1
|
Liang Y, Bueler SA, Cook GM, Rubinstein JL. Structure of Mycobacterial NDH-2 Bound to a 2-Mercapto-Quinazolinone Inhibitor. J Med Chem 2025; 68:7579-7591. [PMID: 40117195 DOI: 10.1021/acs.jmedchem.5c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Mycobacterial type II NADH dehydrogenase (NDH-2) is a promising drug target because of its central role in energy metabolism in Mycobacterium tuberculosis and other pathogens, and because it lacks a known mammalian homologue. To facilitate optimization of lead compounds, we used electron cryomicroscopy (cryo-EM) to determine the structure of NDH-2 from Mycobacterium smegmatis, a fast-growing nonpathogenic model for respiration in M. tuberculosis. The structure shows that active mycobacterial NDH-2 is dimeric, with an arrangement of monomers in the dimer that differs from the arrangement described for other prokaryotic NDH-2 dimers, instead resembling dimers formed by NDH-2 in the eukaryotes Saccharomyces cerevisiae and Plasmodium falciparum. A structure of the enzyme bound to a 2-mercapto-quinazolinone inhibitor shows that the compound interacts directly with the flavin adenine dinucleotide cofactor, blocking the menaquinone-reducing site. These results reveal structural elements of NDH-2 that could be used to design specific inhibitors of the mycobacterial enzyme.
Collapse
Affiliation(s)
- Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
2
|
Verma AK, Kim RQ, Lamprecht DA, Aguilar-Pérez C, Wong S, Veziris N, Aubry A, Bartolomé-Nebreda JM, Carbajo RJ, Wetzel J, Lamers MH. Structural and mechanistic study of a novel inhibitor analogue of M. tuberculosis cytochrome bc 1:aa 3. NPJ DRUG DISCOVERY 2025; 2:6. [PMID: 40191462 PMCID: PMC11964921 DOI: 10.1038/s44386-025-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025]
Abstract
Drug-resistant tuberculosis (TB) continues to challenge treatment options, necessitating the exploration of new compounds of novel targets. The mycobacterial respiratory complex cytochrome bc1:aa3 has emerged as a promising target, exemplified by the success of first-in-class inhibitor Q203 in phase 2 clinical trials. However, to fully exploit the potential of this target and to identify the best-in-class inhibitor more compounds need evaluation. Here, we introduce JNJ-2901, a novel Q203 analogue, that demonstrates activity against multidrug-resistant M. tuberculosis clinical strains at sub-nanomolar concentration and 4-log reduction in bacterial burden in a mouse model of TB infection. Inhibitory studies on purified enzymes validate the nanomolar inhibitions observed in mycobacterial cells. Additionally, cryo-EM structure analysis of cytochrome bc1:aa3 bound to JNJ-2901 reveals the binding pocket at the menaquinol oxidation site (Qp), akin to other substate analogue inhibitors like Q203 and TB47. Validation of the binding site is further achieved by generating and isolating the JNJ-2901 resistant mutations in M. tuberculosis, followed by purification and resistance analysis of the resistant cytochrome bc1:aa3 complex. Our comprehensive work lays the foundation for further clinical validations of JNJ-2901.
Collapse
Affiliation(s)
- Amit K. Verma
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Dirk A. Lamprecht
- Janssen Pharmaceutica, Global Public Health, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Clara Aguilar-Pérez
- Janssen Pharmaceutica, Global Public Health, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sarah Wong
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP. Sorbonne-Université, Fédération de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Nicolas Veziris
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP. Sorbonne-Université, Fédération de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP. Sorbonne-Université, Fédération de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - José M. Bartolomé-Nebreda
- Global Discovery Chemistry, Janssen-Cilag, S.A., a Johnson & Johnson Innovative Medicine company, c/ Jarama, 75 A, 45007 Toledo, Spain
| | - Rodrigo J. Carbajo
- In Silico Discovery, Janssen-Cilag, S.A., a Johnson & Johnson Innovative Medicine Company, c/ Jarama, 75A, 45007 Toledo, Spain
| | - Jennefer Wetzel
- Janssen Pharmaceutica, Global Public Health, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Meindert H. Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
3
|
Buglino JA, Ozakman Y, Hatch CE, Benjamin A, Tan DS, Glickman MS. Chalkophore mediated respiratory oxidase flexibility controls M. tuberculosis virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.12.589290. [PMID: 38645185 PMCID: PMC11030325 DOI: 10.1101/2024.04.12.589290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Oxidative phosphorylation has emerged as a critical therapeutic vulnerability of M. tuberculosis (Mtb). However, it is unknown how intracellular bacterial pathogens such as Mtb maintain respiration during infection despite the chemical effectors of host immunity. Mtb synthesizes diisonitrile lipopeptides that tightly chelate copper, but the role of these chalkophores in host-pathogen interactions is also unknown. We demonstrate that M. tuberculosis chalkophores maintain the function of the heme-copper bcc:aa 3 respiratory supercomplex under copper limitation. Chalkophore deficiency impairs Mtb survival, respiration to oxygen, and ATP production under copper deprivation in culture, effects that are exacerbated by loss of the heme dependent Cytochrome BD respiratory oxidase. Our genetic analyses indicate that maintenance of respiration is the only cellular target of chalkophore mediated copper acquisition. M. tuberculosis lacking chalkophore biosynthesis is attenuated in mice, a phenotype that is also severely exacerbated by loss of the CytBD respiratory oxidase. We find that the host immune pressure that attenuates chalkophore deficient Mtb is independent of adaptive immunity and neutrophils. These data demonstrate that chalkophores counter host inflicted copper deprivation and highlight a multilayered system by which M. tuberculosis maintains respiration during infection.
