1
|
Li G, Xu P, Zheng Z, Fung JCH. Improved Crop-specific NOx Emissions from Croplands in Southeast Asia over 1980-2019. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3562-3568. [PMID: 39948734 DOI: 10.1021/acs.est.4c09334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Nitrogen oxides (NOx) play an important role in the formation of tropospheric ozone and fine particulate matter. Although regulatory policies in Southeast Asia have successfully limited combustion sources of NOx emissions, fertilized cropland NOx emissions have become increasingly prominent. However, the amount and geographic distribution of NOx emissions from fertilized croplands over Southeast Asia remain largely uncertain. Here, we use a bottom-up spatial model that combines temperature dependence and the Yienger and Levy (YL95) scheme to quantify the spatiotemporal changes in crop-specific fertilized cropland NOx emissions at five-arcminute resolution (about 10 km) from 1980 to 2019. The results show a 4-fold increase in NOx emissions from fertilized croplands in Southeast Asia from 12.9 Gg N yr-1 (R50, the difference between the 25% and 75% quantiles: 8.8-17.7 Gg N yr-1) in 1980 to 53.3 Gg N yr-1 (R50: 35.6-72.0 Gg N yr-1) in 2019. During 1980-2019, the annual NOx emissions of rice, maize and other crops showed increasing spatial trends (0.20, 0.21, and 0.63 Gg N yr-2, respectively), whereas those of wheat remained flat (-0.0006 Gg N yr-2). Our new estimate averages 19% lower than previous bottom-up and top-down estimates. The NOx emissions hotspots are mainly located in Indonesia, Vietnam, Thailand and the Philippines for rice, maize and other crops and in Myanmar for wheat. Our crop-specific and spatially explicit NOx emissions inventories can contribute to identifying emissions and reduction hotspots and assessing future policy implications regarding mitigation options for improving air quality and food security in Southeast Asia. Future studies that comprehensively consider meteorological conditions, soil properties, management practices and small-scale land-use changes can potentially lower the uncertainty of this estimation.
Collapse
Affiliation(s)
- Geng Li
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong 999077, China
- Division of Emerging Interdisciplinary Areas, the Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Peng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhonghua Zheng
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Jimmy C H Fung
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
2
|
Luu R, Schervish M, June NA, O’Donnell SE, Jathar SH, Pierce JR, Shiraiwa M. Global Simulations of Phase State and Equilibration Time Scales of Secondary Organic Aerosols with GEOS-Chem. ACS EARTH & SPACE CHEMISTRY 2025; 9:288-302. [PMID: 40008139 PMCID: PMC11849007 DOI: 10.1021/acsearthspacechem.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
The phase state of secondary organic aerosols (SOA) can range from liquid through amorphous semisolid to glassy solid, which is important to consider as it influences various multiphase processes including SOA formation and partitioning, multiphase chemistry, and cloud activation. In this study, we simulate the glass transition temperature and viscosity of SOA over the globe using the global chemical transport model, GEOS-Chem. The simulated spatial distributions show that SOA at the surface exist as liquid over equatorial regions and oceans, semisolid in the midlatitude continental regions, and glassy solid over lands with low relative humidity. The predicted SOA viscosities are mostly consistent with the available measurements. In the free troposphere, SOA particles are mostly predicted to be semisolid at 850 hPa and glassy solid at 500 hPa, except over tropical regions including Amazonia, where SOA are predicted to be low viscous. Phase state also exhibits seasonal variation with a higher frequency of semisolid and solid particles in winter compared to warmer seasons. We calculate equilibration time scales of SOA partitioning (τeq) and effective mass accommodation coefficient (αeff), indicating that τeq is shorter than the chemical time step of GEOS-Chem of 20 min and αeff is close to unity for most locations at the surface level, supporting the application of equilibrium SOA partitioning. However, τeq is prolonged and αeff is lowered over drylands and most regions in the upper troposphere, suggesting that kinetically limited growth would need to be considered for these regions in future large-scale model studies.
