a longitudinal design, we studied the relationship among thalamic volume, cortical maturation, and the course of OCS. Method Children from the population-based Generation R Study underwent 1 or 2 (N = 2,552) magnetic resonance imaging (MRI) scans between the age of 9 and 16 years (baseline 9-12 years, follow-up 13-16 years). OCS were assessed with the Short Obsessive-Compulsive Disorder Screener (SOCS) questionnaire using both continuous and clinical cut-off measures to identify children with "probable OCD." We applied linear regression models to investigate the cross-sectional relationship between brain morphology and OCS at age 13 to 16 years. Linear mixed-effect models were fitted to model the bidirectional longitudinal relationship between thalamus and OCS and the thalamus and cortical morphology. Results Thalamic volume was not different between probable OCD cases and controls at age 13 to 16 years. Higher baseline thalamic volume predicted a relative persistence of OCS and a flatter slope of thinning in 12 cortical regions. Conclusion Larger thalamic volume may be a subtle biomarker for persistent OCS symptoms. The persistence of OCS and cortical thickness in relation to earlier larger thalamic volume may reflect being at an earlier stage in neurodevelopment. Longitudinal designs with repeated multimodal brain imaging are warranted to improve our understanding of the neurodevelopmental processes underlying OCS and OCD. Study preregistration information Relationship between obsessive-compulsive symptoms and brain morphology in school-aged children in the general population; https://osf.io/; y6vs2.
Collapse
Affiliation(s)
- Cees J. Weeland
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
- Erasmus University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chris Vriend
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | | | - Odile A. van den Heuvel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Muñoz-López L, Fernández-García-Valdecasas B, López-Rodríguez S, Sánchez-Barrera MB. Analysis of writing in personality disorders in prison population. Front Psychiatry 2024; 15:1391463. [PMID: 38855649 PMCID: PMC11157106 DOI: 10.3389/fpsyt.2024.1391463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Abstract Writing involves the activation of different processing modes than reading comprehension, and therefore the level of activation varies depending on the moment and the task. Objectives to analyze the profiles in terms of the proposed coding from the PROESC in terms of personality disorders [Antisocial Personality Disorder (ASPD) with drugs possession and consumption crimes (DPCC) and Obsessive-Compulsive Personality Disorder (OCPD)] with gender violence crimes (GVC) in the prisoners. Design The sample was composed of 194 men. The participants were divided into two groups. Group 1 (ASPD; DPCC) consisted of 81 men, and Group 2 (OCPD; GVC) consisted of 113 men. Main outcome measures They completed the Demographic, Offense, and Behavioral Interview in Institutions, the International Personality Disorders Examination (IPDE), and Writing Processes Evaluation Battery (PROESC). Results Group 2 made more mistake than Group 1 in narratives tasks. Conclusion Participants know phoneme-grapheme correspondence rules, language disturbances of a reiterative and persistent nature may appear in those who show compulsive behavior.
Collapse
Affiliation(s)
- Lucas Muñoz-López
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Education and Sports Sciences, University of Granada, Melilla, Spain
| | | | - Slava López-Rodríguez
- Department of Didactics of Language and Literature, University of Granada, Granada, Spain
| | - María Blanca Sánchez-Barrera
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Robbins TW, Banca P, Belin D. From compulsivity to compulsion: the neural basis of compulsive disorders. Nat Rev Neurosci 2024; 25:313-333. [PMID: 38594324 DOI: 10.1038/s41583-024-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Compulsive behaviour, an apparently irrational perseveration in often maladaptive acts, is a potential transdiagnostic symptom of several neuropsychiatric disorders, including obsessive-compulsive disorder and addiction, and may reflect the severe manifestation of a dimensional trait termed compulsivity. In this Review, we examine the psychological basis of compulsions and compulsivity and their underlying neural circuitry using evidence from human neuroimaging and animal models. Several main elements of this circuitry are identified, focused on fronto-striatal systems implicated in goal-directed behaviour and habits. These systems include the orbitofrontal, prefrontal, anterior cingulate and insular cortices and their connections with the basal ganglia as well as sensoriomotor and parietal cortices and cerebellum. We also consider the implications for future classification of impulsive-compulsive disorders and their treatment.
Collapse
Affiliation(s)
- Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Paula Banca
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
15
|
Muñoz-López L, Serrano F, López-Torrecillas MDC, Sánchez-Barrera MB, Martín I, López-Torrecillas F. Impulsive and compulsive reading comprehension in the prison population. BMC Psychiatry 2024; 24:45. [PMID: 38216979 PMCID: PMC10785498 DOI: 10.1186/s12888-023-05372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/10/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Developmental dyslexia is characterized by reading and writing deficits that persist into adulthood. Dyslexia is strongly associated with academic underachievement, as well as impulsive, compulsive, and criminal behaviors. The aims of this study were to investigate impulsive or compulsive reading comprehension, analyzing the differences in reading errors between two distinct groups -one with Antisocial Personality Disorder (ASPD) and another with Obsessive-Compulsive Personality Disorder (OCPD) and examine their correlation with criminal behavior within a prison population. METHODS We gathered data from 194 participants: 81 with ASPD and 113 with OCPD from a prison center. Participants took part in interviews to gather data on demographic, criminal, and behavioral data. Additionally, the participants underwent various assessments, including the International Examination for Personality Disorders; Symptom Inventory, and Battery for the Assessment of Reading Processes in Secondary and High School - Revised. RESULTS Our analysis revealed differences in reading skills between the ASPD and OCPD groups. Specifically, the OCPD group showed poorer performance on lexical selection, semantic categorization, grammar structures, grammatical judgements, and expository comprehension when compared with the ASPD group. Conversely, the OCPD group obtained higher scores on narrative comprehension relative to the ASPD group. CONCLUSIONS The OCPD group showed slow lexical-phonological coding and phonological activation.
Collapse
Affiliation(s)
- Lucas Muñoz-López
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Facultad de Psicología, University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain.
| | - Francisca Serrano
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Granada, Spain
| | | | - María Blasa Sánchez-Barrera
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Facultad de Psicología, University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Granada, Spain
| | - Ignacio Martín
- Departamento de Metodología de Las Ciencias del Comportamiento. Facultad de Psicología, University of Granada, Granada, Spain
| | - Francisca López-Torrecillas
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Facultad de Psicología, University of Granada, Campus de Cartuja S/N, 18071, Granada, Spain
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Reiter AMF, Hula A, Vanes L, Hauser TU, Kokorikou D, Goodyer IM, Fonagy P, Moutoussis M, Dolan RJ. Self-reported childhood family adversity is linked to an attenuated gain of trust during adolescence. Nat Commun 2023; 14:6920. [PMID: 37903767 PMCID: PMC10616102 DOI: 10.1038/s41467-023-41531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2023] [Indexed: 11/01/2023] Open
Abstract
A longstanding proposal in developmental research is that childhood family experiences provide a template that shapes a capacity for trust-based social relationships. We leveraged longitudinal data from a cohort of healthy adolescents (n = 570, aged 14-25), which included decision-making and psychometric data, to characterise normative developmental trajectories of trust behaviour and inter-individual differences therein. Extending on previous cross-sectional findings from the same cohort, we show that a task-based measure of trust increases longitudinally from adolescence into young adulthood. Computational modelling suggests this is due to a decrease in social risk aversion. Self-reported family adversity attenuates this developmental gain in trust behaviour, and within our computational model, this relates to a higher 'irritability' parameter in those reporting greater adversity. Unconditional trust at measurement time point T1 predicts the longitudinal trajectory of self-reported peer relation quality, particularly so for those with higher family adversity, consistent with trust acting as a resilience factor.
Collapse
Affiliation(s)
- Andrea M F Reiter
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Child and Adolescence Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- CRC Cognitive Control, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Andreas Hula
- Austrian Institute of Technology, Vienna, Austria
| | - Lucy Vanes
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Danae Kokorikou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Peter Fonagy
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Park I, Ha M, Kim T, Lho SK, Moon SY, Kim M, Kwon JS. Cortical gyrification differences between early- and late-onset obsessive-compulsive disorder: neurobiological evidence for neurodevelopmentally distinct subtypes. Psychol Med 2023; 53:5976-5985. [PMID: 36259417 PMCID: PMC10520599 DOI: 10.1017/s0033291722003129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Identifying more homogenous subtypes of patients with obsessive-compulsive disorder (OCD) using biological evidence is critical for understanding complexities of the disorder in this heterogeneous population. Age of onset serves as a useful subtyping scheme for distinguishing OCD into two subgroups that aligns with neurodevelopmental perspectives. The underlying neurobiological markers for these distinct neurodevelopmental differences can be identified by investigating gyrification changes to establish biological evidence-based homogeneous subtypes. METHODS We compared whole-brain cortical gyrification in 84 patients with early-onset OCD, 84 patients with late-onset OCD, and 152 healthy controls (HCs) to identify potential markers for early neurodevelopmental deficits using the local gyrification index (lGI). Then, the relationships between lGI in clusters showing significant differences and performance in visuospatial memory and verbal fluency, which are considered trait-related neurocognitive impairments in OCD, were further examined in early-onset OCD patients. RESULTS The early-onset OCD patients exhibited significantly greater gyrification than those with late-onset OCD patients and HCs in frontoparietal and cingulate regions, including the bilateral precentral, postcentral, precuneus, paracentral, posterior cingulate, superior frontal, and caudal anterior cingulate gyri. Moreover, impaired neurocognitive functions in early-onset OCD patients were correlated with increased gyrification. CONCLUSIONS Our findings provide a neurobiological marker to distinguish the OCD population into more neurodevelopmentally homogeneous subtypes, which may contribute to the understanding of the neurodevelopmental underpinnings of an etiology in early-onset OCD consistent with the accumulated phenotypic evidence of greater neurodevelopmental deficits in early-onset OCD than in late-onset OCD.