Collapse
Affiliation(s)
- John A. Buglino
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Yaprak Ozakman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Chad E. Hatch
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Anna Benjamin
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Derek S. Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| |
Collapse
|
4
|
Di Trani JM, Yu J, Courbon GM, Lobez Rodriguez AP, Cheung CY, Liang Y, Coupland CE, Bueler SA, Cook GM, Brzezinski P, Rubinstein JL. Cryo-EM of native membranes reveals an intimate connection between the Krebs cycle and aerobic respiration in mycobacteria. Proc Natl Acad Sci U S A 2025; 122:e2423761122. [PMID: 39969994 PMCID: PMC11874196 DOI: 10.1073/pnas.2423761122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
To investigate the structure of the mycobacterial oxidative phosphorylation machinery, we prepared inverted membrane vesicles from Mycobacterium smegmatis, enriched for vesicles containing complexes of interest, and imaged the vesicles with electron cryomicroscopy. We show that this analysis allows determination of the structure of both mycobacterial ATP synthase and the supercomplex of respiratory complexes III and IV in their native membrane. The latter structure reveals that the enzyme malate:quinone oxidoreductase (Mqo) physically associates with the respiratory supercomplex, an interaction that is lost on extraction of the proteins from the lipid bilayer. Mqo catalyzes an essential reaction in the Krebs cycle, and in vivo survival of mycobacterial pathogens is compromised when its activity is absent. We show with high-speed spectroscopy that the Mqo:supercomplex interaction enables rapid electron transfer from malate to the supercomplex. Further, the respiratory supercomplex is necessary for malate-driven, but not NADH-driven, electron transport chain activity and oxygen consumption. Together, these findings indicate a connection between the Krebs cycle and aerobic respiration that directs electrons along a single branch of the mycobacterial electron transport chain.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jiacheng Yu
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Gautier M. Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Ana Paula Lobez Rodriguez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Claire E. Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Stephanie A. Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
5
|
Kovalova T, Król S, Gamiz-Hernandez AP, Sjöstrand D, Kaila VRI, Brzezinski P, Högbom M. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc Natl Acad Sci U S A 2024; 121:e2412780121. [PMID: 39531492 PMCID: PMC11588064 DOI: 10.1073/pnas.2412780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis is one of the most common causes of death worldwide, with a rapid emergence of multi-drug-resistant strains underscoring the need for new antituberculosis drugs. Recent studies indicate that lansoprazole-a known gastric proton pump inhibitor and its intracellular metabolite, lansoprazole sulfide (LPZS)-are potential antituberculosis compounds. Yet, their inhibitory mechanism and site of action still remain unknown. Here, we combine biochemical, computational, and structural approaches to probe the interaction of LPZS with the respiratory chain supercomplex III2IV2 of Mycobacterium smegmatis, a close homolog of Mycobacterium tuberculosis supercomplex. We show that LPZS binds to the Qo cavity of the mycobacterial supercomplex, inhibiting the quinol substrate oxidation process and the activity of the enzyme. We solve high-resolution (2.6 Å) cryo-electron microscopy (cryo-EM) structures of the supercomplex with bound LPZS that together with microsecond molecular dynamics simulations, directed mutagenesis, and functional assays reveal key interactions that stabilize the inhibitor, but also how mutations can lead to the emergence of drug resistance. Our combined findings reveal an inhibitory mechanism of LPZS and provide a structural basis for drug development against tuberculosis.
Collapse
Affiliation(s)
- Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| |
Collapse
|
6
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
7
|
Lobez AP, Wu F, Di Trani JM, Rubinstein JL, Oliveberg M, Brzezinski P, Moe A. Electron transfer in the respiratory chain at low salinity. Nat Commun 2024; 15:8241. [PMID: 39300056 DOI: 10.1038/s41467-024-52475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have established that cellular electrostatic interactions are more influential than assumed previously. Here, we use cryo-EM and perform steady-state kinetic studies to investigate electrostatic interactions between cytochrome (cyt.) c and the complex (C) III2-IV supercomplex from Saccharomyces cerevisiae at low salinity. The kinetic studies show a sharp transition with a Hill coefficient ≥2, which together with the cryo-EM data at 2.4 Å resolution indicate multiple cyt. c molecules bound along the supercomplex surface. Negatively charged loops of CIII2 subunits Qcr6 and Qcr9 become structured to interact with cyt. c. In addition, the higher resolution allows us to identify water molecules in proton pathways of CIV and, to the best of our knowledge, previously unresolved cardiolipin molecules. In conclusion, the lowered electrostatic screening renders engagement of multiple cyt. c molecules that are directed by electrostatically structured CIII2 loops to conduct electron transfer between CIII2 and CIV.
Collapse
Affiliation(s)
- Ana Paula Lobez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Justin M Di Trani
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John L Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, Switzerland.
| |
Collapse
|
8
|
Kim NK, Baek JE, Lee YJ, Oh Y, Oh JI. Rel-dependent decrease in the expression of ribosomal protein genes by inhibition of the respiratory electron transport chain in Mycobacterium smegmatis. Front Microbiol 2024; 15:1448277. [PMID: 39188315 PMCID: PMC11345224 DOI: 10.3389/fmicb.2024.1448277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
In this study, we demonstrated that both the expression of most ribosomal protein genes and the amount of ribosomes were decreased in the Δaa 3 mutant of Mycobacterium smegmatis, in which the major terminal oxidase (aa 3 cytochrome c oxidase) of the respiratory electron transport chain (ETC) is inactivated, compared to those in the wild-type strain. Deletion of the rel gene encoding the major (p)ppGpp synthetase in the background of the Δaa 3 mutant restored the reduced expression of ribosomal protein genes, suggesting that inhibition of the respiratory ETC leads to the Rel-dependent stringent response (SR) in this bacterium. Both a decrease in the expression of ribosomal protein genes by overexpression of rel and the increased expression of rel in the Δaa 3 mutant relative to the wild-type strain support the Rel-dependent induction of SR in the Δaa 3 mutant. We also demonstrated that the expression of ribosomal protein genes was decreased in M. smegmatis exposed to respiration-inhibitory conditions, such as KCN and bedaquiline treatment, null mutation of the cytochrome bcc 1 complex, and hypoxia. The MprBA-SigE-SigB regulatory pathway was implicated in both the increased expression of rel and the decreased expression of ribosomal protein genes in the Δaa 3 mutant of M. smegmatis.
Collapse
Affiliation(s)
- Na-Kyeong Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jong-Eun Baek
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Ye-Jin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Riepl D, Gamiz-Hernandez AP, Kovalova T, Król SM, Mader SL, Sjöstrand D, Högbom M, Brzezinski P, Kaila VRI. Long-range charge transfer mechanism of the III 2IV 2 mycobacterial supercomplex. Nat Commun 2024; 15:5276. [PMID: 38902248 PMCID: PMC11189923 DOI: 10.1038/s41467-024-49628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Daniel Riepl
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sylwia M Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Harden SA, Courbon GM, Liang Y, Kim AS, Rubinstein JL. A simple assay for inhibitors of mycobacterial oxidative phosphorylation. J Biol Chem 2024; 300:105483. [PMID: 37992805 PMCID: PMC10770618 DOI: 10.1016/j.jbc.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.
Collapse
Affiliation(s)
- Serena A Harden
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - Angelina S Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Ukolova IV, Borovskii GB. OXPHOS Organization and Activity in Mitochondria of Plants with Different Life Strategies. Int J Mol Sci 2023; 24:15229. [PMID: 37894910 PMCID: PMC10607765 DOI: 10.3390/ijms242015229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The study of the supramolecular organization of the mitochondrial oxidative phosphorylation system (OXPHOS) in various eukaryotes has led to the accumulation of a considerable amount of data on the composition, stoichiometry, and architecture of its constituent superstructures. However, the link between the features of system arrangement and the biological characteristics of the studied organisms has been poorly explored. Here, we report a comparative investigation into supramolecular and functional OXPHOS organization in the mitochondria of etiolated shoots of winter wheat (Triticum aestivum L.), maize (Zea mays L.), and pea (Pisum sativum L.). Investigations based on BN-PAGE, in-gel activity assays, and densitometric analysis revealed both similarities and specific OXPHOS features apparently related to the life strategies of each species. Frost-resistant winter wheat was distinguished by highly stable basic I1III2IVa/b respirasomes and V2 dimers, highly active complex I, and labile complex IV, which were probably essential for effective OXPHOS adaptation during hypothermia. Maize, a C4 plant, had the highly stable dimers IV2 and V2, less active complex I, and active alternative NAD(P)H dehydrogenases. The latter fact could contribute to successful chloroplast-mitochondrial cooperation, which is essential for highly efficient photosynthesis in this species. The pea OXPHOS contained detergent-resistant high-molecular respirasomes I1-2III2IVn, highly active complexes IV and V, and stable succinate dehydrogenase, suggesting an active energy metabolism in organelles of this plant. The results and conclusions are in good agreement with the literature data on the respiratory activity of mitochondria from these species and are summarized in a proposed scheme of organization of OXPHOS fragments.
