1
|
Zohra FT, Al-Zuhairi H, Reinoza J, Kim H, Hanke A. Probing the effect of PEG-DNA interactions and buffer viscosity on tethered DNA in shear flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647409. [PMID: 40291666 PMCID: PMC12026823 DOI: 10.1101/2025.04.05.647409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
DNA flow-stretching is a widely employed, powerful technique for investigating the mechanisms of DNA-binding proteins involved in compacting and organizing chromosomal DNA. We combine single-molecule DNA flow-stretching experiments with Brownian dynamics simulations to study the effect of the crowding agent polyethylene glycol (PEG) in these experiments. PEG interacts with DNA by an excluded volume effect, resulting in compaction of single, free DNA molecules in PEG solutions. In addition, PEG increases the viscosity of the buffer solution. By stretching surface-tethered bacteriophage lambda DNA in a flow cell and tracking the positions of a quantum dot labeled at the free DNA end using total internal reflection fluorescence (TIRF) microscopy, we find that higher PEG concentrations result in increased end-to-end length of flow-stretched DNA and decreased fluctuations of the free DNA end. To better understand our experimental results, we perform Brownian dynamics simulations of a bead-spring chain model of flow-stretched DNA in a viscous buffer that models the excluded volume effect of PEG by an effective attractive interaction between DNA segments. We find quantitative agreement between our model and the experimental results for suitable PEG-DNA interaction parameters.
Collapse
|
2
|
Contessoto VG, Oliveira Jr. AB, Brahmachari S, Wolynes PG, Di Pierro M, Onuchic JN. Energy landscape analysis of the development of the chromosome structure across the cell cycle. Proc Natl Acad Sci U S A 2025; 122:e2425225122. [PMID: 40112110 PMCID: PMC11962442 DOI: 10.1073/pnas.2425225122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
During mitosis, there are significant structural changes in chromosomes. We used a maximum entropy approach to invert experimental Hi-C data to generate effective energy landscapes for chromosomal structures at different stages during the cell cycle. Modeled mitotic structures show a hierarchical organization of helices of helices. High-periodicity loops span hundreds of kilobases or less, while the other low-periodicity ones are larger in genomic separation, spanning several megabases. The structural ensembles reveal a progressive decrease in compartmentalization from interphase to mitosis, accompanied by the appearance of a second diagonal in prometaphase, indicating an organized array of loops. While there is a local tendency to form chiral helices, overall, no preferential left-handed or right-handed chirality appears to develop on the time scale of the cell cycle. Chromatin thus appears to be a liquid crystal containing numerous defects that anneal rather slowly.
Collapse
Affiliation(s)
| | | | | | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX
- Department of Physics and Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
- Department of Biosciences, Rice University, Houston, TX77005
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX
- Department of Physics and Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
- Department of Biosciences, Rice University, Houston, TX77005
| |
Collapse
|
3
|
Chiolo I, Altmeyer M, Legube G, Mekhail K. Nuclear and genome dynamics underlying DNA double-strand break repair. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00828-1. [PMID: 40097581 DOI: 10.1038/s41580-025-00828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Changes in nuclear shape and in the spatial organization of chromosomes in the nucleus commonly occur in cancer, ageing and other clinical contexts that are characterized by increased DNA damage. However, the relationship between nuclear architecture, genome organization, chromosome stability and health remains poorly defined. Studies exploring the connections between the positioning and mobility of damaged DNA relative to various nuclear structures and genomic loci have revealed nuclear and cytoplasmic processes that affect chromosome stability. In this Review, we discuss the dynamic mechanisms that regulate nuclear and genome organization to promote DNA double-strand break (DSB) repair, genome stability and cell survival. Genome dynamics that support DSB repair rely on chromatin states, repair-protein condensates, nuclear or cytoplasmic microtubules and actin filaments, kinesin or myosin motor proteins, the nuclear envelope, various nuclear compartments, chromosome topology, chromatin loop extrusion and diverse signalling cues. These processes are commonly altered in cancer and during natural or premature ageing. Indeed, the reshaping of the genome in nuclear space during DSB repair points to new avenues for therapeutic interventions that may take advantage of new cancer cell vulnerabilities or aim to reverse age-associated defects.
Collapse
Affiliation(s)
- Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland.