Collapse
Affiliation(s)
- Regina Luu
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Meredith Schervish
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Nicole A. June
- Department
of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Samuel E. O’Donnell
- Department
of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Shantanu H. Jathar
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80521, United States
| | - Jeffrey R. Pierce
- Department
of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
3
|
Chen X, Gong D, Liu S, Meng X, Li Z, Lin Y, Li Q, Xu R, Chen S, Chang Q, Ma F, Ding X, Deng S, Zhang C, Wang H, Wang B. In-situ online investigation of biogenic volatile organic compounds emissions from tropical rainforests in Hainan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176668. [PMID: 39370005 DOI: 10.1016/j.scitotenv.2024.176668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by tropical plants represent a significant proportion of global emissions, but the in-situ BVOC measurements in tropical rainforests are extremely sparse. Herein, a vehicle-mounted mobile monitoring system was developed for in-situ online investigations of BVOC emissions from thirty representative tree species in the tropical rainforests of Hainan Island, southern China. The results showed that monoterpenes were the primary BVOCs emitted from most broadleaf trees. Isoprene, sabinene, γ-terpinene and β-ocimene were the most abundant BVOCs. Localized canopy-scale emission factors (EFs) exhibited notable discrepancies with the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), specifically with isoprene EFs being slightly lower than the model, while the EFs for monoterpenes and sesquiterpenes were 1 to 27 times higher than those in MEGAN. The BVOC emission inventory for the predominant mature forest species in Hainan Island in 2023 was further estimated to be 244.43 Gg C·yr-1, with isoprene and monoterpenes accounting for 74 % and 16 %, respectively. Additionally, unimodal monthly variation patterns were revealed, with BVOC emissions peaked in July (30.08 Gg C·yr-1) and bottomed in January (8.84 Gg C·yr-1). This study demonstrates the potential and versatility of the applied mobile platform for in-situ online measurements of plant volatiles. Our findings provide important data support for reducing uncertainties in BVOC emission estimations in tropical rainforests and for evaluating their health benefits in the context of forest therapy.
Collapse
Affiliation(s)
- Xi Chen
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| | - Shiwei Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xinxin Meng
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Zhu Li
- Wuzhishan Ecological Environment Monitoring Station, Wuzhishan, Hainan 572299, China
| | - Youjing Lin
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Qinqin Li
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ruiyun Xu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Sijun Chen
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qinghua Chang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xiaoxiao Ding
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shuo Deng
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Chengliang Zhang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| |
Collapse
|
4
|
Vazquez Santiago J, Hata H, Martinez-Noriega EJ, Inoue K. Ozone trends and their sensitivity in global megacities under the warming climate. Nat Commun 2024; 15:10236. [PMID: 39592683 PMCID: PMC11599728 DOI: 10.1038/s41467-024-54490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Tropospheric ozone formation depends on the emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx). In megacities, abundant VOC and NOx sources cause relentlessly high ozone episodes, affecting a large share of the global population. This study uses data from the Ozone Monitoring Instrument for formaldehyde (HCHO) and nitrogen dioxide (NO2) as proxy data for VOC and NOx emissions, respectively, with their ratio serving as an indicator of ozone sensitivity. Ground-level ozone (O3) reanalysis from the Copernicus Atmosphere Monitoring is used to assess the O3 trends. We evaluate changes from 2005 to 2019 and their relationship with the warming environment in 41 megacities worldwide, applying seasonal Mann-Kendall, trend decomposition methods, and Pearson correlation analysis. We reveal significant increases in global HCHO (0.1 to 0.31 × 1015 mol cm-2 year-1) and regionally varying NO2 (-0.22 to 0.07 × 1015 mol cm-2 year-1). O3 trends range from -0.31 to 0.70 ppb year-1, highlighting the relevance of precursor abundance on O3 levels. The strong correlation between precursor emissions and increasing temperature suggests that O3 will continue to rise as climate change persists.