Collapse
Affiliation(s)
- Irina V. Ukolova
- Laboratory of Physiological Genetics, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | | |
Collapse
|
12
|
Di Trani JM, Gheorghita AA, Turner M, Brzezinski P, Ädelroth P, Vahidi S, Howell PL, Rubinstein JL. Structure of the bc1- cbb3 respiratory supercomplex from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2023; 120:e2307093120. [PMID: 37751552 PMCID: PMC10556555 DOI: 10.1073/pnas.2307093120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Andreea A. Gheorghita
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - P. Lynne Howell
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - John L. Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
13
|
Capela R, Félix R, Clariano M, Nunes D, Perry MDJ, Lopes F. Target Identification in Anti-Tuberculosis Drug Discovery. Int J Mol Sci 2023; 24:10482. [PMID: 37445660 DOI: 10.3390/ijms241310482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Félix
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Clariano
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diogo Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria de Jesus Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G. Cryo-Electron Microscopy Structure of the Mycobacterium tuberculosis Cytochrome bcc: aa3 Supercomplex and a Novel Inhibitor Targeting Subunit Cytochrome cI. Antimicrob Agents Chemother 2023; 67:e0153122. [PMID: 37158740 PMCID: PMC10269045 DOI: 10.1128/aac.01531-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
The mycobacterial cytochrome bcc:aa3 complex deserves the name "supercomplex" since it combines three cytochrome oxidases-cytochrome bc, cytochrome c, and cytochrome aa3-into one supramolecular machine and performs electron transfer for the reduction of oxygen to water and proton transport to generate the proton motive force for ATP synthesis. Thus, the bcc:aa3 complex represents a valid drug target for Mycobacterium tuberculosis infections. The production and purification of an entire M. tuberculosis cytochrome bcc:aa3 are fundamental for biochemical and structural characterization of this supercomplex, paving the way for new inhibitor targets and molecules. Here, we produced and purified the entire and active M. tuberculosis cyt-bcc:aa3 oxidase, as demonstrated by the different heme spectra and an oxygen consumption assay. The resolved M. tuberculosis cyt-bcc:aa3 cryo-electron microscopy structure reveals a dimer with its functional domains involved in electron, proton, oxygen transfer, and oxygen reduction. The structure shows the two cytochrome cIcII head domains of the dimer, the counterpart of the soluble mitochondrial cytochrome c, in a so-called "closed state," in which electrons are translocated from the bcc to the aa3 domain. The structural and mechanistic insights provided the basis for a virtual screening campaign that identified a potent M. tuberculosis cyt-bcc:aa3 inhibitor, cytMycc1. cytMycc1 targets the mycobacterium-specific α3-helix of cytochrome cI and interferes with oxygen consumption by interrupting electron translocation via the cIcII head. The successful identification of a new cyt-bcc:aa3 inhibitor demonstrates the potential of a structure-mechanism-based approach for novel compound development.
Collapse
Affiliation(s)
- Vikneswaran Mathiyazakan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Chui-Fann Wong
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Amaravadhi Harikishore
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| |
Collapse
|
15
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
16
|
Abdelaziz R, Di Trani JM, Sahile H, Mann L, Richter A, Liu Z, Bueler SA, Cowen LE, Rubinstein JL, Imming P. Imidazopyridine Amides: Synthesis, Mycobacterium smegmatis CIII 2CIV 2 Supercomplex Binding, and In Vitro Antimycobacterial Activity. ACS OMEGA 2023; 8:19081-19098. [PMID: 37273644 PMCID: PMC10233671 DOI: 10.1021/acsomega.3c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
Q203 (telacebec) is an imidazopyridine amide (IPA) targeting the respiratory CIII2CIV2 supercomplex of the mycobacterial electron transport chain (ETC). Aiming for a better understanding of the molecular mechanism of action of IPA, 27 analogues were prepared through a seven-step synthetic scheme. Oxygen consumption assay was designed to test the inhibition of purified Mycobacterium smegmatis CIII2CIV2 by these compounds. The assay results generally supported structure-activity relationship information obtained from the structure of M. smegmatis CIII2CIV2 bound to Q203. The IC50 of Q203 and compound 27 was 99 ± 32 and 441 ± 138 nM, respectively. All IPAs including Q203 showed no inhibition of mitochondrial ETC, proving their selectivity against mycobacteria. In vitro Mycobacterium tuberculosis growth inhibition and M. smegmatis CIII2CIV2 binding did not correlate perfectly. These observations suggest that further investigation into the mechanisms of resistance in different mycobacterial species is needed to understand the lack of the correlation pattern between CIII2CIV2 inhibition and cellular activity.
Collapse
Affiliation(s)
- Rana Abdelaziz
- Institut
Für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Justin M Di Trani
- Molecular
Medicine Program, The Hospital for Sick
Children, Toronto M5G 0A4, Canada
| | - Henok Sahile
- Departments
of Medicine and Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Lea Mann
- Institut
Für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Adrian Richter
- Institut
Für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Zhongle Liu
- Department
of Molecular Genetics, The University of
Toronto, Toronto M5G 0A4, Canada
| | - Stephanie A. Bueler
- Molecular
Medicine Program, The Hospital for Sick
Children, Toronto M5G 0A4, Canada
| | - Leah E. Cowen
- Department
of Molecular Genetics, The University of
Toronto, Toronto M5G 0A4, Canada
| | - John L. Rubinstein
- Molecular
Medicine Program, The Hospital for Sick
Children, Toronto M5G 0A4, Canada
- Department
of Medical Biophysics, The University of
Toronto, Toronto M5G 0A4, Canada
- Department
of Biochemistry, The University of Toronto, Toronto M5G 0A4, Canada
| | - Peter Imming
- Institut
Für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
17
|
Kelam LM, Wani MA, Dhaked DK. An update on ATP synthase inhibitors: A unique target for drug development in M. tuberculosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:87-104. [PMID: 37105260 DOI: 10.1016/j.pbiomolbio.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
ATP synthase is a key protein in the oxidative phosphorylation process, as it aids in the effective production of ATP (Adenosine triphosphate) in all life's of kingdoms. ATP synthases have distinctive properties that contribute to efficient ATP synthesis. The ATP synthase of mycobacterium is of special relevance since it has been identified as a target for potential anti-TB molecules, especially Bedaquiline (BDQ). Better knowledge of how mycobacterial ATP synthase functions and its peculiar characteristics will aid in our understanding of bacterial energy metabolism adaptations. Furthermore, identifying and understanding the important distinctions between human ATP synthase and bacterial ATP synthase may provide insight into the design and development of inhibitors that target specific ATP synthase. In recent years, many potential candidates targeting the ATP synthase of mycobacterium have been developed. In this review, we discuss the druggable targets of the Electron transport chain (ETC) and recently identified potent inhibitors (including clinical molecules) from 2015 to 2022 of diverse classes that target ATP synthase of M. tuberculosis.