Collapse
Affiliation(s)
- Inkyung Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Psychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
18
|
Fritz FJ, Mordhorst L, Ashtarayeh M, Periquito J, Pohlmann A, Morawski M, Jaeger C, Niendorf T, Pine KJ, Callaghan MF, Weiskopf N, Mohammadi S. Fiber-orientation independent component of R 2* obtained from single-orientation MRI measurements in simulations and a post-mortem human optic chiasm. Front Neurosci 2023; 17:1133086. [PMID: 37694109 PMCID: PMC10491021 DOI: 10.3389/fnins.2023.1133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, β1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted β1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for β1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.
Collapse
Affiliation(s)
- Francisco J. Fritz
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurin Mordhorst
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Ashtarayeh
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Morawski
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jaeger
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerrin J. Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
19
|
Biria M, Banca P, Healy MP, Keser E, Sawiak SJ, Rodgers CT, Rua C, de Souza AMFLP, Marzuki AA, Sule A, Ersche KD, Robbins TW. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat Commun 2023; 14:3324. [PMID: 37369695 DOI: 10.1038/s41467-023-38695-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
There has been little analysis of neurochemical correlates of compulsive behaviour to illuminate its underlying neural mechanisms. We use 7-Tesla proton magnetic resonance spectroscopy (1H-MRS) to assess the balance of excitatory and inhibitory neurotransmission by measuring glutamate and GABA levels in anterior cingulate cortex (ACC) and supplementary motor area (SMA) of healthy volunteers and participants with Obsessive-Compulsive Disorder (OCD). Within the SMA, trait and clinical measures of compulsive behaviour are related to glutamate levels, whereas a behavioural index of habitual control correlates with the glutamate:GABA ratio. Participants with OCD also show the latter relationship in the ACC while exhibiting elevated glutamate and lower GABA levels in that region. This study highlights SMA mechanisms of habitual control relevant to compulsive behaviour, common to the healthy sub-clinical and OCD populations. The results also demonstrate additional involvement of anterior cingulate in the balance between goal-directed and habitual responding in OCD.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Máiréad P Healy
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Engin Keser
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Catarina Rua
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ana Maria Frota Lisbôa Pereira de Souza
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aleya A Marzuki
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
20
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Schaub AC, Vogel M, Lang UE, Kaiser S, Walter M, Herdener M, Wrege J, Kirschner M, Schmidt A. Transdiagnostic brain correlates of self-reported trait impulsivity: A dimensional structure-symptom investigation. Neuroimage Clin 2023; 38:103423. [PMID: 37137256 PMCID: PMC10176059 DOI: 10.1016/j.nicl.2023.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Impulsivity transcends psychiatric diagnoses and is often related to anhedonia. This ad hoc cross-sectional investigation explored 1) whether self-reported trait impulsivity mapped onto a common structural brain substrate across healthy controls (HCs) and psychiatric patients, and 2) in a more exploratory fashion, whether impulsivity and anhedonia were related to each other and shared overlapping brain correlates. Structural magnetic resonance imaging (sMRI) datasets from 234 participants including HCs (n = 109) and patients with opioid use disorder (OUD, n = 22), cocaine use disorder (CUD, n = 43), borderline personality disorder (BPD, n = 45) and schizophrenia (SZ, n = 15) were included. Trait impulsivity was measured with the Barratt Impulsiveness Scale (BIS-11) and anhedonia with a subscore of the Beck Depression Inventory (BDI). BIS-11 global score data were available for the entire sample, while data on the BIS-11 2nd order factors attentional, motor and non-planning were additionally in hand for a subsample consisting of HCs, OUD and BPD patients (n = 116). Voxel-based morphometry analyses were conducted for identifying dimensional associations between grey matter volume and impulsivity/anhedonia. Partial correlations were further performed to exploratory test the relationships between impulsivity and anhedonia and their corresponding volumetric brain substrates. Volume of the left opercular part of the inferior frontal gyrus (IFG) was negatively related to global impulsivity across the entire sample and specifically to motor impulsivity in the subsample of HCs, OUD and BPD patients. Across patients anhedonia expression was negatively correlated with left putamen volume. Although there was no relationship between global impulsivity and anhedonia across all patients, only across OUD and BPD patients anhedonia was positively associated with attentional impulsivity. Finally, also across OUD and BPD patients, motor impulsivity associated left IFG volume was positively linked with anhedonia-associated volume in the left putamen. Our findings suggest a critical role of left IFG volume in self-reported global impulsivity across healthy participants and patients with substance use disorder, BPD and SZ. Preliminary findings in OUD and BPD patients further suggests associations between impulsivity and anhedonia that are related to grey matter reductions in the left IFG and putamen.
Collapse
Affiliation(s)
| | - Marc Vogel
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Undine E Lang
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Switzerland
| | - Marc Walter
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Marcus Herdener
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Switzerland
| | - Johannes Wrege
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Switzerland
| | - André Schmidt
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland.
| |
Collapse
|
22
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Scholz V, Waltmann M, Herzog N, Reiter A, Horstmann A, Deserno L. Cortical Grey Matter Mediates Increases in Model-Based Control and Learning from Positive Feedback from Adolescence to Adulthood. J Neurosci 2023; 43:2178-2189. [PMID: 36823039 PMCID: PMC10039741 DOI: 10.1523/jneurosci.1418-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cognition and brain structure undergo significant maturation from adolescence into adulthood. Model-based (MB) control is known to increase across development, which is mediated by cognitive abilities. Here, we asked two questions unaddressed in previous developmental studies. First, what are the brain structural correlates of age-related increases in MB control? Second, how are age-related increases in MB control from adolescence to adulthood influenced by motivational context? A human developmental sample (n = 103; age, 12-50, male/female, 55:48) completed structural MRI and an established task to capture MB control. The task was modified with respect to outcome valence by including (1) reward and punishment blocks to manipulate the motivational context and (2) an additional choice test to assess learning from positive versus negative feedback. After replicating that an age-dependent increase in MB control is mediated by cognitive abilities, we demonstrate first-time evidence that gray matter density (GMD) in the parietal cortex mediates the increase of MB control with age. Although motivational context did not relate to age-related changes in MB control, learning from positive feedback improved with age. Meanwhile, negative feedback learning showed no age effects. We present a first report that an age-related increase in positive feedback learning was mediated by reduced GMD in the parietal, medial, and dorsolateral prefrontal cortex. Our findings indicate that brain maturation, putatively reflected in lower GMD, in distinct and partially overlapping brain regions could lead to a more efficient brain organization and might thus be a key developmental step toward age-related increases in planning and value-based choice.SIGNIFICANCE STATEMENT Changes in model-based decision-making are paralleled by extensive maturation in cognition and brain structure across development. Still, to date the neuroanatomical underpinnings of these changes remain unclear. Here, we demonstrate for the first time that parietal GMD mediates age-dependent increases in model-based control. Age-related increases in positive feedback learning were mediated by reduced GMD in the parietal, medial, and dorsolateral prefrontal cortex. A manipulation of motivational context did not have an impact on age-related changes in model-based control. These findings highlight that brain maturation in distinct and overlapping cortical regions constitutes a key developmental step toward improved value-based choices.