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Peng F, Giacomelli G, Meyer F, Linder M, Haak M, Rückert-Reed C, Weiß M, Kalinowski J, Bramkamp M. Early onset of septal FtsK localization allows for efficient DNA segregation in SMC-deleted Corynebacterium glutamicum strains. mBio 2025; 16:e0285924. [PMID: 39873485 PMCID: PMC11898615 DOI: 10.1128/mbio.02859-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of smc causes severe growth phenotypes in many organisms. Surprisingly, smc can be deleted in Corynebacterium glutamicum, a member of the Actinomycetota phylum, without any apparent growth phenotype. SMC in C. glutamicum is loaded in a ParB-dependent fashion to the chromosome and functions in replichore cohesion. The unexpected absence of a growth phenotype in the smc mutant prompted us to screen for synthetic interactions within C. glutamicum. We generated a high-density Tn5 library from wild-type and smc-deleted C. glutamicum strains. Transposon sequencing data revealed that the DNA translocase FtsK is essential in an smc-deletion strain. In wild-type cells, FtsK localized to the septa and cell poles, showing polar enrichment during the earlier stages of the life cycle and relocating to the septum in the later stages. However, deletion of smc resulted in an earlier onset of pole-to-septum FtsK relocation, suggesting that prolonged FtsK complex activity is both required and sufficient to compensate for the absence of SMC, thus achieving efficient chromosome segregation in C. glutamicum. Deletion of ParB increases SMC and FtsK mobility. While the change in SMC dynamics aligns with previous data showing ParB's role in SMC loading on DNA, the change in FtsK mobility suggests defects in chromosome segregation. Based on our data, we propose an efficient mechanism for reliable DNA segregation in the absence of replichore arm cohesion in smc mutant cells.IMPORTANCEFaithful DNA segregation is of fundamental importance for life. Bacteria have developed efficient systems to coordinate chromosome compaction, DNA segregation, and cell division. A key factor in DNA compaction is the SMC complex that is found to be essential in many bacteria. In members of the Actinomycetota, smc is dispensable, but the reason for the lack of an smc phenotype in these bacteria remained unclear. We show here that the divisome-associated DNA pump FtsK can compensate for SMC loss and the subsequent loss in correct chromosome organization. In cells with distorted chromosomes, FtsK is recruited and stabilized earlier to the septum, allowing for DNA segregation for a larger part of the cell cycle, until chromosomes are segregated.
Collapse
Affiliation(s)
- Feng Peng
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Fabian Meyer
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marten Linder
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Markus Haak
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert-Reed
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Manuela Weiß
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
5
|
Lovejoy CA, Wessel SR, Bhowmick R, Hatoyama Y, Kanemaki MT, Zhao R, Cortez D. SRBD1 facilitates chromosome segregation by promoting topoisomerase IIα localization to mitotic chromosomes. Nat Commun 2025; 16:1675. [PMID: 39955279 PMCID: PMC11830093 DOI: 10.1038/s41467-025-56911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Accurate sister chromatid segregation requires remodeling chromosome architecture, decatenation, and attachment to the mitotic spindle. Some of these events are initiated during S-phase, but they accelerate and conclude during mitosis. Here we describe SRBD1 as a histone and nucleic acid binding protein that prevents DNA damage in interphase cells, localizes to nascent DNA during replication and the chromosome scaffold in mitosis, and is required for chromosome segregation. SRBD1 inactivation causes micronuclei, chromatin bridges, and cell death. Inactivating SRBD1 immediately prior to mitotic entry causes anaphase failure, with a reduction in topoisomerase IIα localization to mitotic chromosomes and defects in properly condensing and decatenating chromosomes. In contrast, SRBD1 is not required to complete cell division after chromosomes are condensed. Strikingly, depleting condensin II reduces the severity of the anaphase defects in SRBD1-deficient cells by restoring topoisomerase IIα localization. Thus, SRBD1 is an essential genome maintenance protein required for mitotic chromosome organization and segregation.