Collapse
Affiliation(s)
- Lakshmi Mounika Kelam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Devendra K Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
18
|
Liang Y, Plourde A, Bueler SA, Liu J, Brzezinski P, Vahidi S, Rubinstein JL. Structure of mycobacterial respiratory complex I. Proc Natl Acad Sci U S A 2023; 120:e2214949120. [PMID: 36952383 PMCID: PMC10068793 DOI: 10.1073/pnas.2214949120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Oxidative phosphorylation, the combined activity of the electron transport chain (ETC) and adenosine triphosphate synthase, has emerged as a valuable target for the treatment of infection by Mycobacterium tuberculosis and other mycobacteria. The mycobacterial ETC is highly branched with multiple dehydrogenases transferring electrons to a membrane-bound pool of menaquinone and multiple oxidases transferring electrons from the pool. The proton-pumping type I nicotinamide adenine dinucleotide (NADH) dehydrogenase (Complex I) is found in low abundance in the plasma membranes of mycobacteria in typical in vitro culture conditions and is often considered dispensable. We found that growth of Mycobacterium smegmatis in carbon-limited conditions greatly increased the abundance of Complex I and allowed isolation of a rotenone-sensitive preparation of the enzyme. Determination of the structure of the complex by cryoEM revealed the "orphan" two-component response regulator protein MSMEG_2064 as a subunit of the assembly. MSMEG_2064 in the complex occupies a site similar to the proposed redox-sensing subunit NDUFA9 in eukaryotic Complex I. An apparent purine nucleoside triphosphate within the NuoG subunit resembles the GTP-derived molybdenum cofactor in homologous formate dehydrogenase enzymes. The membrane region of the complex binds acyl phosphatidylinositol dimannoside, a characteristic three-tailed lipid from the mycobacterial membrane. The structure also shows menaquinone, which is preferentially used over ubiquinone by gram-positive bacteria, in two different positions along the quinone channel, comparable to ubiquinone in other structures and suggesting a conserved quinone binding mechanism.
Collapse
Affiliation(s)
- Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, TorontoM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, TorontoM5S 1A8, Canada
| | - Alicia Plourde
- Department of Molecular and Cellular Biology, University of Guelph, TorontoN1G 2W1, Canada
| | - Stephanie A. Bueler
- Molecular Medicine Program, The Hospital for Sick Children, TorontoM5G 0A4, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, TorontoM5S 1A8, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91Stockholm, Sweden
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, TorontoN1G 2W1, Canada
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, TorontoM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, TorontoM5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoM5G 1L7, Canada
| |
Collapse
|
19
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
20
|
Sindhu T, Rajamanikandan S, Jeyakanthan J, Pal D. Investigation of protein-ligand binding motions through protein conformational morphing and clustering of cytochrome bc1-aa3 super complex. J Mol Graph Model 2023; 118:108347. [PMID: 36208591 DOI: 10.1016/j.jmgm.2022.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Cytochrome b (QcrB) is considered an essential subunit in the electron transport chain that coordinates the action of the entire cytochrome bc1 oxidase. It has been identified as an attractive drug target for a new promising clinical candidate Q203 that depletes the intracellular ATP levels in the bacterium, Mycobacterium tuberculosis. However, single point polymorphism (T313A/I) near the quinol oxidation site of QcrB developed resistance to Q203. In the present study, we analyze the structural changes and drug-resistance mechanism of QcrB due to the point mutation in detail through conformational morphing and molecular docking studies. By morphing, we generated conformers between the open and closed state of the electron transporting cytochrome bc1-aa3 super complex. We clustered them to identify four intermediate structures and relevant intra- and intermolecular motions that may be of functional relevance, especially the binding of Q203 in wild and mutant QcrB intermediate structures and their alteration in developing drug resistance. The difference in the binding score and hydrogen bond interactions between Q203 and the wild-type and mutant intermediate structures of QcrB from molecular docking studies showed that the point mutation T313A severely affected the binding affinity of the candidate drug. Together, the findings provide an in-depth understanding of QcrB inhibition in different conformations, including closed, intermediate, and open states of cytochrome bc1-aa3 super complex in Mycobacterium tuberculosis at the atomic level. We also obtain insights for designing QcrB and cytochrome bc1-aa3 inhibitors as potential therapeutics that may combat drug resistance in tuberculosis.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sundarraj Rajamanikandan
- Research and Development Wing, Sree Balaji Medical College and Hospital (BIHER), Chennai, Tamil Nadu, India
| | | | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
21
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
22
|
McNeil MB, Cheung CY, Waller NJE, Adolph C, Chapman CL, Seeto NEJ, Jowsey W, Li Z, Hameed HMA, Zhang T, Cook GM. Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:980844. [PMID: 36093195 PMCID: PMC9461714 DOI: 10.3389/fcimb.2022.980844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Mycobacterial bioenergetics has emerged as a promising space for the development of novel therapeutics. Further to this, unique combinations of respiratory inhibitors have been shown to have synergistic or synthetic lethal interactions, suggesting that combinations of bioenergetic inhibitors could drastically shorten treatment times. Realizing the full potential of this unique target space requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest interactions and potential in a clinical setting. In this review, we discuss (i) chemical-interaction, (ii) genetic-interaction and (iii) chemical-genetic interaction studies to explore the consequences of inhibiting multiple mycobacterial respiratory components. We provide potential mechanisms to describe the basis for the strongest interactions. Finally, whilst we place an emphasis on interactions that occur with existing bioenergetic inhibitors, by highlighting interactions that occur with alternative respiratory components we envision that this information will provide a rational to further explore alternative proteins as potential drug targets and as part of unique drug combinations.
Collapse
Affiliation(s)
- Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara Adolph
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cassandra L. Chapman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Noon E. J. Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| |
Collapse
|
23
|
Borisov VB, Forte E. Bioenergetics and Reactive Nitrogen Species in Bacteria. Int J Mol Sci 2022; 23:7321. [PMID: 35806323 PMCID: PMC9266656 DOI: 10.3390/ijms23137321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
24
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
25
|
Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem Soc Trans 2022; 50:877-893. [PMID: 35356963 PMCID: PMC9162462 DOI: 10.1042/bst20190963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Cytochrome (cyt) bc1, bcc and b6f complexes, collectively referred to as cyt bc complexes, are homologous isoprenoid quinol oxidising enzymes present in diverse phylogenetic lineages. Cyt bc1 and bcc complexes are constituents of the electron transport chain (ETC) of cellular respiration, and cyt b6f complex is a component of the photosynthetic ETC. Cyt bc complexes share in general the same Mitchellian Q cycle mechanism, with which they accomplish proton translocation and thus contribute to the generation of proton motive force which drives ATP synthesis. They therefore require a quinol oxidation (Qo) and a quinone reduction (Qi) site. Yet, cyt bc complexes evolved to adapt to specific electrochemical properties of different quinone species and exhibit structural diversity. This review summarises structural information on native quinones and quinone-like inhibitors bound in cyt bc complexes resolved by X-ray crystallography and cryo-EM structures. Although the Qi site architecture of cyt bc1 complex and cyt bcc complex differs considerably, quinone molecules were resolved at the respective Qi sites in very similar distance to haem bH. In contrast, more diverse positions of native quinone molecules were resolved at Qo sites, suggesting multiple quinone binding positions or captured snapshots of trajectories toward the catalytic site. A wide spectrum of inhibitors resolved at Qo or Qi site covers fungicides, antimalarial and antituberculosis medications and drug candidates. The impact of these structures for characterising the Q cycle mechanism, as well as their relevance for the development of medications and agrochemicals are discussed.