Collapse
Affiliation(s)
- Vanessa Scholz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Max Planck Institute for Cognition and Neuroscience, D-04103 Leipzig, Germany
| | - Nadine Herzog
- Max Planck Institute for Cognition and Neuroscience, D-04103 Leipzig, Germany
- Integrated Research and Treatment Center AdiposityDiseases, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Andrea Reiter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Collaborative Research Center-940 Volition and Cognitive Control, Faculty of Psychology, Technical University Dresden, 01069 Dresden, Germany
| | - Annette Horstmann
- Max Planck Institute for Cognition and Neuroscience, D-04103 Leipzig, Germany
- Integrated Research and Treatment Center AdiposityDiseases, Leipzig University Medical Center, 04103 Leipzig, Germany
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Max Planck Institute for Cognition and Neuroscience, D-04103 Leipzig, Germany
- Integrated Research and Treatment Center AdiposityDiseases, Leipzig University Medical Center, 04103 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technical University Dresden, 01069 Dresden, Germany
| |
Collapse
|
24
|
Waltmann M, Herzog N, Reiter AMF, Villringer A, Horstmann A, Deserno L. Diminished reinforcement sensitivity in adolescence is associated with enhanced response switching and reduced coding of choice probability in the medial frontal pole. Dev Cogn Neurosci 2023; 60:101226. [PMID: 36905874 PMCID: PMC10005907 DOI: 10.1016/j.dcn.2023.101226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Precisely charting the maturation of core neurocognitive functions such as reinforcement learning (RL) and flexible adaptation to changing action-outcome contingencies is key for developmental neuroscience and adjacent fields like developmental psychiatry. However, research in this area is both sparse and conflicted, especially regarding potentially asymmetric development of learning for different motives (obtain wins vs avoid losses) and learning from valenced feedback (positive vs negative). In the current study, we investigated the development of RL from adolescence to adulthood, using a probabilistic reversal learning task modified to experimentally separate motivational context and feedback valence, in a sample of 95 healthy participants between 12 and 45. We show that adolescence is characterized by enhanced novelty seeking and response shifting especially after negative feedback, which leads to poorer returns when reward contingencies are stable. Computationally, this is accounted for by reduced impact of positive feedback on behavior. We also show, using fMRI, that activity of the medial frontopolar cortex reflecting choice probability is attenuated in adolescence. We argue that this can be interpreted as reflecting diminished confidence in upcoming choices. Interestingly, we find no age-related differences between learning in win and loss contexts.
Collapse
Affiliation(s)
- Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Nadine Herzog
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea M F Reiter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany; CRC-940 Volition and Cognitive Control, Faculty of Psychology, Technical University of Dresden, Dresden, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute, Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Neuroimaging Center, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
25
|
Wittmann MK, Scheuplein M, Gibbons SG, Noonan MP. Local and global reward learning in the lateral frontal cortex show differential development during human adolescence. PLoS Biol 2023; 21:e3002010. [PMID: 36862726 PMCID: PMC10013901 DOI: 10.1371/journal.pbio.3002010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Reward-guided choice is fundamental for adaptive behaviour and depends on several component processes supported by prefrontal cortex. Here, across three studies, we show that two such component processes, linking reward to specific choices and estimating the global reward state, develop during human adolescence and are linked to the lateral portions of the prefrontal cortex. These processes reflect the assignment of rewards contingently to local choices, or noncontingently, to choices that make up the global reward history. Using matched experimental tasks and analysis platforms, we show the influence of both mechanisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that included and/or disconnected both orbitofrontal and insula cortex) in human adult patients (study 2) and macaque monkeys (study 3) impair both local and global reward learning. Developmental effects were distinguishable from the influence of a decision bias on choice behaviour, known to depend on medial prefrontal cortex. Differences in local and global assignments of reward to choices across adolescence, in the context of delayed grey matter maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in adaptive behaviour.
Collapse
Affiliation(s)
- Marco K. Wittmann
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, United Kingdom
| | - Maximilian Scheuplein
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Sophie G. Gibbons
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - MaryAnn P. Noonan
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Ray JV, Jones S. Aging Out of Crime and Personality Development: A Review of the Research Examining the Role of Impulsiveness on Offending in Middle and Late Adulthood. Psychol Res Behav Manag 2023; 16:1587-1596. [PMID: 37159648 PMCID: PMC10163877 DOI: 10.2147/prbm.s391406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023] Open
Abstract
Virtually everything we know about the relationship between impulsivity and offending is confined to adolescence and early adulthood. There is a paucity of research that examines impulsivity and offending in middle and late adulthood. What little is known is covered in this review. There are normative declines in offending, but it remains quite common in middle and late adulthood. This challenges the notion that the majority of offenders age out of crime by middle age. There are also normative declines in impulsivity, consistent with the maturity principle of personality development. While impulsivity is associated with offending (and other externalizing behaviors) in middle and late adulthood, preciously little evidence exists that speaks to whether the declines in impulsivity are causally related to decreases in offending. Various suggestions are offered for future research that can better address this notable void in the literature.
Collapse
Affiliation(s)
- James V Ray
- Department of Criminal Justice, University of Central Florida, Orlando, FL, USA
- Correspondence: James V Ray, Email
| | - Shayne Jones
- School of Criminal Justice and Criminology, Texas State University, San Marcos, TX, USA
| |
Collapse
|
27
|
The promise of a model-based psychiatry: building computational models of mental ill health. Lancet Digit Health 2022; 4:e816-e828. [PMID: 36229345 PMCID: PMC9627546 DOI: 10.1016/s2589-7500(22)00152-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
Computational models have great potential to revolutionise psychiatry research and clinical practice. These models are now used across multiple subfields, including computational psychiatry and precision psychiatry. Their goals vary from understanding mechanisms underlying disorders to deriving reliable classification and personalised predictions. Rapid growth of new tools and data sources (eg, digital data, gamification, and social media) requires an understanding of the constraints and advantages of different modelling approaches in psychiatry. In this Series paper, we take a critical look at the range of computational models that are used in psychiatry and evaluate their advantages and disadvantages for different purposes and data sources. We describe mechanism-driven and mechanism-agnostic computational models and discuss how interpretability of models is crucial for clinical translation. Based on these evaluations, we provide recommendations on how to build computational models that are clinically useful.
Collapse
|
28
|
Dubois M, Bowler A, Moses-Payne ME, Habicht J, Moran R, Steinbeis N, Hauser TU. Exploration heuristics decrease during youth. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:969-983. [PMID: 35589910 PMCID: PMC9458685 DOI: 10.3758/s13415-022-01009-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
Abstract
Deciding between exploring new avenues and exploiting known choices is central to learning, and this exploration-exploitation trade-off changes during development. Exploration is not a unitary concept, and humans deploy multiple distinct mechanisms, but little is known about their specific emergence during development. Using a previously validated task in adults, changes in exploration mechanisms were investigated between childhood (8-9 y/o, N = 26; 16 females), early (12-13 y/o, N = 38; 21 females), and late adolescence (16-17 y/o, N = 33; 19 females) in ethnically and socially diverse schools from disadvantaged areas. We find an increased usage of a computationally light exploration heuristic in younger groups, effectively accommodating their limited neurocognitive resources. Moreover, this heuristic was associated with self-reported, attention-deficit/hyperactivity disorder symptoms in this population-based sample. This study enriches our mechanistic understanding about how exploration strategies mature during development.
Collapse
Affiliation(s)
- Magda Dubois
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, WC1B 5EH, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK.
| | - Aislinn Bowler
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, WC1B 5EH, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK
- Centre for Brain and Cognitive Development, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Madeleine E Moses-Payne
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, WC1B 5EH, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK
- UCL Institute of Cognitive Neuroscience, WC1N 3AZ, London, UK
| | - Johanna Habicht
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, WC1B 5EH, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK
| | - Rani Moran
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, WC1B 5EH, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK
| | - Nikolaus Steinbeis
- Division of Psychology and Language Sciences, University College London, WC1H 0AP, London, UK
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, WC1B 5EH, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3BG, London, UK
| |
Collapse
|
29
|
Suñol M, Alemany S, Bustamante M, Diez I, Contreras-Rodríguez O, Laudo B, Macià D, Martínez-Vilavella G, Martínez-Zalacaín I, Menchón JM, Pujol J, Sunyer J, Sepulcre J, Soriano-Mas C. Neurogenetics of Dynamic Connectivity Patterns Associated With Obsessive-Compulsive Symptoms in Healthy Children. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:411-420. [PMID: 36324658 PMCID: PMC9616269 DOI: 10.1016/j.bpsgos.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 01/31/2023] Open
Abstract
Background Obsessive-compulsive symptoms (OCSs) during childhood predispose to obsessive-compulsive disorder and have been associated with changes in brain circuits altered in obsessive-compulsive disorder samples. OCSs may arise from disturbed glutamatergic neurotransmission, impairing cognitive oscillations and promoting overstable functional states. Methods A total of 227 healthy children completed the Obsessive Compulsive Inventory-Child Version and underwent a resting-state functional magnetic resonance imaging examination. Genome-wide data were obtained from 149 of them. We used a graph theory-based approach and characterized associations between OCSs and dynamic functional connectivity (dFC). dFC evaluates fluctuations over time in FC between brain regions, which allows characterizing regions with stable connectivity patterns (attractors). We then compared the spatial similarity between OCS-dFC correlation maps and mappings of genetic expression across brain regions to identify genes potentially associated with connectivity changes. In post hoc analyses, we investigated which specific single nucleotide polymorphisms of these genes moderated the association between OCSs and patterns of dFC. Results OCSs correlated with decreased attractor properties in the left ventral putamen and increased attractor properties in (pre)motor areas and the left hippocampus. At the specific symptom level, increased attractor properties in the right superior parietal cortex correlated with ordering symptoms. In the hippocampus, we identified two single nucleotide polymorphisms in glutamatergic neurotransmission genes (GRM7, GNAQ) that moderated the association between OCSs and attractor features. Conclusions We provide evidence that in healthy children, the association between dFC changes and OCSs may be mapped onto brain circuits predicted by prevailing neurobiological models of obsessive-compulsive disorder. Moreover, our findings support the involvement of glutamatergic neurotransmission in such brain network changes.