Collapse
Affiliation(s)
- Courtney A Lovejoy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- BPGbio, Framingham, MA, USA
| | - Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
6
|
Barth R, Davidson IF, van der Torre J, Taschner M, Gruber S, Peters JM, Dekker C. SMC motor proteins extrude DNA asymmetrically and can switch directions. Cell 2025; 188:749-763.e21. [PMID: 39824185 DOI: 10.1016/j.cell.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear. Here, we examine the directionality of DNA loop extrusion by SMCs using in vitro single-molecule experiments. We find that cohesin and SMC5/6 do not reel in DNA from both sides, as reported before, but instead extrude DNA asymmetrically, although the direction can switch over time. Asymmetric DNA loop extrusion thus is the shared mechanism across all eukaryotic SMC complexes. For cohesin, direction switches strongly correlate with the turnover of the subunit NIPBL, during which DNA strand switching may occur. Apart from expanding by extrusion, loops frequently diffuse and shrink. The findings reveal that SMCs, surprisingly, can switch directions.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
7
|
Hirano T, Kinoshita K. SMC-mediated chromosome organization: Does loop extrusion explain it all? Curr Opin Cell Biol 2025; 92:102447. [PMID: 39603149 DOI: 10.1016/j.ceb.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In recent years, loop extrusion has attracted much attention as a general mechanism of chromosome organization mediated by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin. Despite accumulating evidence in support of this mechanism, it is not fully established whether or how loop extrusion operates under physiological conditions, or whether any alternative or additional SMC-mediated mechanisms operate in the cell. In this review, we summarize non-loop extrusion mechanisms proposed in the literature and clarify unresolved issues to further enrich our understanding of how SMC protein complexes work.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kazuhisa Kinoshita
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Rutkauskas M, Kim E. In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes. Curr Opin Genet Dev 2025; 90:102284. [PMID: 39591812 DOI: 10.1016/j.gde.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Genomic DNA inside the cell's nucleus is highly organized and tightly controlled by the structural maintenance of chromosomes (SMC) protein complexes. These complexes fold genomes by creating and processively enlarging loops, a process called loop extrusion. After more than a decade of accumulating indirect evidence, recent in vitro single-molecule studies confirmed loop extrusion as an evolutionarily conserved function among eukaryotic and prokaryotic SMCs. These studies further provided important insights into mechanisms and regulations of these universal molecular machines, which will be discussed in this minireview.
Collapse
Affiliation(s)
- Marius Rutkauskas
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Zhegalova I, Ulianov S, Galitsyna A, Pletenev I, Tsoy O, Luzhin A, Vasiluev P, Bulavko E, Ivankov D, Gavrilov A, Khrameeva E, Gelfand M, Razin S. Convergent pairs of highly transcribed genes restrict chromatin looping in Dictyostelium discoideum. Nucleic Acids Res 2025; 53:gkaf006. [PMID: 39844457 PMCID: PMC11754127 DOI: 10.1093/nar/gkaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development. The transcription level within the loop interior tends to be higher than in adjacent regions. Loop interiors frequently contain functionally linked genes and genes which coherently change expression level during development. Loop anchors are predominantly positioned by the genes in convergent orientation. Results of polymer simulations and Hi-C-based observations suggest that the loop profile may arise from the interplay between transcription and extrusion-driven chromatin folding. In this scenario, a convergent gene pair serves as a bidirectional extrusion barrier or a 'diode' that controls passage of the cohesin extruder by relative transcription level of paired genes.
Collapse
Affiliation(s)
- Irina V Zhegalova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119991 Moscow, Russia
| | - Aleksandra A Galitsyna
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Ilya A Pletenev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Olga V Tsoy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Artem V Luzhin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Petr A Vasiluev
- Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Egor S Bulavko
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Alexey A Gavrilov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Mikhail S Gelfand
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119991 Moscow, Russia
| |
Collapse
|
10
|
Pradhan B, Deep A, König J, Baaske MD, Corbett KD, Kim E. Loop-extrusion-mediated plasmid DNA cleavage by the bacterial SMC Wadjet complex. Mol Cell 2025; 85:107-116.e5. [PMID: 39626662 DOI: 10.1016/j.molcel.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Structural maintenance of chromosomes (SMC) complexes play pivotal roles in genome organization and maintenance across all domains of life. In prokaryotes, SMC-family Wadjet complexes structurally resemble the widespread MukBEF but serve a defensive role by inhibiting plasmid transformation. We previously showed that Wadjet specifically cleaves plasmid DNA; however, the molecular mechanism underlying plasmid recognition remains unclear. Here, we use in vitro single-molecule imaging to directly visualize DNA loop extrusion and plasmid cleavage by Wadjet. We find that Wadjet is a symmetric loop extruder that simultaneously reels in DNA from both sides of a loop and that this activity requires a dimeric JetABC supercomplex. On surface-anchored plasmid DNAs, Wadjet extrudes the full length of a 44-kb-pair plasmid, stalls, and cleaves DNA. Our findings reveal the role of loop extrusion in the specific recognition and elimination of plasmids by Wadjet and establish loop extrusion as an evolutionarily conserved mechanism among SMC complexes across all kingdoms of life.