Collapse
|
26
|
Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions. Appl Environ Microbiol 2022; 88:e0220921. [PMID: 35311511 DOI: 10.1128/aem.02209-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial strains belonging to the genus Rhodococcus are able to degrade various toxic organic compounds and tolerate high concentrations of metal(loid)s. We have previously shown that Rhodococcus aetherivorans BCP1 is resistant to various levels of the two arsenic inorganic species, arsenite [As(III)] and arsenate [As(V)]. However, while arsenite showed toxic effects at concentrations as low as 5 mM, arsenate at 30 mM boosted the growth rate of BCP1 cells and was toxic only at concentrations of >100 mM. Since such behavior could be linked to peculiar aspects of its metabolism, the transcriptomic analysis of BCP1 cells exposed to 5 mM As(III) and 30 mM As(V) was performed in this work. The aim was to clarify the mechanisms underlying the arsenic stress response of the two growth phenotypes in the presence of the two different oxyanions. The results revealed that As(III) induced higher activity of reactive oxygen species (ROS)-scavenging enzymes than As(V) in relation to the expression of enzymes involved in cellular damage recovery and redox buffers/cofactors (ergothioneine, mycofactocin, and mycothiol). Further, As(III) downregulated pathways related to cell division, while both oxyanions downregulated genes involved in glycolysis. Notably, As(V) induced the expression of enzymes participating in the synthesis of metallophores and rearranged the central and energetic metabolism, also inducing alternative pathways for ATP synthesis and glucose consumption. This study, in providing transcriptomic data on R. aetherivorans exposed to arsenic oxyanions, sheds some light on the plasticity of the rhodococcal response to arsenic stress, which may be important for the improvement of biotechnological applications. IMPORTANCE Members of the genus Rhodococcus show high metabolic versatility and the ability to tolerate/resist numerous stress conditions, including toxic metals. R. aetherivorans BCP1 is able to tolerate high concentrations of the two inorganic arsenic oxyanions, arsenite [As(III)] and arsenate [As(V)]. Despite the fact that BCP1 intracellularly converts As(V) into As(III), this strain responds very differently to the presence of these two oxyanions in terms of cell growth and toxic effects. Indeed, while As(III) is highly toxic, exposure to specific concentrations of As(V) seems to boost cell growth. In this work, we investigated the transcriptomic response, ATP synthesis, glucose consumption, and H2O2 degradation in BCP1 cells exposed to As(III) and As(V), inducing two different growth phenotypes. Our results give an overview of the transcriptional rearrangements associated with the dual response of BCP1 to the two oxyanions and provide novel insights into the energetic metabolism of Rhodococcus under arsenic stress.
Collapse
|
27
|
Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Nat Commun 2022; 13:545. [PMID: 35087070 PMCID: PMC8795186 DOI: 10.1038/s41467-022-28179-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Proton-translocating respiratory complexes assemble into supercomplexes that are proposed to increase the efficiency of energy conversion and limit the production of harmful reactive oxygen species during aerobic cellular respiration. Cytochrome bc complexes and cytochrome aa3 oxidases are major drivers of the proton motive force that fuels ATP generation via respiration, but how wasteful electron- and proton transfer is controlled to enhance safety and efficiency in the context of supercomplexes is not known. Here, we address this question with the 2.8 Å resolution cryo-EM structure of the cytochrome bcc-aa3 (III2-IV2) supercomplex from the actinobacterium Corynebacterium glutamicum. Menaquinone, substrate mimics, lycopene, an unexpected Qc site, dioxygen, proton transfer routes, and conformational states of key protonable residues are resolved. Our results show how safe and efficient energy conversion is achieved in a respiratory supercomplex through controlled electron and proton transfer. The structure may guide the rational design of drugs against actinobacteria that cause diphtheria and tuberculosis. Aerobic energy metabolism is driven by proton-pumping respiratory supercomplexes. The study reports the structural basis for energy conversion in such supercomplex. It may aid metabolic engineering and drug design against diphtheria and tuberculosis.
Collapse
|
28
|
Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. iScience 2022; 25:103573. [PMID: 34984329 PMCID: PMC8692989 DOI: 10.1016/j.isci.2021.103573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Combinations of respiratory inhibitors can have synergistic or synthetic lethal interactions with sterilizing activity, suggesting that regimens with multiple bioenergetic inhibitors could shorten treatment times. However, realizing this potential requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest consequences on bacterial growth and viability. Here we have used multiplex CRISPR interference (CRISPRi) and Mycobacterium smegmatis as a physiological and molecular model for mycobacterial respiration to identify interactions between respiratory complexes. In this study, we identified synthetic lethal and synergistic interactions between respiratory complexes and demonstrated how the engineering of CRISPRi-guide sequences can be used to further explore networks of interacting gene pairs. These results provide fundamental insights into the functions of and interactions between bioenergetic complexes and the utility of CRISPRi in designing drug combinations.
Collapse
|
29
|
Lee BS, Pethe K. Telacebec: an investigational antibiotic for the treatment of tuberculosis (TB). Expert Opin Investig Drugs 2022; 31:139-144. [PMID: 35034512 DOI: 10.1080/13543784.2022.2030309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Tuberculosis is a leading cause of death by an infectious agent and has affected more than 50 million people and killed 6.7 million patients in the past 5 years alone. Rising incidence of resistance to treatment threatens the global effort to eradicate the disease. With limited options available, additional novel antibiotics are needed to form efficacious combinations for the treatment of multi-drug resistant tuberculosis (MDR-TB). Telacebec is a first-in-class antibiotic that inhibits growth of mycobacterium tuberculosis by targeting its energy metabolism. The compound has undergone three clinical studies, the latest being a phase 2a efficacy trial. AREAS COVERED This paper provides an overview of the recent progress in the development and testing of telacebec. We discuss published clinical data and examine the design and set up of its clinical trials. We also offer insights on the therapeutic potential of telacebec and aspects of which should be evaluated in the future. EXPERT OPINION The first phase 2a trial showed a correlation between dosage and bacterial load in patient sputum which should be confirmed using a direct measurement method such as colony-forming unit counting. Its clinical efficacy, favourable pharmacokinetic properties, low arrhythmogenic risk, and activity against MDR-TB strains make telacebec a suitable candidate for further development. Future clinical testing in combination with approved second-line drugs will reveal its full potential against MDR-TB. Considering recent preclinical studies, we also recommend initiating clinical trials for Buruli ulcer and leprosy.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
30
|
Pérez-Mejías G, Díaz-Quintana A, Guerra-Castellano A, Díaz-Moreno I, De la Rosa MA. Novel insights into the mechanism of electron transfer in mitochondrial cytochrome c. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100037. [PMID: 34909667 PMCID: PMC8663960 DOI: 10.1016/j.crphar.2021.100037] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a ‘drug’. The transformation from lead molecule to ‘drug’ is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline. Despite numerous drugs and vaccines undergoing clinical trials, we have not been able to control TB. Majority of articles list the advancements in the TB drug-discovery; here we review the limitations of existing treatments. Brief description of aspects to be considered for the development of one but effective drug/preventive vaccine. A glance at pediatric tuberculosis: the most neglected area of TB research which requires dedicated research efforts. A concise narrative for research aspects to be re-evaluated by both academia and pharmaceutical R&D teams.