Collapse
Affiliation(s)
- Jairo Vazquez Santiago
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8560, Japan.
| | - Hiroo Hata
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8560, Japan
| | - Edgar J Martinez-Noriega
- Digital Architecture Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuya Inoue
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8560, Japan.
| |
Collapse
|
5
|
Liu S, Wei J, Li X, Shu L, Zhang J, Fu TM, Yang X, Zhu L. Underappreciated roles of soil nitrogen oxide emissions on global acute health burden. ENVIRONMENT INTERNATIONAL 2024; 193:109087. [PMID: 39504591 DOI: 10.1016/j.envint.2024.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
The recognized importance of ambient fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) on human health has prompted the world to enact increasingly strict regulations on anthropogenic nitrogen oxides (NOx) emissions. However, the health concerns from soil NOx, potentially driven by fertilizer input but conventionally categorized as natural sources, remain less studied. Here, we emphasize the underappreciated roles of soil NOx emissions on health burden attributable to short-term PM2.5, O3, and NO2 exposure. Globally, we quantify acute health effects using machine-learning-based daily exposure estimates and identify influences of soil NOx emissions based on chemical transport model simulations. We find that 72.3% of the globe is affected by soil NOx emissions, whose contributions to short-term PM2.5, O3, and NO2 pollution lead to 13.9 (95% Confidence Interval [CI]: 9.1-18.8), 26.0 (18.2-34.2), and 13.9 (10.3-17.5) thousand premature mortality, respectively, in 2019. With distinct variations in regions, seasons, and pollutants, soil NOx-originated air pollution poses a global health concern, particularly for developing regions and intensively agricultural areas. In response to the intensive fertilizer use, South Asia, Southern Sub-Saharan Africa, and Central Europe witness the largest soil NOx-related health burden of up to 1.6 (95% CI: 1.1-2.1) mortality per 100k population. The overall health risk peaks in May, with O3 pollution typically dominating the soil NOx-attributable health burden during warm seasons and NO2 or PM2.5 during cold months. Our study highlights the necessity of dynamically adapted agricultural strategies for health-oriented multi-pollutant control, among which the improved use of synthetic fertilizers deserves priority under the ever-changing climate.
Collapse
Affiliation(s)
- Song Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xicheng Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Shu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jiaming Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhu H, Martin RV, van Donkelaar A, Hammer MS, Li C, Meng J, Oxford CR, Liu X, Li Y, Zhang D, Singh I, Lyapustin A. Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM 2.5 and aerosol optical depth. ATMOSPHERIC CHEMISTRY AND PHYSICS 2024; 24:11565-11584. [DOI: 10.5194/acp-24-11565-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract. Ambient fine particulate matter (PM2.5) is the leading global environmental determinant of mortality. However, large gaps exist in ground-based PM2.5 monitoring. Satellite remote sensing of aerosol optical depth (AOD) offers information to help fill these gaps worldwide when augmented with a modeled PM2.5–AOD relationship. This study aims to understand the spatial pattern and driving factors of this relationship by examining η (PM2.5AOD) using both observations and modeling. A global observational estimate of η for the year 2019 is inferred from 6870 ground-based PM2.5 measurement sites and satellite-retrieved AOD. The global chemical transport model GEOS-Chem, in its high-performance configuration (GCHP), is used to interpret the observed spatial pattern of annual mean η. Measurements and the GCHP simulation consistently identify a global population-weighted mean η value of 96–98 µg m−3, with regional values ranging from 59.8 µg m−3 in North America to more than 190 µg m−3 in Africa. The highest η value is found in arid regions, where aerosols are less hygroscopic due to mineral dust, followed by regions strongly influenced by surface aerosol sources. Relatively low η values are found over regions distant from strong aerosol sources. The spatial correlation of observed η values with meteorological fields, aerosol vertical profiles, and aerosol chemical composition reveals that spatial variation in η is strongly influenced by aerosol composition and aerosol vertical profiles. Sensitivity tests with globally uniform parameters quantify the effects of aerosol composition and aerosol vertical profiles on spatial variability in η, exhibiting a population-weighted mean difference in aerosol composition of 12.3 µg m−3, which reflects the determinant effects of composition on aerosol hygroscopicity and aerosol optical properties, and a population-weighted mean difference in the aerosol vertical profile of 8.4 µg m−3, which reflects spatial variation in the column–surface relationship.