Collapse
Affiliation(s)
- Biswajit Pradhan
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica König
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Martin D Baaske
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Yao Q, Zhu L, Shi Z, Banerjee S, Chen C. Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression. Nat Struct Mol Biol 2025; 32:48-61. [PMID: 39152238 DOI: 10.1038/s41594-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
DNA supercoiling is a biophysical feature of the double helix with a pivotal role in biological processes. However, understanding of DNA supercoiling in the chromatin remains limited. Here, we developed azide-trimethylpsoralen sequencing (ATMP-seq), a DNA supercoiling assay offering quantitative accuracy while minimizing genomic bias and background noise. Using ATMP-seq, we directly visualized transcription-dependent negative and positive twin-supercoiled domains around genes and mapped kilobase-resolution DNA supercoiling throughout the human genome. Remarkably, we discovered megabase-scale supercoiling domains (SDs) across all chromosomes that are modulated mainly by topoisomerases I and IIβ. Transcription activities, but not the consequent supercoiling accumulation in the local region, contribute to SD formation, indicating the long-range propagation of transcription-generated supercoiling. Genome-wide SDs colocalize with A/B compartments in both human and Drosophila cells but are distinct from topologically associating domains (TADs), with negative supercoiling accumulation at TAD boundaries. Furthermore, genome-wide DNA supercoiling varies between cell states and types and regulates human gene expression, underscoring the importance of supercoiling dynamics in chromatin regulation and function.
Collapse
Affiliation(s)
- Qian Yao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linying Zhu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Shi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Valdés A, Haering CH. Adding a twist to the loops: the role of DNA superhelicity in the organization of chromosomes by SMC protein complexes. Biochem Soc Trans 2024; 52:2487-2497. [PMID: 39700017 PMCID: PMC11668287 DOI: 10.1042/bst20240650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin, condensin, and the Smc5/6 complex, are integral to various processes in chromosome biology. Despite their distinct roles, these complexes share two key properties: the ability to extrude DNA into large loop structures and the capacity to alter the superhelicity of the DNA double helix. In this review, we explore the influence of eukaryotic SMC complexes on DNA topology, debate its potential physiological function, and discuss new structural insights that may explain how these complexes mediate changes in DNA topology.
Collapse
Affiliation(s)
- Antonio Valdés
- Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany
| | - Christian H. Haering
- Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany
| |
Collapse
|
13
|
Janissen R, Barth R, Davidson IF, Peters JM, Dekker C. All eukaryotic SMC proteins induce a twist of -0.6 at each DNA loop extrusion step. SCIENCE ADVANCES 2024; 10:eadt1832. [PMID: 39671477 PMCID: PMC11641105 DOI: 10.1126/sciadv.adt1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Eukaryotes carry three types of structural maintenance of chromosome (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion (LE). SMCs modulate DNA supercoiling but remains incompletely understood how this is achieved. Using a single-molecule magnetic tweezers assay that directly measures how much twist is induced by individual SMCs in each LE step, we demonstrate that all three SMC complexes induce the same large negative twist (i.e., linking number change [Formula: see text] of ~-0.6 at each LE step) into the extruded loop, independent of step size and DNA tension. Using ATP hydrolysis mutants and nonhydrolyzable ATP analogs, we find that ATP binding is the twist-inducing event during the ATPase cycle, coinciding with the force-generating LE step. The fact that all three eukaryotic SMC proteins induce the same amount of twist indicates a common DNA-LE mechanism among these SMC complexes.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
- BITZ Transformation Lab, Deggendorf Institute of Technology, Oberschneiding, 94363, Germany
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| | - Iain F. Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| |
Collapse
|
14
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Martin-Gonzalez A, Tišma M, Analikwu B, Barth A, Janissen R, Antar H, Kemps G, Gruber S, Dekker C. DNA supercoiling enhances DNA condensation by ParB proteins. Nucleic Acids Res 2024; 52:13255-13268. [PMID: 39441069 PMCID: PMC11602141 DOI: 10.1093/nar/gkae936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The ParABS system plays a critical role in bacterial chromosome segregation. The key component of this system, ParB, loads and spreads along DNA to form a local protein-DNA condensate known as a partition complex. As bacterial chromosomes are heavily supercoiled due to the continuous action of RNA polymerases, topoisomerases and nucleoid-associated proteins, it is important to study the impact of DNA supercoiling on the ParB-DNA partition complex formation. Here, we use an in-vitro single-molecule assay to visualize ParB on supercoiled DNA. Unlike most DNA-binding proteins, individual ParB proteins are found to not pin plectonemes on supercoiled DNA, but freely diffuse along supercoiled DNA. We find that DNA supercoiling enhances ParB-DNA condensation, which initiates at lower ParB concentrations than on DNA that is torsionally relaxed. ParB proteins induce a DNA-protein condensate that strikingly absorbs all supercoiling writhe. Our findings provide mechanistic insights that have important implications for our understanding of bacterial chromosome organization and segregation.