Collapse
Key Words
- BCG, Bacille Calmette-Guérin
- BDQ, Bedaquiline
- BSL, Biosafety level
- CDC, Center for Disease Control and Prevention
- Drug discovery
- Drug resistance
- EMB, Ethambutol
- ESX, ESAT-6 secretion system
- ETC, Electron transport chain
- ETH, Ethionamide
- FAS-1, Fatty acid synthase 1
- FDA, Food and Drug Administration
- INH, Isoniazid
- LPZ, Lansoprazole
- MDR, Multidrug-resistant
- Mtb, Mycobacterium tuberculosis
- POA, pyrazinoic acid
- PZA, Pyrazinamide
- RD, the region of differences
- RIF, Rifampicin
- T7SS, Type 7 secretion system
- TB treatment
- TB, Tuberculosis
- TST, Tuberculin skin test
- Tuberculosis
- WHO, World health organization
- XDR, Extremely drug-resistant
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| |
Collapse
|
32
|
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, Brzezinski P. The respiratory supercomplex from C. glutamicum. Structure 2021; 30:338-349.e3. [PMID: 34910901 DOI: 10.1016/j.str.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
33
|
Zhou S, Wang W, Zhou X, Zhang Y, Lai Y, Tang Y, Xu J, Li D, Lin J, Yang X, Ran T, Chen H, Guddat LW, Wang Q, Gao Y, Rao Z, Gong H. Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. eLife 2021; 10:69418. [PMID: 34819223 PMCID: PMC8616580 DOI: 10.7554/elife.69418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoting Zhou
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ting Ran
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Hongming Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, China.,Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
35
|
Structure and assembly of the mammalian mitochondrial supercomplex CIII 2CIV. Nature 2021; 598:364-367. [PMID: 34616041 DOI: 10.1038/s41586-021-03927-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/12/2021] [Indexed: 01/23/2023]
Abstract
The enzymes of the mitochondrial electron transport chain are key players of cell metabolism. Despite being active when isolated, in vivo they associate into supercomplexes1, whose precise role is debated. Supercomplexes CIII2CIV1-2 (refs. 2,3), CICIII2 (ref. 4) and CICIII2CIV (respirasome)5-10 exist in mammals, but in contrast to CICIII2 and the respirasome, to date the only known eukaryotic structures of CIII2CIV1-2 come from Saccharomyces cerevisiae11,12 and plants13, which have different organization. Here we present the first, to our knowledge, structures of mammalian (mouse and ovine) CIII2CIV and its assembly intermediates, in different conformations. We describe the assembly of CIII2CIV from the CIII2 precursor to the final CIII2CIV conformation, driven by the insertion of the N terminus of the assembly factor SCAF1 (ref. 14) deep into CIII2, while its C terminus is integrated into CIV. Our structures (which include CICIII2 and the respirasome) also confirm that SCAF1 is exclusively required for the assembly of CIII2CIV and has no role in the assembly of the respirasome. We show that CIII2 is asymmetric due to the presence of only one copy of subunit 9, which straddles both monomers and prevents the attachment of a second copy of SCAF1 to CIII2, explaining the presence of one copy of CIV in CIII2CIV in mammals. Finally, we show that CIII2 and CIV gain catalytic advantage when assembled into the supercomplex and propose a role for CIII2CIV in fine tuning the efficiency of electron transfer in the electron transport chain.
Collapse
|
36
|
Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII 2CIV 2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). eLife 2021; 10:e71959. [PMID: 34590581 PMCID: PMC8523172 DOI: 10.7554/elife.71959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
The imidazopyridine telacebec, also known as Q203, is one of only a few new classes of compounds in more than 50 years with demonstrated antituberculosis activity in humans. Telacebec inhibits the mycobacterial respiratory supercomplex composed of complexes III and IV (CIII2CIV2). In mycobacterial electron transport chains, CIII2CIV2 replaces canonical CIII and CIV, transferring electrons from the intermediate carrier menaquinol to the final acceptor, molecular oxygen, while simultaneously transferring protons across the inner membrane to power ATP synthesis. We show that telacebec inhibits the menaquinol:oxygen oxidoreductase activity of purified Mycobacterium smegmatis CIII2CIV2 at concentrations similar to those needed to inhibit electron transfer in mycobacterial membranes and Mycobacterium tuberculosis growth in culture. We then used electron cryomicroscopy (cryoEM) to determine structures of CIII2CIV2 both in the presence and absence of telacebec. The structures suggest that telacebec prevents menaquinol oxidation by blocking two different menaquinol binding modes to prevent CIII2CIV2 activity.
Collapse
Affiliation(s)
- David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rana Abdelaziz
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | | | - Peter Imming
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
- Department of Biochemistry, The University of TorontoTorontoCanada
| |
Collapse
|
37
|
Sindhu T, Debnath P. Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Curr Mol Pharmacol 2021; 15:380-392. [PMID: 34602044 DOI: 10.2174/1874467214666210928152512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
The cytochrome bc1-aa3 supercomplex plays an essential role in the cellular respiratory system of Mycobacterium Tuberculosis. It transfers electrons from menaquinol to cytochrome aa3 (Complex IV) via cytochrome bc1 (Complex III), which reduces the oxygen. The electron transfer from a variety of donors into oxygen through the respiratory electron transport chain is essential to pump protons across the membrane creating an electrochemical transmembrane gradient (proton motive force, PMF) that regulates the synthesis of ATP via the oxidative phosphorylation process. Cytochrome bc1-aa3 supercomplex in M. tuberculosis is, therefore, a major drug target for antibiotic action. In recent years, several respiratory chain components have been targeted for developing new candidate drugs, illustrating the therapeutic potential of obstructing energy conversion of M. tuberculosis. The recently available cryo-EM structure of mycobacterial cytochrome bc1-aa3 supercomplex with open and closed conformations has opened new avenues for understanding its structure and function for developing more effective, new therapeutics against pulmonary tuberculosis. In this review, we discuss the role and function of several components, subunits, and drug targeting elements of the supercomplex cytochrome bc1-aa3, and its potential inhibitors in detail.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| | - Pal Debnath
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| |
Collapse
|
38
|
Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex. Proc Natl Acad Sci U S A 2021; 118:2021157118. [PMID: 33836592 DOI: 10.1073/pnas.2021157118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.