Collapse
Affiliation(s)
- Maria Suñol
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Gordon Center for Medical Imaging, Department of Radiology and Nuclear Medicine, Harvard Medical School, Boston
| | - Silvia Alemany
- Epidemiology and Public Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mariona Bustamante
- Epidemiology and Public Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology and Nuclear Medicine, Harvard Medical School, Boston
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Oren Contreras-Rodríguez
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
| | - Berta Laudo
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Dídac Macià
- Barcelona Institute for Global Health, Barcelona, Spain
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | | | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Manuel Menchón
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
| | - Jesús Pujol
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Jordi Sunyer
- Epidemiology and Public Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Medical Research Institute, Hospital del Mar, Barcelona, Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology and Nuclear Medicine, Harvard Medical School, Boston
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital and Bellvitge Biomedical Research Institute, Barcelona, Spain
- Mental Health Networking Biomedical Research Centre, Carlos III Health Institute, Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Krishnan S, Cler GJ, Smith HJ, Willis HE, Asaridou SS, Healy MP, Papp D, Watkins KE. Quantitative MRI reveals differences in striatal myelin in children with DLD. eLife 2022; 11:e74242. [PMID: 36164824 PMCID: PMC9514847 DOI: 10.7554/elife.74242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/21/2022] [Indexed: 12/25/2022] Open
Abstract
Developmental language disorder (DLD) is a common neurodevelopmental disorder characterised by receptive or expressive language difficulties or both. While theoretical frameworks and empirical studies support the idea that there may be neural correlates of DLD in frontostriatal loops, findings are inconsistent across studies. Here, we use a novel semiquantitative imaging protocol - multi-parameter mapping (MPM) - to investigate microstructural neural differences in children with DLD. The MPM protocol allows us to reproducibly map specific indices of tissue microstructure. In 56 typically developing children and 33 children with DLD, we derived maps of (1) longitudinal relaxation rate R1 (1/T1), (2) transverse relaxation rate R2* (1/T2*), and (3) Magnetization Transfer saturation (MTsat). R1 and MTsat predominantly index myelin, while R2* is sensitive to iron content. Children with DLD showed reductions in MTsat values in the caudate nucleus bilaterally, as well as in the left ventral sensorimotor cortex and Heschl's gyrus. They also had globally lower R1 values. No group differences were noted in R2* maps. Differences in MTsat and R1 were coincident in the caudate nucleus bilaterally. These findings support our hypothesis of corticostriatal abnormalities in DLD and indicate abnormal levels of myelin in the dorsal striatum in children with DLD.
Collapse
Affiliation(s)
- Saloni Krishnan
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Department of Psychology, Royal Holloway, University of London, Egham HillLondonUnited Kingdom
| | - Gabriel J Cler
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Department of Speech and Hearing Sciences, University of WashingtonSeattleUnited States
| | - Harriet J Smith
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - Hanna E Willis
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalOxfordUnited Kingdom
| | - Salomi S Asaridou
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Máiréad P Healy
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Papp
- NeuroPoly Lab, Biomedical Engineering Department, Polytechnique MontrealMontrealCanada
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of OxfordOxfordUnited Kingdom
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Dept of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
31
|
Abstract
Deciding whether to forgo a good choice in favour of exploring a potentially more rewarding alternative is one of the most challenging arbitrations both in human reasoning and in artificial intelligence. Humans show substantial variability in their exploration, and theoretical (but only limited empirical) work has suggested that excessive exploration is a critical mechanism underlying the psychiatric dimension of impulsivity. In this registered report, we put these theories to test using large online samples, dimensional analyses, and computational modelling. Capitalising on recent advances in disentangling distinct human exploration strategies, we not only demonstrate that impulsivity is associated with a specific form of exploration—value-free random exploration—but also explore links between exploration and other psychiatric dimensions. The Stage 1 protocol for this Registered Report was accepted in principle on 19/03/2021. The protocol, as accepted by the journal, can be found at 10.6084/m9.figshare.14346506.v1. Deciding between known rewarding options and exploring novel avenues is central to decision making. Humans show variability in their exploration. Here, the authors show that impulsivity is associated to an increased usage of a cognitively cheap (and sometimes sub-optimal) exploration strategy.
Collapse
|
32
|
Weidacker K, Kim SG, Buhl-Callesen M, Jensen M, Pedersen MU, Thomsen KR, Voon V. The prediction of resilience to alcohol consumption in youths: insular and subcallosal cingulate myeloarchitecture. Psychol Med 2022; 52:2032-2042. [PMID: 33143793 DOI: 10.1017/s0033291720003852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prediction of alcohol consumption in youths and particularly biomarkers of resilience, is critical for early intervention to reduce the risk of subsequent harmful alcohol use. METHODS At baseline, the longitudinal relaxation rate (R1), indexing grey matter myelination (i.e. myeloarchitecture), was assessed in 86 adolescents/young adults (mean age = 21.76, range: 15.75-26.67 years). The Alcohol Use Disorder Identification Test (AUDIT) was assessed at baseline, 1- and 2-year follow-ups (12- and 24-months post-baseline). We used a whole brain data-driven approach controlled for age, gender, impulsivity and other substance and behavioural addiction measures, such as problematic cannabis use, drug use-related problems, internet gaming, pornography use, binge eating, and levels of externalization, to predict the change in AUDIT scores from R1. RESULTS Greater baseline bilateral anterior insular and subcallosal cingulate R1 (cluster-corrected family-wise error p < 0.05) predict a lower risk for harmful alcohol use (measured as a reduction in AUDIT scores) at 2-year follow-up. Control analyses show that other grey matter measures (local volume or fractional anisotropy) did not reveal such an association. An atlas-based machine learning approach further confirms the findings. CONCLUSIONS The insula is critically involved in predictive coding of autonomic function relevant to subjective alcohol cue/craving states and risky decision-making processes. The subcallosal cingulate is an essential node underlying emotion regulation and involved in negative emotionality addiction theories. Our findings highlight insular and cingulate myeloarchitecture as a potential protective biomarker that predicts resilience to alcohol misuse in youths, providing novel identifiers for early intervention.
Collapse
Affiliation(s)
| | - Seung-Goo Kim
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Mette Buhl-Callesen
- Centre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Aarhus, Denmark
| | - Mads Jensen
- Center of Functionally Integrative Neuroscience, MINDLab, Aarhus University, Aarhus, Denmark
| | - Mads Uffe Pedersen
- Centre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Aarhus, Denmark
| | - Kristine Rømer Thomsen
- Centre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Aarhus, Denmark
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Hodgdon EA, Courtney KE, Yan M, Yang R, Alam T, Walker JC, Yu Q, Takarae Y, Cordeiro Menacho V, Jacobus J, Wiggins JL. White matter integrity in adolescent irritability: A preliminary study. Psychiatry Res Neuroimaging 2022; 324:111491. [PMID: 35635933 PMCID: PMC9676048 DOI: 10.1016/j.pscychresns.2022.111491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
Irritability is a prevalent, impairing transdiagnostic symptom, especially during adolescence, yet little is known about irritability's neural mechanisms. A few studies examined the integrity of white matter tracts that facilitate neural communication in irritability, but only with extreme, disorder-related symptom presentations. In this preliminary study, we used a group connectometry approach to identify white matter tracts correlated with transdiagnostic irritability in a community/clinic-based sample of 35 adolescents (mean age = 14 years, SD = 2.0). We found positive and negative associations with irritability in local white matter tract bundles including sections of the longitudinal fasciculus; frontoparietal, parolfactory, and parahippocampal cingulum; corticostriatal and thalamocortical radiations; and vertical occipital fasciculus. Our findings support functional neuroimaging studies that implicate widespread neural pathways, particularly emotion and reward networks, in irritability. Our findings of positive and negative associations reveal a complex picture of what is "good" white matter connectivity. By characterizing irritability's neural underpinnings, targeted interventions may be developed.