Collapse
|
7
|
Zhang D, Martin RV, van Donkelaar A, Li C, Zhu H, Lyapustin A. Impact of Model Spatial Resolution on Global Geophysical Satellite-Derived Fine Particulate Matter. ACS ES&T AIR 2024; 1:1112-1123. [PMID: 39295744 PMCID: PMC11407304 DOI: 10.1021/acsestair.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
Global geophysical satellite-derived ambient fine particulate matter (PM2.5) inference relies upon a geophysical relationship (η) from a chemical transport model to relate satellite retrievals of aerosol optical depth (AOD) to surface PM2.5. The resolution dependence of simulated η warrants further investigation. In this study, we calculate geophysical PM2.5 with simulated η from the GEOS-Chem model in its high-performance configuration (GCHP) at cubed-sphere resolutions of C360 (∼25 km) and C48 (∼200 km) and satellite AOD at 0.01° (∼1 km). Annual geophysical PM2.5 concentrations inferred from satellite AOD and GCHP simulations at ∼25 km and ∼200 km resolutions exhibit remarkable similarity (R 2 = 0.96, slope = 1.03). This similarity in part reflects opposite resolution responses across components with population-weighted normalized mean difference (PW-NMD) increasing by 5% to 11% for primary species while decreasing by -30% to -5% for secondary species at finer resolution. Despite global similarity, our results also identify larger resolution sensitivities of η over isolated pollution sources and mountainous regions, where spatial contrast of aerosol concentration and composition is better represented at fine resolution. Our results highlight the resolution dependence of representing near-surface concentrations and the vertical distribution of chemically different species with implications for inferring ground-level PM2.5 from columnar AOD.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Randall V Martin
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Aaron van Donkelaar
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Chi Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haihui Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Alexei Lyapustin
- Climate and Radiation Laboratory, the National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
8
|
Gong C, Tian H, Liao H, Pan N, Pan S, Ito A, Jain AK, Kou-Giesbrecht S, Joos F, Sun Q, Shi H, Vuichard N, Zhu Q, Peng C, Maggi F, Tang FHM, Zaehle S. Global net climate effects of anthropogenic reactive nitrogen. Nature 2024; 632:557-563. [PMID: 39048828 PMCID: PMC11324526 DOI: 10.1038/s41586-024-07714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Anthropogenic activities have substantially enhanced the loadings of reactive nitrogen (Nr) in the Earth system since pre-industrial times1,2, contributing to widespread eutrophication and air pollution3-6. Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of -0.34 [-0.20, -0.50] W m-2 in the year 2019 relative to the year 1850. This net cooling effect is the result of increased aerosol loading, reduced methane lifetime and increased terrestrial carbon sequestration associated with increases in anthropogenic Nr, which are not offset by the warming effects of enhanced atmospheric nitrous oxide and ozone. Future predictions using three representative scenarios show that this cooling effect may be weakened primarily as a result of reduced aerosol loading and increased lifetime of methane, whereas in particular N2O-induced warming will probably continue to increase under all scenarios. Our results indicate that future reductions in anthropogenic Nr to achieve environmental protection goals need to be accompanied by enhanced efforts to reduce anthropogenic greenhouse gas emissions to achieve climate change mitigation in line with the Paris Agreement.
Collapse
Affiliation(s)
- Cheng Gong
- Max Planck Institute for Biogeochemistry, Jena, Germany.