Collapse
|
39
|
Trojan D, Garcia-Robledo E, Meier DV, Hausmann B, Revsbech NP, Eichorst SA, Woebken D. Microaerobic Lifestyle at Nanomolar O 2 Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. mSystems 2021; 6:e0025021. [PMID: 34227829 PMCID: PMC8407424 DOI: 10.1128/msystems.00250-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
High-affinity terminal oxidases (TOs) are believed to permit microbial respiration at low oxygen (O2) levels. Genes encoding such oxidases are widespread, and their existence in microbial genomes is taken as an indicator for microaerobic respiration. We combined respiratory kinetics determined via highly sensitive optical trace O2 sensors, genomics, and transcriptomics to test the hypothesis that high-affinity TOs are a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally relevant model soil organisms: acidobacteria. Members of the Acidobacteria harbor branched respiratory chains terminating in low-affinity (caa3-type cytochrome c oxidases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The measured apparent Km (Km(app)) values for O2 of selected strains ranged from 37 to 288 nmol O2 liter-1, comparable to values previously assigned to low-affinity TOs. Surprisingly, we could not detect the expression of the conventional high-affinity TO (cbb3 type) at micro- and nanomolar O2 concentrations but detected the expression of low-affinity TOs. To the best of our knowledge, this is the first observation of microaerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nM. This challenges the standing hypothesis that a microaerobic lifestyle is exclusively imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at generating ATP than high-affinity TOs, their utilization could provide a great benefit, even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies that could promote the success of Acidobacteria in soil but might also be important for as-yet-unrevealed microorganisms. IMPORTANCE Low-oxygen habitats are widely distributed on Earth, ranging from the human intestine to soils. Microorganisms are assumed to have the capacity to respire low O2 concentrations via high-affinity terminal oxidases. By utilizing strains of a ubiquitous and abundant group of soil bacteria, the Acidobacteria, and combining respiration kinetics, genomics, and transcriptomics, we provide evidence that these microorganisms use the energetically more efficient low-affinity terminal oxidases to respire low-nanomolar O2 concentrations. This questions the standing hypothesis that the ability to respire traces of O2 stems solely from the activity of high-affinity terminal oxidases. We propose that this energetically efficient strategy extends into other, so-far-unrevealed microbial clades. Our findings also demonstrate that physiological predictions regarding the utilization of different O2 concentrations based solely on the presence or absence of terminal oxidases in bacterial genomes can be misleading.
Collapse
Affiliation(s)
- Daniela Trojan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Emilio Garcia-Robledo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Dimitri V. Meier
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Stephanie A. Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Rivett ED, Heo L, Feig M, Hegg EL. Biosynthesis and trafficking of heme o and heme a: new structural insights and their implications for reaction mechanisms and prenylated heme transfer. Crit Rev Biochem Mol Biol 2021; 56:640-668. [PMID: 34428995 DOI: 10.1080/10409238.2021.1957668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aerobic respiration is a key energy-producing pathway in many prokaryotes and virtually all eukaryotes. The final step of aerobic respiration is most commonly catalyzed by heme-copper oxidases embedded in the cytoplasmic or mitochondrial membrane. The majority of these terminal oxidases contain a prenylated heme (typically heme a or occasionally heme o) in the active site. In addition, many heme-copper oxidases, including mitochondrial cytochrome c oxidases, possess a second heme a cofactor. Despite the critical role of heme a in the electron transport chain, the details of the mechanism by which heme b, the prototypical cellular heme, is converted to heme o and then to heme a remain poorly understood. Recent structural investigations, however, have helped clarify some elements of heme a biosynthesis. In this review, we discuss the insight gained from these advances. In particular, we present a new structural model of heme o synthase (HOS) based on distance restraints from inferred coevolutionary relationships and refined by molecular dynamics simulations that are in good agreement with the experimentally determined structures of HOS homologs. We also analyze the two structures of heme a synthase (HAS) that have recently been solved by other groups. For both HOS and HAS, we discuss the proposed catalytic mechanisms and highlight how new insights into the heme-binding site locations shed light on previously obtained biochemical data. Finally, we explore the implications of the new structural data in the broader context of heme trafficking in the heme a biosynthetic pathway and heme-copper oxidase assembly.
Collapse
Affiliation(s)
- Elise D Rivett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
41
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
42
|
Corey RA, Song W, Duncan AL, Ansell TB, Sansom MSP, Stansfeld PJ. Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins. SCIENCE ADVANCES 2021; 7:eabh2217. [PMID: 34417182 PMCID: PMC8378812 DOI: 10.1126/sciadv.abh2217] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
Integral membrane proteins are localized and/or regulated by lipids present in the surrounding bilayer. While bacteria have relatively simple membranes, there is ample evidence that many bacterial proteins bind to specific lipids, especially the anionic lipid cardiolipin. Here, we apply molecular dynamics simulations to assess lipid binding to 42 different Escherichia coli inner membrane proteins. Our data reveal an asymmetry between the membrane leaflets, with increased anionic lipid binding to the inner leaflet regions of the proteins, particularly for cardiolipin. From our simulations, we identify >700 independent cardiolipin binding sites, allowing us to identify the molecular basis of a prototypical cardiolipin binding site, which we validate against structures of bacterial proteins bound to cardiolipin. This allows us to construct a set of metrics for defining a high-affinity cardiolipin binding site on bacterial membrane proteins, paving the way for a heuristic approach to defining other protein-lipid interactions.
Collapse
Affiliation(s)
- Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
43
|
Cai Y, Jaecklein E, Mackenzie JS, Papavinasasundaram K, Olive AJ, Chen X, Steyn AJC, Sassetti CM. Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathog 2021; 17:e1008911. [PMID: 34320028 PMCID: PMC8351954 DOI: 10.1371/journal.ppat.1008911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/09/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.
Collapse
Affiliation(s)
- Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | | | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
44
|
Shinzawa-Itoh K, Muramoto K. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome c oxidase. Biophys Physicobiol 2021; 18:186-195. [PMID: 34513548 PMCID: PMC8390318 DOI: 10.2142/biophysico.bppb-v18.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Cytochrome c oxidase (CcO), a terminal oxidase in the respiratory chain, catalyzes the reduction of O2 to water coupled with the proton pump across the membrane. Mitochondrial CcO exists in monomeric and dimeric forms, and as a monomer as part of the respiratory supercomplex, although the enzymatic reaction proceeds in the CcO monomer. Recent biochemical and crystallographic studies of monomeric and dimeric CcOs have revealed functional and structural differences among them. In solubilized mitochondrial membrane, the monomeric form is dominant, and a small amount of dimer is observed. The activity of the monomeric CcO is higher than that of the dimer, suggesting that the monomer is the active form. In the structure of monomeric CcO, a hydrogen bond network of water molecules is formed at the entrance of the proton transfer K-pathway, and in dimeric CcO, this network is altered by a cholate molecule binding between monomers. The specific binding of the cholate molecule at the dimer interface suggests that the binding of physiological ligands similar in size or shape to cholate could also trigger dimer formation as a physiological standby form. Because the dimer interface also contains weak interactions of nonspecifically bound lipid molecules, hydrophobic interactions between the transmembrane helices, and a Met-Met interaction between the extramembrane regions, these interactions could support the stabilization of the standby form. Structural analyses also suggest that hydrophobic interactions of cardiolipins bound to the trans-membrane surface of CcO are involved in forming the supercomplex.