Collapse
Affiliation(s)
- Elizabeth A Hodgdon
- Department of Psychology, San Diego State University, San Diego, CA, United States.
| | - Kelly E Courtney
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Marvin Yan
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Ruiyu Yang
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Tasmia Alam
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Johanna C Walker
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, United States
| | - Qiongru Yu
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, United States
| | - Yukari Takarae
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | | | - Joanna Jacobus
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, United States; Department of Psychiatry, University of California, San Diego, CA, United States
| | - Jillian Lee Wiggins
- Department of Psychology, San Diego State University, San Diego, CA, United States; Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, United States
| |
Collapse
|
34
|
Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity. Neuroimage 2022; 262:119529. [PMID: 35926761 DOI: 10.1016/j.neuroimage.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.
Collapse
|
35
|
Baum GL, Flournoy JC, Glasser MF, Harms MP, Mair P, Sanders AFP, Barch DM, Buckner RL, Bookheimer S, Dapretto M, Smith S, Thomas KM, Yacoub E, Van Essen DC, Somerville LH. Graded Variation in T1w/T2w Ratio during Adolescence: Measurement, Caveats, and Implications for Development of Cortical Myelin. J Neurosci 2022; 42:5681-5694. [PMID: 35705486 PMCID: PMC9302463 DOI: 10.1523/jneurosci.2380-21.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/07/2022] [Accepted: 06/04/2022] [Indexed: 01/22/2023] Open
Abstract
Adolescence is characterized by the maturation of cortical microstructure and connectivity supporting complex cognition and behavior. Axonal myelination influences brain connectivity during development by enhancing neural signaling speed and inhibiting plasticity. However, the maturational timing of cortical myelination during human adolescence remains poorly understood. Here, we take advantage of recent advances in high-resolution cortical T1w/T2w mapping methods, including principled correction of B1+ transmit field effects, using data from the Human Connectome Project in Development (HCP-D; N = 628, ages 8-21). We characterize microstructural changes relevant to myelination by estimating age-related differences in T1w/T2w throughout the cerebral neocortex from childhood to early adulthood. We apply Bayesian spline models and clustering analysis to demonstrate graded variation in age-dependent cortical T1w/T2w differences that are correlated with the sensorimotor-association (S-A) axis of cortical organization reported by others. In sensorimotor areas, T1w/T2w ratio measures start at high levels at early ages, increase at a fast pace, and decelerate at later ages (18-21). In intermediate multimodal areas along the S-A axis, T1w/T2w starts at intermediate levels and increases linearly at an intermediate pace. In transmodal/paralimbic association areas, T1w/T2w starts at low levels and increases linearly at the slowest pace. These data provide evidence for graded variation of the T1w/T2w ratio along the S-A axis that may reflect cortical myelination changes during adolescence underlying the development of complex information processing and psychological functioning. We discuss the implications of these results as well as caveats in interpreting magnetic resonance imaging (MRI)-based estimates of myelination.SIGNIFICANCE STATEMENT Myelin is a lipid membrane that is essential to healthy brain function. Myelin wraps axons to increase neural signaling speed, enabling complex neuronal functioning underlying learning and cognition. Here, we characterize the developmental timing of myelination across the cerebral cortex during adolescence using a noninvasive proxy measure, T1w/T2w mapping. Our results provide new evidence demonstrating graded variation across the cortex in the timing of T1w/T2w changes during adolescence, with rapid T1w/T2w increases in lower-order sensory areas and gradual T1w/T2w increases in higher-order association areas. This spatial pattern of microstructural brain development closely parallels the sensorimotor-to-association axis of cortical organization and plasticity during ontogeny.
Collapse
Affiliation(s)
- Graham L Baum
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - John C Flournoy
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Matthew F Glasser
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA, 63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Patrick Mair
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA, 63110
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA, MO 63130
| | - Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA, 90095
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA, 90095
| | - Stephen Smith
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Kathleen M Thomas
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA, 55455
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Leah H Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| |
Collapse
|
36
|
Rouault M, Will GJ, Fleming SM, Dolan RJ. Low self-esteem and the formation of global self-performance estimates in emerging adulthood. Transl Psychiatry 2022; 12:272. [PMID: 35821225 PMCID: PMC9276660 DOI: 10.1038/s41398-022-02031-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
High self-esteem, an overall positive evaluation of self-worth, is a cornerstone of mental health. Previously we showed that people with low self-esteem differentially construct beliefs about momentary self-worth derived from social feedback. However, it remains unknown whether these anomalies extend to constructing beliefs about self-performance in a non-social context, in the absence of external feedback. Here, we examined this question using a novel behavioral paradigm probing subjects' self-performance estimates with or without external feedback. We analyzed data from young adults (N = 57) who were selected from a larger community sample (N = 2402) on the basis of occupying the bottom or top 10% of a reported self-esteem distribution. Participants performed a series of short blocks involving two perceptual decision-making tasks with varying degrees of difficulty, with or without feedback. At the end of each block, they had to decide on which task they thought they performed best, and gave subjective task ratings, providing two measures of self-performance estimates. We found no robust evidence of differences in objective performance between high and low self-esteem participants. Nevertheless, low self-esteem participants consistently underestimated their performance as expressed in lower subjective task ratings relative to high self-esteem participants. These results provide an initial window onto how cognitive processes underpinning the construction of self-performance estimates across different contexts map on to global dispositions relevant to mental health such as self-esteem.
Collapse
Affiliation(s)
- Marion Rouault
- Institut Jean Nicod, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, 75005, Paris, France.
- Laboratoire de neurosciences cognitives et computationnelles, Département d'études cognitives, ENS, INSERM, PSL University, 75005, Paris, France.
| | - Geert-Jan Will
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Department of Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| |
Collapse
|
37
|
Kim HS, Ritchie EV, Sears CR, Hodgins DC, Kowatch KR, McGrath DS. Affective impulsivity moderates the relationship between disordered gambling severity and attentional bias in electronic gaming machine (EGM) players. J Behav Addict 2022; 11:386-395. [PMID: 35895477 PMCID: PMC9295233 DOI: 10.1556/2006.2022.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Attentional bias to gambling-related stimuli is associated with increased severity of gambling disorder. However, the addiction-related moderators of attentional bias among those who gamble are largely unknown. Impulsivity is associated with attentional bias among those who abuse substances, and we hypothesized that impulsivity would moderate the relationship between disordered electronic gaming machine (EGM) gambling and attentional bias. METHODS We tested whether facets of impulsivity, as measured by the UPPS-P (positive urgency, negative urgency, sensation seeking, lack of perseverance, lack of premeditation) and the Barratt Impulsiveness Scale-11 (cognitive, motor, non-planning) moderated the relationship between increased severity of gambling disorder, as measured by the Problem Gambling Severity Index (PGSI), and attentional bias. Seventy-five EGM players participated in a free-viewing eye-tracking paradigm to measure attentional bias to EGM images. RESULTS Attentional bias was significantly correlated with Barratt Impulsiveness Scale-11 (BIS-11) motor, positive urgency, and negative urgency. Only positive and negative urgency moderated the relationship between PGSI scores and attentional bias. For participants with high PGSI scores, higher positive and negative urgency were associated with larger attentional biases to EGM stimuli. DISCUSSION The results indicate that affective impulsivity is an important contributor to the association between gambling disorder and attentional bias.