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA
| | - Hong Liao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Naiqing Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- International Center for Climate and Global Change Research, College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Shufen Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- Department of Engineering and Environmental Studies Program, Boston College, Chestnut Hill, MA, USA
| | - Akihiko Ito
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Atul K Jain
- Department of Atmospheric Science, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sian Kou-Giesbrecht
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Qing Sun
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Hao Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Vuichard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Changhui Peng
- Department of Biology Sciences, Institute of Environment Science, University of Quebec at Montreal, Montreal, Quebec, Canada
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Federico Maggi
- Environmental Engineering, School of Civil Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona H M Tang
- Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
9
|
Cao Y, Yue X, Liao H, Wang X, Lei Y, Zhou H. Impacts of land cover changes on summer surface ozone in China during 2000-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174821. [PMID: 39019283 DOI: 10.1016/j.scitotenv.2024.174821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
China implemented continuous forestation and experienced significant greening tendency in the past several decades. While the ecological project brings benefits to regional carbon assimilation, it also affects surface ozone (O3) pollution level through perturbations in biogenic emissions and dry deposition. Here, we use a coupled chemistry-vegetation model to assess the impacts of land use and land cover change (LULCC) on summertime surface O3 in China during 2000-2019. The LULCC is found to enhance O3 by 1-2 ppbv in already-polluted areas. In contrast, moderate reductions of -0.4 to -0.8 ppbv are predicted in southern China where the largest forest cover changes locate. Such inconsistency is attributed to the background chemical regimes with positive O3 changes over VOC-limited regions but negative changes in NOx-limited regions. The net contribution of LULCC to O3 budget in China is 24.17 Kg/s, in which the positive contribution by more isoprene emissions almost triples the negative effects by the increased dry deposition. Although the LULCC-induced O3 perturbation is much lower than the effects of anthropogenic emissions, forest expansion has exacerbated regional O3 pollution in North China Plain and is expected to further enhance surface O3 with continuous forestation in the future.
Collapse
Affiliation(s)
- Yang Cao
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210041, China
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Xuemei Wang
- Institute for Environment and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yadong Lei
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hao Zhou
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
10
|
Shutter JD, Millet DB, Wells KC, Payne VH, Nowlan CR, Abad GG. Interannual changes in atmospheric oxidation over forests determined from space. SCIENCE ADVANCES 2024; 10:eadn1115. [PMID: 38748807 PMCID: PMC11095458 DOI: 10.1126/sciadv.adn1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The hydroxyl radical (OH) is the central oxidant in Earth's troposphere, but its temporal variability is poorly understood. We combine 2012-2020 satellite-based isoprene and formaldehyde measurements to identify coherent OH changes over temperate and tropical forests with attribution to emission trends, biotic stressors, and climate. We identify a multiyear OH decrease over the Southeast United States and show that with increasingly hot/dry summers the regional chemistry could become even less oxidizing depending on competing temperature/drought impacts on isoprene. Furthermore, while global mean OH decreases during El Niño, we show that near-field effects over tropical rainforests can alternate between high/low OH anomalies due to opposing fire and biogenic emission impacts. Results provide insights into how atmospheric oxidation will evolve with changing emissions and climate.
Collapse
Affiliation(s)
- Joshua D. Shutter
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | - Kelley C. Wells
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | - Vivienne H. Payne
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Caroline R. Nowlan
- Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA
| | | |
Collapse
|
11
|
Shen S, Li C, van Donkelaar A, Jacobs N, Wang C, Martin RV. Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep Learning. ACS ES&T AIR 2024; 1:332-345. [PMID: 38751607 PMCID: PMC11092969 DOI: 10.1021/acsestair.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Global fine particulate matter (PM2.5) assessment is impeded by a paucity of monitors. We improve estimation of the global distribution of PM2.5 concentrations by developing, optimizing, and applying a convolutional neural network with information from satellite-, simulation-, and monitor-based sources to predict the local bias in monthly geophysical a priori PM2.5 concentrations over 1998-2019. We develop a loss function that incorporates geophysical a priori estimates and apply it in model training to address the unrealistic results produced by mean-square-error loss functions in regions with few monitors. We introduce novel spatial cross-validation for air quality to examine the importance of considering spatial properties. We address the sharp decline in deep learning model performance in regions distant from monitors by incorporating the geophysical a priori PM2.5. The resultant monthly PM2.5 estimates are highly consistent with spatial cross-validation PM2.5 concentrations from monitors globally and regionally. We withheld 10% to 99% of monitors for testing to evaluate the sensitivity and robustness of model performance to the density of ground-based monitors. The model incorporating the geophysical a priori PM2.5 concentrations remains highly consistent with observations globally even under extreme conditions (e.g., 1% for training, R2 = 0.73), while the model without exhibits weaker performance (1% for training, R2 = 0.51).