Collapse
Affiliation(s)
- Alejandro Martin-Gonzalez
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
- BITZ Transformation Lab, Deggendorf Institute of Technology, 94363 Oberschneiding, Germany
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL); CH-1015 Lausanne, Switzerland
| | - Gianluca Kemps
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL); CH-1015 Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Massweg 9, 2629HZ Delft, Netherlands
| |
Collapse
|
16
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
17
|
Li S, Vemuri C, Chen C. DNA topology: A central dynamic coordinator in chromatin regulation. Curr Opin Struct Biol 2024; 87:102868. [PMID: 38878530 PMCID: PMC11283972 DOI: 10.1016/j.sbi.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/29/2024]
Abstract
Double helical DNA winds around nucleosomes, forming a beads-on-a-string array that further contributes to the formation of high-order chromatin structures. The regulatory components of the chromatin, interacting intricately with DNA, often exploit the topological tension inherent in the DNA molecule. Recent findings shed light on, and simultaneously complicate, the multifaceted roles of DNA topology (also known as DNA supercoiling) in various aspects of chromatin regulation. Different studies may emphasize the dynamics of DNA topological tension across different scales, interacting with diverse chromatin factors such as nucleosomes, nucleic acid motors that propel DNA-tracking processes, and DNA topoisomerases. In this review, we consolidate recent studies and establish connections between distinct scientific discoveries, advancing our current understanding of chromatin regulation mediated by the supercoiling tension of the double helix. Additionally, we explore the implications of DNA topology and DNA topoisomerases in human diseases, along with their potential applications in therapeutic interventions.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charan Vemuri
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Brahmachari S, Tripathi S, Onuchic JN, Levine H. Nucleosomes play a dual role in regulating transcription dynamics. Proc Natl Acad Sci U S A 2024; 121:e2319772121. [PMID: 38968124 PMCID: PMC11252751 DOI: 10.1073/pnas.2319772121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Transcription has a mechanical component, as the translocation of the transcription machinery or RNA polymerase (RNAP) on DNA or chromatin is dynamically coupled to the chromatin torsion. This posits chromatin mechanics as a possible regulator of eukaryotic transcription, however, the modes and mechanisms of this regulation are elusive. Here, we first take a statistical mechanics approach to model the torsional response of topology-constrained chromatin. Our model recapitulates the experimentally observed weaker torsional stiffness of chromatin compared to bare DNA and proposes structural transitions of nucleosomes into chirally distinct states as the driver of the contrasting torsional mechanics. Coupling chromatin mechanics with RNAP translocation in stochastic simulations, we reveal a complex interplay of DNA supercoiling and nucleosome dynamics in governing RNAP velocity. Nucleosomes play a dual role in controlling the transcription dynamics. The steric barrier aspect of nucleosomes in the gene body counteracts transcription via hindering RNAP motion, whereas the chiral transitions facilitate RNAP motion via driving a low restoring torque upon twisting the DNA. While nucleosomes with low dissociation rates are typically transcriptionally repressive, highly dynamic nucleosomes offer less of a steric barrier and enhance the transcription elongation dynamics of weakly transcribed genes via buffering DNA twist. We use the model to predict transcription-dependent levels of DNA supercoiling in segments of the budding yeast genome that are in accord with available experimental data. The model unveils a paradigm of DNA supercoiling-mediated interaction between genes and makes testable predictions that will guide experimental design.