Collapse
Affiliation(s)
- Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Muramoto
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
45
|
Garg N, Taylor AJ, Pastorelli F, Flannery SE, Jackson PJ, Johnson MP, Kelly DJ. Genes Linking Copper Trafficking and Homeostasis to the Biogenesis and Activity of the cbb 3-Type Cytochrome c Oxidase in the Enteric Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:683260. [PMID: 34248902 PMCID: PMC8267372 DOI: 10.3389/fmicb.2021.683260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial C-type haem-copper oxidases in the cbb 3 family are widespread in microaerophiles, which exploit their high oxygen-binding affinity for growth in microoxic niches. In microaerophilic pathogens, C-type oxidases can be essential for infection, yet little is known about their biogenesis compared to model bacteria. Here, we have identified genes involved in cbb 3-oxidase (Cco) assembly and activity in the Gram-negative pathogen Campylobacter jejuni, the commonest cause of human food-borne bacterial gastroenteritis. Several genes of unknown function downstream of the oxidase structural genes ccoNOQP were shown to be essential (cj1483c and cj1486c) or important (cj1484c and cj1485c) for Cco activity; Cj1483 is a CcoH homologue, but Cj1484 (designated CcoZ) has structural similarity to MSMEG_4692, involved in Qcr-oxidase supercomplex formation in Mycobacterium smegmatis. Blue-native polyacrylamide gel electrophoresis of detergent solubilised membranes revealed three major bands, one of which contained CcoZ along with Qcr and oxidase subunits. Deletion of putative copper trafficking genes ccoI (cj1155c) and ccoS (cj1154c) abolished Cco activity, which was partially restored by addition of copper during growth, while inactivation of cj0369c encoding a CcoG homologue led to a partial reduction in Cco activity. Deletion of an operon encoding PCu A C (Cj0909) and Sco (Cj0911) periplasmic copper chaperone homologues reduced Cco activity, which was partially restored in the cj0911 mutant by exogenous copper. Phenotypic analyses of gene deletions in the cj1161c-1166c cluster, encoding several genes involved in intracellular metal homeostasis, showed that inactivation of copA (cj1161c), or copZ (cj1162c) led to both elevated intracellular Cu and reduced Cco activity, effects exacerbated at high external Cu. Our work has therefore identified (i) additional Cco subunits, (ii) a previously uncharacterized set of genes linking copper trafficking and Cco activity, and (iii) connections with Cu homeostasis in this important pathogen.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Federica Pastorelli
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah E Flannery
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Phillip J Jackson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
46
|
Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. The Unusual Homodimer of a Heme‐Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoliang Zhu
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zeng
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Shuangbo Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Jana Juli
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Linhua Tai
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Danyang Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyun Pang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Sin Man Lam
- LipidALL Technologies Company Limited Changzhou 213022 Jiangsu Province China
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences No.1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohong Peng
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Fei Sun
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Center for Biological Imaging Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| |
Collapse
|
47
|
Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. The Unusual Homodimer of a Heme-Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Angew Chem Int Ed Engl 2021; 60:13323-13330. [PMID: 33665933 PMCID: PMC8251803 DOI: 10.1002/anie.202016785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 02/03/2023]
Abstract
The heme-copper oxidase superfamily comprises cytochrome c and ubiquinol oxidases. These enzymes catalyze the transfer of electrons from different electron donors onto molecular oxygen. A B-family cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus was discovered previously to be able to use both cytochrome c and naphthoquinol as electron donors. Its molecular mechanism as well as the evolutionary significance are yet unknown. Here we solved its 3.4 Å resolution electron cryo-microscopic structure and discovered a novel dimeric structure mediated by subunit I (CoxA2) that would be essential for naphthoquinol binding and oxidation. The unique structural features in both proton and oxygen pathways suggest an evolutionary adaptation of this oxidase to its hyperthermophilic environment. Our results add a new conceptual understanding of structural variation of cytochrome c oxidases in different species.
Collapse
Affiliation(s)
- Guoliang Zhu
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Hui Zeng
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Shuangbo Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jana Juli
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Linhua Tai
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Danyang Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoyun Pang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Yan Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Sin Man Lam
- LipidALL Technologies Company LimitedChangzhou213022Jiangsu ProvinceChina
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesNo.1 West Beichen Road, Chaoyang DistrictBeijing100101China
| | - Yun Zhu
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guohong Peng
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Hartmut Michel
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Fei Sun
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Center for Biological ImagingInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| |
Collapse
|
48
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
49
|
Abstract
ATP/ADP depicts the bioenergetic state of Mycobacterium tuberculosis (Mtb). However, the metabolic state of Mtb during infection remains poorly defined due to the absence of appropriate tools. Perceval HR (PHR) was recently developed to measure intracellular ATP/ADP levels, but it cannot be employed in mycobacterial cells due to mycobacterial autofluorescence. Here, we reengineered the ATP/ADP sensor Perceval HR into PHR-mCherry to analyze ATP/ADP in fast- and slow-growing mycobacteria. ATP/ADP reporter strains were generated through the expression of PHR-mCherry. Using the Mtb reporter strain, we analyzed the changes in ATP/ADP levels in response to antimycobacterial agents. As expected, bedaquiline induced a decrease in ATP/ADP. Interestingly, the transcriptional inhibitor rifampicin led to the depletion of ATP/ADP levels, while the cell wall synthesis inhibitor isoniazid did not affect the ATP/ADP levels in Mtb. The usage of this probe revealed that Mtb faces depletion of ATP/ADP levels upon phagocytosis. Furthermore, we observed that the activation of macrophages with interferon gamma and lipopolysaccharides leads to metabolic stress in intracellular Mtb. Examination of the bioenergetics of mycobacteria residing in subvacuolar compartments of macrophages revealed that the bacilli residing in phagolysosomes and autophagosomes have significantly less ATP/ADP than the bacilli residing in phagosomes. These observations indicate that phagosomes represent a niche for metabolically active Mtb, while autophagosomes and phagolysosomes harbor metabolically quiescent bacilli. Interestingly, even in activated macrophages, Mtb residing in phagosomes remains metabolically active. We further observed that macrophage activation affects the metabolic state of intracellular Mtb through the trafficking of Mtb from phagosomes to autophagosomes and phagolysosomes.
Collapse
|
50
|
Abstract
Bacteria power their energy metabolism using membrane-bound respiratory enzymes that capture chemical energy and transduce it by pumping protons or Na+ ions across their cell membranes. Recent breakthroughs in molecular bioenergetics have elucidated the architecture and function of many bacterial respiratory enzymes, although key mechanistic principles remain debated. In this Review, we present an overview of the structure, function and bioenergetic principles of modular bacterial respiratory chains and discuss their differences from the eukaryotic counterparts. We also discuss bacterial supercomplexes, which provide central energy transduction systems in several bacteria, including important pathogens, and which could open up possible avenues for treatment of disease.
Collapse
|