Collapse
Affiliation(s)
- Siyuan Shen
- Department
of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Chi Li
- Department
of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Aaron van Donkelaar
- Department
of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nathan Jacobs
- Department
of Computer Science and Engineering, Washington
University in St. Louis, St. Louis, Missouri 63130, United
States
| | - Chenguang Wang
- Department
of Computer Science and Engineering, Washington
University in St. Louis, St. Louis, Missouri 63130, United
States
| | - Randall V. Martin
- Department
of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department
of Computer Science and Engineering, Washington
University in St. Louis, St. Louis, Missouri 63130, United
States
| |
Collapse
|
12
|
Zhang ZE, Li J, Zhang R, Tian C, Sun Z, Li T, Han M, Yu K, Zhang G. Increase in Agricultural-Derived NH x and Decrease in Coal Combustion-Derived NO x Result in Atmospheric Particulate N-NH 4+ Surpassing N-NO 3- in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6682-6692. [PMID: 38547356 DOI: 10.1021/acs.est.3c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The atmospheric deposition of anthropogenic active nitrogen significantly influences marine primary productivity and contributes to eutrophication. The form of nitrogen deposition has been evolving annually, alongside changes in human activities. A disparity arises between observation results and simulation conclusions due to the limited field observation and research in the ocean. To address this gap, our study undertook three field cruises in the South China Sea in 2021, the largest marginal sea of China. The objective was to investigate the latest atmospheric particulate inorganic nitrogen deposition pattern and changes in nitrogen sources, employing nitrogen-stable isotopes of nitrate (δ15N-NO3-) and ammonia (δ15N-NH4+) linked to a mixing model. The findings reveal that the N-NH4+ deposition generally surpasses N-NO3- deposition, attributed to a decline in the level of NOx emission from coal combustion and an upswing in the level of NHx emission from agricultural sources. The disparity in deposition between N-NH4+ and N-NO3- intensifies from the coast to the offshore, establishing N-NH4+ as the primary contributor to oceanic nitrogen deposition, particularly in ocean background regions. Fertilizer (33 ± 21%) and livestock (20 ± 6%) emerge as the primary sources of N-NH4+. While coal combustion continues to be a significant contributor to marine atmospheric N-NO3-, its proportion has diminished to 22 (Northern Coast)-35% (background area) due to effective NOx emission controls by the countries surrounding the South China Sea, especially the Chinese Government. As coal combustion's contribution dwindles, the significance of vessel and marine biogenic emissions grows. The daytime higher atmospheric N-NO3- concentration and lower δ15N-NO3- compared with nighttime further underscore the substantial role of marine biogenic emissions.