Collapse
Affiliation(s)
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX77005
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA02115
- Department of Physics, Northeastern University, Boston, MA02115
| |
Collapse
|
19
|
Rudnizky S, Murray PJ, Wolfe CH, Ha T. Single-Macromolecule Studies of Eukaryotic Genomic Maintenance. Annu Rev Phys Chem 2024; 75:209-230. [PMID: 38382570 DOI: 10.1146/annurev-physchem-090722-010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Murray
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Clara H Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Lee KH, Kim J, Kim JH. 3D epigenomics and 3D epigenopathies. BMB Rep 2024; 57:216-231. [PMID: 38627948 PMCID: PMC11139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies. [BMB Reports 2024; 57(5): 216-231].
Collapse
Affiliation(s)
- Kyung-Hwan Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jungyu Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Hun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
21
|
Lebreton J, Colin L, Chatre E, Bernard P. RNAP II antagonizes mitotic chromatin folding and chromosome segregation by condensin. Cell Rep 2024; 43:113901. [PMID: 38446663 DOI: 10.1016/j.celrep.2024.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.
Collapse
Affiliation(s)
- Jérémy Lebreton
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Léonard Colin
- CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Elodie Chatre
- Lymic-Platim, University Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Pascal Bernard
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France; CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
22
|
Haarhuis JHI, Rowland BD. Plot twists and cutting corners with atypical SMCs. Mol Cell 2024; 84:814-815. [PMID: 38458170 DOI: 10.1016/j.molcel.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
In this issue of Molecular Cell, two papers provide insight into atypical structural maintenance of chromosomes protein complexes (SMCs). Jeppsson et al.1 link Smc5/6 to supercoiled DNA, and Roisné-Hamelin et al.2 show how Wadjet SMC bends and cleaves invading DNAs.
Collapse
Affiliation(s)
- Judith H I Haarhuis
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Jeppsson K, Pradhan B, Sutani T, Sakata T, Umeda Igarashi M, Berta DG, Kanno T, Nakato R, Shirahige K, Kim E, Björkegren C. Loop-extruding Smc5/6 organizes transcription-induced positive DNA supercoils. Mol Cell 2024; 84:867-882.e5. [PMID: 38295804 DOI: 10.1016/j.molcel.2024.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
The structural maintenance of chromosomes (SMC) protein complexes-cohesin, condensin, and the Smc5/6 complex (Smc5/6)-are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6's recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled DNA at cohesin-dependent loop boundaries on budding yeast (Saccharomyces cerevisiae) chromosomes. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes and efficiently initiate loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.
Collapse
Affiliation(s)
- Kristian Jeppsson
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden; Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Biswajit Pradhan
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Takashi Sutani
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toyonori Sakata
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden; Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Miki Umeda Igarashi
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
| | - Davide Giorgio Berta
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Takaharu Kanno
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden; Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| | - Camilla Björkegren
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden.
| |
Collapse
|
24
|
Riddihough G, Surridge C, Ladurner AG, Clyne RK, Hodges M, Heinrichs A, Marcinkiewicz K, Ullrich F, Perdigoto C, Osman S, Ciazynska K, Typas D. Looking back at 30 years of Nature Structural & Molecular Biology. Nat Struct Mol Biol 2024; 31:397-403. [PMID: 38499829 DOI: 10.1038/s41594-024-01248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
|
25
|
Fukute J, Maki K, Adachi T. The nucleolar shell provides anchoring sites for DNA untwisting. Commun Biol 2024; 7:83. [PMID: 38263258 PMCID: PMC10805735 DOI: 10.1038/s42003-023-05750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.