Collapse
Affiliation(s)
- Hyoun S. Kim
- Department of Psychology, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
| | | | | | - David C. Hodgins
- Department of Psychology, University of Calgary, Calgary, Canada
| | | | - Daniel S. McGrath
- Department of Psychology, University of Calgary, Calgary, Canada,Corresponding author. E-mail:
| |
Collapse
|
38
|
Pan N, Wang S, Qin K, Li L, Chen Y, Zhang X, Lai H, Suo X, Long Y, Yu Y, Ji S, Radua J, Sweeney JA, Gong Q. Common and Distinct Neural Patterns of Attention-Deficit/Hyperactivity Disorder and Borderline Personality Disorder: A Multimodal Functional and Structural Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022:S2451-9022(22)00147-1. [PMID: 35714858 DOI: 10.1016/j.bpsc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) have partially overlapping symptom profiles and are highly comorbid in adults. However, whether the behavioral similarities correspond to shared neurobiological substrates is not known. METHODS An overlapping meta-analysis of 58 ADHD and 66 BPD whole-brain articles incorporating observations from 3401 adult patients and 3238 healthy participants was performed by seed-based d mapping. Brain maps were subjected to meta-analytic connectivity modeling and data-driven functional decoding analyses to identify associated neural circuit alterations and relations to behavioral dimensions. RESULTS Both groups exhibited hypoactivated abnormalities in the left inferior parietal lobule, and altered clusters of the bilateral superior temporal gyrus were disjunctive in ADHD and BPD. No overlapping structural abnormalities were found. Multimodal alterations of ADHD were located in the right putamen and of BPD in the left orbitofrontal cortex. CONCLUSIONS The transdiagnostic neural bases of ADHD and BPD in temporoparietal circuitry may underlie overlapping problems of behavioral control, while disorder-specific substrates in frontostriatal circuitry may account for their distinguishing features in motor and emotion domains, respectively.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Han Lai
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yajing Long
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yifan Yu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shiyu Ji
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - John A Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
39
|
Aye N, Lehmann N, Kaufmann J, Heinze HJ, Düzel E, Taubert M, Ziegler G. Test-retest reliability of multi-parametric maps (MPM) of brain microstructure. Neuroimage 2022; 256:119249. [PMID: 35487455 DOI: 10.1016/j.neuroimage.2022.119249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022] Open
Abstract
Multiparameter mapping (MPM) is a quantitative MRI protocol that is promising for studying microstructural brain changes in vivo with high specificity. Reliability values are an important prior knowledge for efficient study design and facilitating replicable findings in development, aging and neuroplasticity research. To explore longitudinal reliability of MPM we acquired the protocol in 31 healthy young subjects twice over a rescan interval of 4 weeks. We assessed the within-subject coefficient of variation (WCV), the between-subject coefficient of variation (BCV), and the intraclass correlation coefficient (ICC). Using these metrics, we investigated the reliability of (semi-) quantitative magnetization transfer saturation (MTsat), proton density (PD), transversal relaxation (R2*) and longitudinal relaxation (R1). To increase relevance for explorative studies in development and training-induced plasticity, we assess reliability both on local voxel- as well as ROI-level. Finally, we disentangle contributions and interplay of within- and between-subject variability to ICC and assess the optimal degree of spatial smoothing applied to the data. We reveal evidence that voxelwise ICC reliability of MPMs is moderate to good with median values in cortex (subcortical GM): MT: 0.789 (0.447) PD: 0.553 (0.264) R1: 0.555 (0.369) R2*: 0.624 (0.477). The Gaussian smoothing kernel of 2 to 4 mm FWHM resulted in optimal reproducibility. We discuss these findings in the context of longitudinal intervention studies and the application to research designs in neuroimaging field.
Collapse
Affiliation(s)
- Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ United Kingdom
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
40
|
Svirin E, Veniaminova E, Costa-Nunes JP, Gorlova A, Umriukhin A, Kalueff AV, Proshin A, Anthony DC, Nedorubov A, Tse ACK, Walitza S, Lim LW, Lesch KP, Strekalova T. Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells 2022; 11:1036. [PMID: 35326487 PMCID: PMC8947002 DOI: 10.3390/cells11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Collapse
Affiliation(s)
- Evgeniy Svirin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - João Pedro Costa-Nunes
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Institute of Molecular Medicine, New University of Lisbon, 1649-028 Lisbon, Portugal
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University, 354340 Sochi, Russia;
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Institute of Natural Sciences, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Andrey Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia;
| | - Anna Chung Kwan Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Susanne Walitza
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Lee Wei Lim
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| |
Collapse
|
41
|
Weeland CJ, Kasprzak S, de Joode NT, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargallo N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brecke V, Brem S, Cappi C, Cheng Y, Cho KIK, Costa DLC, Dallaspezia S, Denys D, Eng GK, Ferreira S, Feusner JD, Fontaine M, Fouche JP, Grazioplene RG, Gruner P, He M, Hirano Y, Hoexter MQ, Huyser C, Hu H, Jaspers-Fayer F, Kathmann N, Kaufmann C, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minnuzi L, Moreira PS, Morgado P, Nakagawa A, Nakamae T, Narayanaswamy JC, Nurmi EL, Ortiz AE, Pariente JC, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy YCJ, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson HB, Soreni N, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Takahashi J, Tanamatis T, Tang J, Thorsen AL, Tolin D, van der Werf YD, van Marle H, van Wingen GA, Vecchio D, Venkatasubramanian G, Walitza S, Wang J, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zhao Q, ENIGMA OCD Working Group, White T, Thompson PM, Stein DJ, van den Heuvel OA, et alWeeland CJ, Kasprzak S, de Joode NT, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargallo N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brecke V, Brem S, Cappi C, Cheng Y, Cho KIK, Costa DLC, Dallaspezia S, Denys D, Eng GK, Ferreira S, Feusner JD, Fontaine M, Fouche JP, Grazioplene RG, Gruner P, He M, Hirano Y, Hoexter MQ, Huyser C, Hu H, Jaspers-Fayer F, Kathmann N, Kaufmann C, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minnuzi L, Moreira PS, Morgado P, Nakagawa A, Nakamae T, Narayanaswamy JC, Nurmi EL, Ortiz AE, Pariente JC, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy YCJ, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson HB, Soreni N, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Takahashi J, Tanamatis T, Tang J, Thorsen AL, Tolin D, van der Werf YD, van Marle H, van Wingen GA, Vecchio D, Venkatasubramanian G, Walitza S, Wang J, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zhao Q, ENIGMA OCD Working Group, White T, Thompson PM, Stein DJ, van den Heuvel OA, Vriend C. The thalamus and its subnuclei-a gateway to obsessive-compulsive disorder. Transl Psychiatry 2022; 12:70. [PMID: 35190533 PMCID: PMC8861046 DOI: 10.1038/s41398-022-01823-2] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered ( https://osf.io/73dvy ) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.
Collapse
Affiliation(s)
- Cees J. Weeland
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Selina Kasprzak
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Niels T. de Joode
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Yoshinari Abe
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Stephanie H. Ameis
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Ontario Canada ,grid.42327.300000 0004 0473 9646Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON Canada
| | - Alan Anticevic
- grid.47100.320000000419368710Departments of Psychiatry and Neuroscience, Yale University, New Haven, CT USA
| | - Paul D. Arnold
- grid.22072.350000 0004 1936 7697The Mathison Centre for Mental Health Research & Education, Departments of Psychiatry and Medical Genetics, Calgary, Canada ,grid.22072.350000 0004 1936 7697Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Srinivas Balachander
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nerisa Banaj
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nuria Bargallo
- grid.10403.360000000091771775Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Image Diagnostic Center, Hospital Clinic, Barcelona, Spain
| | - Marcelo C. Batistuzzo
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil ,grid.11899.380000 0004 1937 0722Department of Methods and Techniques in Psychology, Pontificial Catholic University of Sao Paulo, Sao Paulo, SP Brazil
| | - Francesco Benedetti
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milano, Italy ,grid.18887.3e0000000417581884Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Jan C. Beucke
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ,grid.461732.5Department of Medical Psychology, Medical School Hamburg, Hamburg, Germany ,grid.461732.5Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Irene Bollettini
- grid.18887.3e0000000417581884Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Vilde Brecke
- grid.412008.f0000 0000 9753 1393Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Silvia Brem
- grid.7400.30000 0004 1937 0650Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Carolina Cappi
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai Department of Psychiatry, New York, NY USA
| | - Yuqi Cheng
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kang Ik K. Cho
- grid.38142.3c000000041936754XPsychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Daniel L. C. Costa
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Sara Dallaspezia
- grid.18887.3e0000000417581884IRCCS Ospedale San Raffaele, Milano Italy Psychiatry, Milano, Italy
| | - Damiaan Denys
- grid.484519.5Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Goi Khia Eng
- grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA ,grid.250263.00000 0001 2189 4777Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Sónia Ferreira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Jamie D. Feusner
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada ,grid.19006.3e0000 0000 9632 6718Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA USA
| | - Martine Fontaine
- grid.21729.3f0000000419368729Columbia University Medical College, Columbia University, New York, NY USA
| | - Jean-Paul Fouche
- grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Rachael G. Grazioplene
- grid.47100.320000000419368710Department of Psychiatry, Yale University, New Haven, CT USA
| | - Patricia Gruner
- grid.47100.320000000419368710Department of Psychiatry, Yale University, New Haven, CT USA
| | - Mengxin He
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yoshiyuki Hirano
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan ,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Marcelo Q. Hoexter
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Chaim Huyser
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, the Netherlands
| | - Hao Hu
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fern Jaspers-Fayer
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788British Columbia Children’s Hospital Research Institute, Vancouver, Canada
| | - Norbert Kathmann
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Minah Kim