Collapse
Affiliation(s)
- Zheng-En Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P. R. China
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Zeyu Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingting Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, P. R. China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P. R. China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Zhang Y, Xu W, Zhou W, Li Y, Zhang Z, Du A, Qiao H, Kuang Y, Liu L, Zhang Z, He X, Cheng X, Pan X, Fu Q, Wang Z, Ye P, Worsnop DR, Sun Y. Characterization of organic vapors by a Vocus proton-transfer-reaction mass spectrometry at a mountain site in southeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170633. [PMID: 38340865 DOI: 10.1016/j.scitotenv.2024.170633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Biogenic and anthropogenic organic vapors are crucial precursors of ozone and secondary organic aerosol (SOA) in the atmosphere. Here we conducted real-time measurements of gaseous organic compounds using a Vocus proton-transfer-reaction mass spectrometer (Vocus PTR-MS) at the Shanghuang mountain site (1128 m a.s.l.) in southeastern China during November 2022. Our results revealed a substantial impact of mixed biogenic and anthropogenic compounds at the mountain site, with oxygenated volatile organic compounds (OVOCs) comprising 74 % of the organic vapors. Two distinct periods, characterized by sunny days (P1) and persistent cloud events (P2), were observed. P1 exhibited higher concentrations of biogenic-related emissions compared to P2. For instance, isoprene, monoterpenes, and sesquiterpenes during P1 were 2.4-2.9 times higher than those during P2. OVOCs such as acetaldehyde, MVK + MACR, acetone, and MEK also showed higher concentrations during P1, indicating a dominant source from the photochemical oxidation of biogenic VOCs. Anthropogenic-related VOCs like benzene and toluene had higher concentrations during P2, displaying different diurnal cycles compared to P1. Our analysis identified four biogenic-related factors dominated by isoprene and sesquiterpene oxidation products, and two anthropogenic-related factors. During P1, biogenic sources contributed approximately 80 % to total organic compounds, while during P2, anthropogenic sources, particularly the aromatic-related factor, increased from 16 % to 35 %. Furthermore, a unique factor characterized by C2 amines and C3 amides and periodic plumes indicated the influence of industrial emissions from regional transport. The study highlights the significant variations in sources and compositions of gaseous organic compounds at regional mountain sites due to changes in meteorology and photochemical processing, potentially impacting regional ozone and SOA formation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijun Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqin Qiao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Lanzhong Liu
- Shanghuang Atmospheric Boundary Layer and Eco-Environment Observatory, Institute of Atmospheric Physics, Chinese Academy of Sciences, Jinhua 321203, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xueling Cheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai 200235, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penglin Ye
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland; Aerodyne Research Inc., Billerica, MA 01821, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Ye X, Zhang L, Wang X, Lu X, Jiang Z, Lu N, Li D, Xu J. Spatial and temporal variations of surface background ozone in China analyzed with the grid-stretching capability of GEOS-Chem High Performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169909. [PMID: 38185162 DOI: 10.1016/j.scitotenv.2024.169909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Surface background ozone, defined as the ozone in the absence of domestic anthropogenic emissions, is important for developing emission reduction strategies. Here we apply the recently developed GEOS-Chem High Performance (GCHP) global atmospheric chemistry model with ∼0.5° stretched resolution over China to understand the sources of Chinese background ozone (CNB) in the metric of daily maximum 8 h average (MDA8) and to identify the drivers of its interannual variability (IAV) from 2015 to 2019. The GCHP ozone simulations over China are evaluated with an ensemble of surface and aircraft measurements. The five-year national-mean CNB ozone is estimated as 37.9 ppbv, with a spatially west-to-southeast downward gradient (55 to 25 ppbv) and a summer peak (42.5 ppbv). High background levels in western China are due to abundant transport from the free troposphere and adjacent foreign regions, while in eastern China, domestic formation from surface natural precursors is also important. We find greater importance of soil nitric oxides (NOx) than biogenic volatile organic compound emissions to CNB ozone in summer (6.4 vs. 3.9 ppbv), as ozone formation becomes increasingly NOx-sensitive when suppressing anthropogenic emissions. The percentage of daily CNB ozone to total surface ozone generally decreases with increasing daily total ozone, indicating an increased contribution of domestic anthropogenic emissions on polluted days. CNB ozone shows the largest IAV in summer, with standard deviations (seasonal means) of ∼5 ppbv over Qinghai-Tibet Plateau (QTP) and >3.5 ppbv in eastern China. CNB values in QTP are strongly correlated with horizontal circulation anomalies in the middle troposphere, while soil NOx emissions largely drive the IAV in the east. El Nino can inhibit CNB ozone formation in Southeast China by increased precipitation and lower temperature locally in spring, but enhance CNB in Southwest China through increased biomass burning emissions in Southeast Asia.