Collapse
Affiliation(s)
- Jumpei Fukute
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
| | - Koichiro Maki
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
| | - Taiji Adachi
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
26
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
27
|
Feng C, Wang J, Chu X. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes. J Mol Cell Biol 2023; 15:mjad042. [PMID: 37365687 PMCID: PMC10782906 DOI: 10.1093/jmcb/mjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
The organized three-dimensional chromosome architecture in the cell nucleus provides scaffolding for precise regulation of gene expression. When the cell changes its identity in the cell-fate decision-making process, extensive rearrangements of chromosome structures occur accompanied by large-scale adaptations of gene expression, underscoring the importance of chromosome dynamics in shaping genome function. Over the last two decades, rapid development of experimental methods has provided unprecedented data to characterize the hierarchical structures and dynamic properties of chromosomes. In parallel, these enormous data offer valuable opportunities for developing quantitative computational models. Here, we review a variety of large-scale polymer models developed to investigate the structures and dynamics of chromosomes. Different from the underlying modeling strategies, these approaches can be classified into data-driven ('top-down') and physics-based ('bottom-up') categories. We discuss their contributions to offering valuable insights into the relationships among the structures, dynamics, and functions of chromosomes and propose the perspective of developing data integration approaches from different experimental technologies and multidisciplinary theoretical/simulation methods combined with different modeling strategies.
Collapse
Affiliation(s)
- Cibo Feng
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Jin Wang
- Department of Chemistry and Physics, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
28
|
Wang C, Manders F, Groh L, Oldenkamp R, Logie C. Corticosteroid-induced chromatin loop dynamics at the FKBP5 gene. Ann N Y Acad Sci 2023; 1529:109-119. [PMID: 37796452 DOI: 10.1111/nyas.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
FKBP5 is a 115-kb-long glucocorticoid-inducible gene implicated in psychiatric disorders. To investigate the complexities of chromatin interaction frequencies at the FKBP5 topologically associated domain (TAD), we deployed 15 one-to-all chromatin capture viewpoints near gene promoters, enhancers, introns, and CTCF-loop anchors. This revealed a "one-TAD-one-gene" structure encompassing the FKBP5 promoter and its enhancers. The FKBP5 promoter and its two glucocorticoid-stimulated enhancers roam the entire TAD while displaying subtle cell type-specific interactomes. The FKBP5 TAD consists of two nested CTCF loops that are coordinated by one CTCF site in the eighth intron of FKBP5 and another beyond its polyadenylation site, 61 kb further. Loop extension correlates with transcription increases through the intronic CTCF site. This is efficiently compensated for, since the short loop is restored even under high transcription regimes. The boundaries of the FKBP5 TAD consist of divergent CTCF site patterns, harbor multiple smaller genes, and are resilient to glucocorticoid stimulation. Interestingly, both FKBP5 TAD boundaries harbor H3K27me3-marked heterochromatin blocks that may reinforce them. We propose that cis-acting genetic and epigenetic polymorphisms underlying FKBP5 expression variation are likely to reside within a 240-kb region that consists of the FKBP5 TAD, its left sub-TAD, and both its boundaries.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Freek Manders
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Gendx, Utrecht, The Netherlands
| | - Laszlo Groh
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Roel Oldenkamp
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Bürmann F, Löwe J. Structural biology of SMC complexes across the tree of life. Curr Opin Struct Biol 2023; 80:102598. [PMID: 37104976 PMCID: PMC10512200 DOI: 10.1016/j.sbi.2023.102598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes guard and organize the three-dimensional structure of chromosomal DNA across the tree of life. Many SMC functions can be explained by an inherent motor activity that extrudes large DNA loops while the complexes move along their substrate. Here, we review recent structural insights into the architecture and conservation of these molecular machines, their interaction with DNA, and the conformational changes that are linked to their ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
30
|
Qiao YP, Ren CL, Ma YQ. Two Different Ways of Stress Release in Supercoiled DNA Minicircles under DNA Nick. J Phys Chem B 2023; 127:4015-4021. [PMID: 37126597 DOI: 10.1021/acs.jpcb.2c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is generally believed that DNA nick is an effective way to release stress in supercoiled DNA, resulting from the twisting motion that individual strands rotate around the axis of the DNA helix. Here, we use MD simulations based on the oxDNA model to investigate the relaxation of 336 bp supercoiled minicircular DNA under DNA nick. Our simulations show that stress release, characterized by the abrupt decrease in linking number, may be induced by two types of DNA motion depending on the nick position. Except for the twisting motion, there is a writhing motion, that is, double strands collectively rotating with one plectoneme removal, which may occur in the process of DNA relaxation with the nick position in the loop region. Moreover, the writhing motion is more likely to occur in the DNA with relatively high hardness, such as C-G pairs. Our simulation results uncover the relationship between structural transformation, stress release, and DNA motion during the dynamic process under DNA nick, indicating the influence of nick position on the relaxation of the supercoiled DNA.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Martin L, Neguembor MV, Cosma MP. Women’s contribution in understanding how topoisomerases, supercoiling, and transcription control genome organization. Front Mol Biosci 2023; 10:1155825. [PMID: 37051322 PMCID: PMC10083264 DOI: 10.3389/fmolb.2023.1155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
One of the biggest paradoxes in biology is that human genome is roughly 2 m long, while the nucleus containing it is almost one million times smaller. To fit into the nucleus, DNA twists, bends and folds into several hierarchical levels of compaction. Still, DNA has to maintain a high degree of accessibility to be readily replicated and transcribed by proteins. How compaction and accessibility co-exist functionally in human cells is still a matter of debate. Here, we discuss how the torsional stress of the DNA helix acts as a buffer, regulating both chromatin compaction and accessibility. We will focus on chromatin supercoiling and on the emerging role of topoisomerases as pivotal regulators of genome organization. We will mainly highlight the major breakthrough studies led by women, with the intention of celebrating the work of this group that remains a minority within the scientific community.