- grid.412484.f0000 0001 0302 820XSeoul National University Hospital, Department of Neuropsychiatry, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea
| | - Kathrin Koch
- grid.6936.a0000000123222966Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität, München, Germany ,grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Yoo Bin Kwak
- grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Jun Soo Kwon
- grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic, IDIBAPS, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Christine Lochner
- grid.11956.3a0000 0001 2214 904XStellenbosch University, SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch, South Africa
| | - Rachel Marsh
- grid.21729.3f0000000419368729Columbia University Medical College, Columbia University, New York, NY USA
| | - Ignacio Martínez-Zalacaín
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - David Mataix-Cols
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ,grid.467087.a0000 0004 0442 1056Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Jose M. Menchón
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Luciano Minnuzi
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario Canada ,Offord Centre for Child Studies, Hamilton, Ontario Canada
| | - Pedro Silva Moreira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.10328.380000 0001 2159 175XPsychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Pedro Morgado
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center-Braga (2CA), Braga, Portugal ,grid.436922.80000 0004 4655 1975Hospital de Braga, Braga, Portugal
| | - Akiko Nakagawa
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Takashi Nakamae
- grid.272458.e0000 0001 0667 4960Graduate School of Medical Science Kyoto Prefectural University of Medicine, Department of Psychiatry, Kyoto, Japan
| | - Janardhanan C. Narayanaswamy
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Erika L. Nurmi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Ana E. Ortiz
- grid.410458.c0000 0000 9635 9413Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic, Barcelona, Spain ,grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose C. Pariente
- grid.10403.360000000091771775Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John Piacentini
- grid.19006.3e0000 0000 9632 6718UCLA Semel Institute, Division of Child and Adolescent Psychiatry, Los Angeles, CA USA
| | - Maria Picó-Pérez
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Fabrizio Piras
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Christopher Pittenger
- grid.47100.320000000419368710Department of Psychiatry and Yale Child Study Center, Yale University, New Haven, CT USA
| | - Y. C. Janardhan Reddy
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Daniela Rodriguez-Manrique
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany ,grid.6936.a0000000123222966Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany ,grid.5252.00000 0004 1936 973XGraduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Yuki Sakai
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan ,grid.418163.90000 0001 2291 1583Department of Neural Computation for Decision-Making, Advanced Telecommunications Research Institute International Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Eiji Shimizu
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Venkataram Shivakumar
- grid.416861.c0000 0001 1516 2246Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Helen Blair Simpson
- grid.21729.3f0000000419368729Columbia University Irving Medical College, Columbia University, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Noam Soreni
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario Canada ,Pediatric OCD Consultation Team, Anxiety Treatment and Research Center, Hamilton, Ontario Canada
| | - Carles Soriano-Mas
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuno Sousa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Gianfranco Spalletta
- grid.417778.a0000 0001 0692 3437IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy ,grid.39382.330000 0001 2160 926XBaylor College of Medicine, Department of Psychiatry and Behavioral Sciences, Houston, TX USA
| | - Emily R. Stern
- grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA ,grid.250263.00000 0001 2189 4777Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Michael C. Stevens
- grid.277313.30000 0001 0626 2712Institute of Living, Hartford, CT USA ,grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA
| | - S. Evelyn Stewart
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788British Columbia Children’s Hospital Research Institute, Vancouver, Canada ,grid.498716.50000 0000 8794 2105BC Mental Health and Substance Use Services Research Institute, Vancouver, Canada
| | - Philip R. Szeszko
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Center, Bronx, NY USA
| | - Jumpei Takahashi
- grid.411321.40000 0004 0632 2959Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Tais Tanamatis
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Anders Lillevik Thorsen
- grid.412008.f0000 0000 9753 1393Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - David Tolin
- grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA ,grid.277313.30000 0001 0626 2712Institute of Living/Hartford Hospital, Hartford, CT USA
| | - Ysbrand D. van der Werf
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Hein van Marle
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Guido A. van Wingen
- grid.484519.5Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Daniela Vecchio
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - G. Venkatasubramanian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health And Neurosciences, Department of Psychiatry, Bengaluru, India
| | - Susanne Walitza
- grid.7400.30000 0004 1937 0650Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jicai Wang
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhen Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anri Watanabe
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lidewij H. Wolters
- grid.509540.d0000 0004 6880 3010Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, the Netherlands ,Levvel, Academic Center for Child and Adolescent Psychiatry, Post Box 303, 1115 ZG Duivendrecht, the Netherlands
| | - Xiufeng Xu
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- grid.412484.f0000 0001 0302 820XSeoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing Zhao
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Tonya White
- grid.5645.2000000040459992XErasmus Medical Center, Department of Child and Adolescent Psychiatry/Psychology, Wytemaweg 8, 3015 GD Rotterdam, the Netherlands ,grid.42505.360000 0001 2156 6853Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, CA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Odile A. van den Heuvel
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Chris Vriend
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Association between gray/white matter contrast and white matter microstructural alterations in medication-naïve obsessive–compulsive disorder. NEUROIMAGE: CLINICAL 2022; 35:103122. [PMID: 35872436 PMCID: PMC9421450 DOI: 10.1016/j.nicl.2022.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/21/2022] Open
Abstract
Increased gray/white matter contrast (GWC) was found in patients with OCD. Decreased fractional anisotropy (FA) was found in patients with OCD. GWC and white matter FA were coupled in patients with OCD and healthy controls.
Intracortical myelin is involved in speeding and synchronizing neural activity of the cerebral cortex and has been found to be disrupted in various psychiatric disorders. However, its role in obsessive–compulsive disorder (OCD) has remained unknown. In this study, we investigated the alterations in intracortical myelin and their association with white matter (WM) microstructural abnormalities in OCD. T1-weighted and diffusion-weighted brain images were obtained for 51 medication-naïve patients with OCD and 26 healthy controls (HCs). The grey/white matter contrast (GWC) was calculated from T1-weighted signal intensities to characterize the intracortical myelin profile in OCD. Diffusion parameters, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), were extracted from diffusion-weighted images to examine the WM microstructure in OCD. Compared with HCs, patients with OCD showed increased GWC in the bilateral orbitofrontal, cuneus, lingual and fusiform gyrus, left anterior cingulate, left superior parietal, right inferior parietal, and right middle frontal cortices, suggesting reduced intracortical myelin. Patients with OCD also showed decreased FA in several WM regions, with a topology corresponding to the GWC alterations. In both groups, the mean GWC of the significant clusters in between-group GWC analysis was correlated negatively with the mean FA of the significant clusters in between-group FA analysis. In patients with OCD, the FA of a cluster in the right cerebellum correlated negatively with the Yale-Brown obsessive–compulsive scale scores. Our results suggest that abnormal intracortical and WM myelination could be the microstructural basis for the brain connectivity alterations and disrupted inhibitory control in OCD.
Collapse
|
43
|
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 2021; 374:eaba6905. [PMID: 34618550 DOI: 10.1126/science.aba6905] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thóra Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
44
|
Li DC, Hinton EA, Gourley SL. Persistent behavioral and neurobiological consequences of social isolation during adolescence. Semin Cell Dev Biol 2021; 118:73-82. [PMID: 34112579 PMCID: PMC8434983 DOI: 10.1016/j.semcdb.2021.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Meaningful social interactions are a fundamental human need, the lack of which can pose serious risks to an individual's physical and mental health. Across species, peer-oriented social behaviors are dramatically reshaped during adolescence, a developmental period characterized by dynamic changes in brain structure and function as individuals transition into adulthood. Thus, the experience of social isolation during this critical developmental stage may be especially pernicious, as it could permanently derail typical neurobiological processes that are necessary for establishing adaptive adult behaviors. The purpose of this review is to summarize investigations in which rodents were isolated during adolescence, then re-housed in typical social groups prior to testing, thus allowing the investigators to resolve the long-term consequences of social adversity experienced during adolescent sensitive periods, despite subsequent normalization of the social environment. Here, we discuss alterations in social, anxiety-like, cognitive, and decision-making behaviors in previously isolated adult rodents. We then explore corresponding neurobiological findings, focusing on the prefrontal cortex, including changes in synaptic densities and protein levels, white matter and oligodendrocyte function, and neuronal physiology. Made more urgent by the recent wave of social deprivation resulting from the COVID-19 pandemic, especially amongst school-aged adolescents, understanding the mechanisms by which even transient social adversity can negatively impact brain function across the lifespan is of paramount importance.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, USA; Graduate Training Program in Neuroscience, Emory University, USA; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, USA; Yerkes National Primate Research Center, Emory University, USA.
| | - Elizabeth A Hinton
- Graduate Training Program in Neuroscience, Emory University, USA; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, USA; Yerkes National Primate Research Center, Emory University, USA
| | - Shannon L Gourley
- Graduate Training Program in Neuroscience, Emory University, USA; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, USA; Yerkes National Primate Research Center, Emory University, USA.
| |
Collapse
|
45
|
Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, Mackey AP, Milham MP, Pines A, Roalf DR, Seidlitz J, Xu T, Raznahan A, Satterthwaite TD. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021; 109:2820-2846. [PMID: 34270921 PMCID: PMC8448958 DOI: 10.1016/j.neuron.2021.06.016] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The human brain undergoes a prolonged period of cortical development that spans multiple decades. During childhood and adolescence, cortical development progresses from lower-order, primary and unimodal cortices with sensory and motor functions to higher-order, transmodal association cortices subserving executive, socioemotional, and mentalizing functions. The spatiotemporal patterning of cortical maturation thus proceeds in a hierarchical manner, conforming to an evolutionarily rooted, sensorimotor-to-association axis of cortical organization. This developmental program has been characterized by data derived from multimodal human neuroimaging and is linked to the hierarchical unfolding of plasticity-related neurobiological events. Critically, this developmental program serves to enhance feature variation between lower-order and higher-order regions, thus endowing the brain's association cortices with unique functional properties. However, accumulating evidence suggests that protracted plasticity within late-maturing association cortices, which represents a defining feature of the human developmental program, also confers risk for diverse developmental psychopathologies.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, NIMH Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Preference uncertainty accounts for developmental effects on susceptibility to peer influence in adolescence. Nat Commun 2021; 12:3823. [PMID: 34158482 PMCID: PMC8219700 DOI: 10.1038/s41467-021-23671-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023] Open
Abstract
Adolescents are prone to social influence from peers, with implications for development, both adaptive and maladaptive. Here, using a computer-based paradigm, we replicate a cross-sectional effect of more susceptibility to peer influence in a large dataset of adolescents 14 to 24 years old. Crucially, we extend this finding by adopting a longitudinal perspective, showing that a within-person susceptibility to social influence decreases over a 1.5 year follow-up time period. Exploiting this longitudinal design, we show that susceptibility to social influences at baseline predicts an improvement in peer relations over the follow-up period. Using a Bayesian computational model, we demonstrate that in younger adolescents a greater tendency to adopt others’ preferences arises out of a higher uncertainty about their own preferences in the paradigmatic case of delay discounting (a phenomenon called ‘preference uncertainty’). This preference uncertainty decreases over time and, in turn, leads to a reduced susceptibility of one’s own behaviour to an influence from others. Neuro-developmentally, we show that a measure of myelination within medial prefrontal cortex, estimated at baseline, predicts a developmental decrease in preference uncertainty at follow-up. Thus, using computational and neural evidence, we reveal adaptive mechanisms underpinning susceptibility to social influence during adolescence. People often change their preferences to conform with others. Using a longitudinal design, the authors show that such conformity decreases over the course of adolescence and that this reduction in conformity is accompanied by a decreasing degree of uncertainty about what to like.
Collapse
|
47
|
Shephard E, Batistuzzo MC, Hoexter MQ, Stern ER, Zuccolo PF, Ogawa CY, Silva RM, Brunoni AR, Costa DL, Doretto V, Saraiva L, Cappi C, Shavitt RG, Simpson HB, van den Heuvel OA, Miguel EC. Neurocircuit models of obsessive-compulsive disorder: limitations and future directions for research. REVISTA BRASILEIRA DE PSIQUIATRIA 2021; 44:187-200. [PMID: 35617698 PMCID: PMC9041967 DOI: 10.1590/1516-4446-2020-1709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Elizabeth Shephard
- Universidade de São Paulo (USP), Brazil; Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, UK
| | - Marcelo C. Batistuzzo
- Universidade de São Paulo (USP), Brazil; Pontifícia Universidade Católica de São Paulo, Brazil
| | | | - Emily R. Stern
- The New York University School of Medicine, USA; Orangeburg, USA
| | | | | | | | | | | | | | | | - Carolina Cappi
- Universidade de São Paulo (USP), Brazil; Icahn School of Medicine at Mount Sinai, USA
| | | | - H. Blair Simpson
- New York State Psychiatric Institute, Columbia University Irving Medical Center (CUIMC), USA; CUIMC, USA
| | - Odile A. van den Heuvel
- Vrije Universiteit Amsterdam, The Netherlands; Vrije Universiteit Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Loosen AM, Skvortsova V, Hauser TU. Obsessive-compulsive symptoms and information seeking during the Covid-19 pandemic. Transl Psychiatry 2021; 11:309. [PMID: 34021112 PMCID: PMC8138954 DOI: 10.1038/s41398-021-01410-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Increased mental-health symptoms as a reaction to stressful life events, such as the Covid-19 pandemic, are common. Critically, successful adaptation helps to reduce such symptoms to baseline, preventing long-term psychiatric disorders. It is thus important to understand whether and which psychiatric symptoms show transient elevations, and which persist long-term and become chronically heightened. At particular risk for the latter trajectory are symptom dimensions directly affected by the pandemic, such as obsessive-compulsive (OC) symptoms. In this longitudinal large-scale study (N = 406), we assessed how OC, anxiety and depression symptoms changed throughout the first pandemic wave in a sample of the general UK public. We further examined how these symptoms affected pandemic-related information seeking and adherence to governmental guidelines. We show that scores in all psychiatric domains were initially elevated, but showed distinct longitudinal change patterns. Depression scores decreased, and anxiety plateaued during the first pandemic wave, while OC symptoms further increased, even after the ease of Covid-19 restrictions. These OC symptoms were directly linked to Covid-related information seeking, which gave rise to higher adherence to government guidelines. This increase of OC symptoms in this non-clinical sample shows that the domain is disproportionately affected by the pandemic. We discuss the long-term impact of the Covid-19 pandemic on public mental health, which calls for continued close observation of symptom development.
Collapse
Affiliation(s)
- Alisa M Loosen
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Vasilisa Skvortsova
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| |
Collapse
|
49
|
Neurodevelopment of the incentive network facilitates motivated behaviour from adolescence to adulthood. Neuroimage 2021; 237:118186. [PMID: 34020019 DOI: 10.1016/j.neuroimage.2021.118186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The ability to enhance motivated performance through incentives is crucial to guide and ultimately optimise the outcome of goal-directed behaviour. It remains largely unclear how motivated behaviour and performance develops particularly across adolescence. Here, we used computational fMRI to assess how response speed and its underlying neural circuitry are modulated by reward and loss in a monetary incentive delay paradigm. We demonstrate that maturational fine-tuning of functional coupling within the cortico-striatal incentive circuitry from adolescence to adulthood facilitates the ability to enhance performance selectively for higher subjective values. Additionally, during feedback, we found developmental sex differences of striatal representations of reward prediction errors in an exploratory analysis. Our findings suggest that a reduced capacity to utilise subjective value for motivated behaviour in adolescence is rooted in immature information processing in the incentive system. This indicates that the neurocircuitry for coordination of incentivised, motivated cognitive control acts as a bottleneck for behavioural adjustments in adolescence.
Collapse
|
50
|
Gyger L, Ramponi C, Mall JF, Swierkosz-Lenart K, Stoyanov D, Lutti A, von Gunten A, Kherif F, Draganski B. Temporal trajectory of brain tissue property changes induced by electroconvulsive therapy. Neuroimage 2021; 232:117895. [PMID: 33617994 DOI: 10.1016/j.neuroimage.2021.117895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND After more than eight decades of electroconvulsive therapy (ECT) for pharmaco-resistant depression, the mechanisms governing its anti-depressant effects remain poorly understood. Computational anatomy studies using longitudinal T1-weighted magnetic resonance imaging (MRI) data have demonstrated ECT effects on hippocampus volume and cortical thickness, but they lack the interpretational specificity about underlying neurobiological processes. METHODS We sought to fill in the gap of knowledge by acquiring quantitative MRI indicative for brain's myelin, iron and tissue water content at multiple time-points before, during and after ECT treatment. We adapted established tools for longitudinal spatial registration of MRI data to the relaxometry-based multi-parameter maps aiming to preserve the initial total signal amount and introduced a dedicated multivariate analytical framework. RESULTS The whole-brain voxel-based analysis based on a multivariate general linear model showed that there is no brain tissue oedema contributing to the predicted ECT-induced hippocampus volume increase neither in the short, nor in the long-term observations. Improvements in depression symptom severity over time were associated with changes in both volume estimates and brain tissue properties expanding beyond mesial temporal lobe structures to anterior cingulate cortex, precuneus and striatum. CONCLUSION The obtained results stemming from multi-contrast MRI quantitative data provided a fingerprint of ECT-induced brain tissue changes over time that are contrasted against the background of established morphometry findings. The introduced data processing and statistical testing algorithms provided a reliable analytical framework for longitudinal multi-parameter brain maps. The results, particularly the evidence of lack of ECT impact on brain tissue water, should be considered preliminary considering the small sample size of the study.
Collapse
Affiliation(s)
- L Gyger
- Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes, Grenoble, France; LREN, Dept. of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Ramponi
- LREN, Dept. of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - J F Mall
- Old Age Psychiatry service - Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - K Swierkosz-Lenart
- Old Age Psychiatry service - Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - D Stoyanov
- Department of Psychiatry and Medical Psychology & Research Institute, Medical University Plovdiv, Bulgaria
| | - A Lutti
- LREN, Dept. of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A von Gunten
- Old Age Psychiatry service - Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - F Kherif
- LREN, Dept. of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - B Draganski
- LREN, Dept. of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|