Collapse
Affiliation(s)
- Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Technical Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Lead Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| |
Collapse
|
32
|
Martínez‐García B, Dyson S, Segura J, Ayats A, Cutts EE, Gutierrez‐Escribano P, Aragón L, Roca J. Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage. EMBO J 2023; 42:e111913. [PMID: 36533296 PMCID: PMC9890231 DOI: 10.15252/embj.2022111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP-mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of -0.4. This ∆Lk increases to -0.8 during ATP binding and resets to -0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin-DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a "pinch and merge" mechanism implies that two DNA-binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.
Collapse
Affiliation(s)
| | - Sílvia Dyson
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Joana Segura
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Alba Ayats
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Erin E Cutts
- DNA Motors GroupMRC London Institute of Medical Sciences (LMS)LondonUK
| | | | - Luís Aragón
- DNA Motors GroupMRC London Institute of Medical Sciences (LMS)LondonUK
| | - Joaquim Roca
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
33
|
Wang Q, Li Z, Zhou S, Li Z, Huang X, He Y, Zhang Y, Zhao X, Tang Y, Xu M. NCAPG2 could be an immunological and prognostic biomarker: From pan-cancer analysis to pancreatic cancer validation. Front Immunol 2023; 14:1097403. [PMID: 36776838 PMCID: PMC9911455 DOI: 10.3389/fimmu.2023.1097403] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
More recently, NCAPG2 has emerged as an intrinsically essential participant of the condensin II complex involved in the process of chromosome cohesion and stabilization in mitosis, and its position in particular tumours is now being highlighted. Simultaneously, the genetic properties of NCAPG2 hint that it might have enormous potential to interpret the malignant progression of tumors in a broader perspective, that is, in pan-cancer. Yet, at present, this recognition remains merely superficial and there is a lack of more detailed studies to explore the underlying pathogenesis. To meet this need, the current study was undertaken to comprehensively elucidate the potential functions of NCAPG2 in pan-cancer, based on a combination of existing databases like TCGA and GTEx. NCAPG2 was identified to be overexpressed in almost every tumor and to exhibit significant prognostic and diagnostic efficacy. Furthermore, the correlation between NCAPG2 and selected immune features, namely immune cell infiltration, immune checkpoint genes, TMB, MSI, etc. also indicates that NCAPG2 could potentially be applied in guidance of immunotherapy. Subsequently, in pancreatic cancer, this study further clarified the utility of NCAPG2 that downregulation of its expression could result in reduced proliferation, invasion and metastasis of pancreatic cancer cells, among such phenotypical changes, the epithelial-mesenchymal transition disruption could be at least one of the possible mechanisms raising or enhancing tumorigenesis. Taken above, NCAPG2, as a member of pan-oncogenes, would serve as a biomarker and potential therapeutic target for a range of malignancies, sharing new insights into precision medicine.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Xiaoxian Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
35
|
Abstract
Structural maintenance of chromosomes (SMC) complexes such as condensin regulate chromosome organization by extruding loops. A new study uses single-molecule imaging of condensin on supercoiled DNA to understand how condensins navigate the under- and overwound DNA states common throughout the genome.
Collapse
|