Collapse
Affiliation(s)
- Xingpei Ye
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China.
| | - Xiaolin Wang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhongjing Jiang
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States of America
| | - Ni Lu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Danyang Li
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Jiayu Xu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Zara M, van der A R, Ding J, Stavrakou T, Boersma F. OMI-based emission source classification in East China and its spatial redistribution in view of pollution control measures. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:323. [PMID: 38421451 PMCID: PMC10904434 DOI: 10.1007/s10661-024-12421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
This study aims to generate a satellite-based qualitative emission source characterization for the heavily polluted eastern part of China in the 2010-2016 time period. The applied source identification technique relies on satellite-based NOx and SO2 emission estimates by OMI, their SO2:NOx ratio, and the MIX anthropogenic emission inventory to distinguish emissions from different emission categories (urban, industrial, natural) and characterize the dominant source per 0.25° × 0.25° grid cell in East China. Overall, we find good agreement between the satellite- and emission inventory-based spatiotemporal distribution and characterization of the dominant emission sources in East China in 2010-2016. In 2010, the satellite measurements suggest an emission distribution less dominated by industrial areas, a somewhat larger role for urban/transportation areas and agricultural activities, and more natural emissions in the southern part compared to the bottom-up emission categorization. In 2016, more than half of the classified emission categories over East China have remained the same. At the same time, there is a notable increase of agricultural lands and decrease of areas dominated by industry/transportation in 2016, suggestive of an overall decrease in heavy air pollution in East China over the course of 7 years. This is likely attributed to the sustained efforts of the Chinese government to drastically improve the air quality, especially since 2013 when the National Air Pollution Prevention and Control Action Plan was enacted. However, signs of urban expansion (urbanization) and rural-urban migration ("Go West" motion) stemmed from China's rapid economic growth and labour demand are evident; escalating industrialization (even with cleaner means) and the urban population growth in East China resulted in stronger emissions from sources representing consumption and transportation which are strongly related to NO2 and PM10 pollution (rather than SO2) and are directly influenced by the population size. This resulted to a shift of the emissions from the east mainly to the north and northwest of East China. Overall, although the effectiveness of the Chinese environmental control policies has been successful, the air pollution problem remains an important concern.
Collapse
Affiliation(s)
- Marina Zara
- Wageningen University and Research (WUR), Wageningen, Netherlands
- Now at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
| | - Ronald van der A
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
| | - Jieying Ding
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
| | | | - Folkert Boersma
- Wageningen University and Research (WUR), Wageningen, Netherlands.
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands.
| |
Collapse
|
16
|
Bates KH, Evans MJ, Henderson BH, Jacob DJ. Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry. GEOSCIENTIFIC MODEL DEVELOPMENT 2024; 7:1511-1524. [PMID: 38510104 PMCID: PMC10953788 DOI: 10.5194/gmd-17-1511-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We updated the chemical mechanism of the GEOS-Chem global 3-D model of atmospheric chemistry to include new recommendations from the NASA Jet Propulsion Laboratory (JPL) chemical kinetics Data Evaluation 19-5 and from the International Union of Pure and Applied Chemistry (IUPAC) and to balance carbon and nitrogen. We examined the impact of these updates on the GEOS-Chem version 14.0.1 simulation. Notable changes include 11 updates to reactions of reactive nitrogen species, resulting in a 7% net increase in the stratospheric NOx (NO + NO2) burden; an updated CO + OH rate formula leading to a 2.7% reduction in total tropospheric CO; adjustments to the rate coefficient and branching ratios of propane + OH, leading to reduced tropospheric propane (-17%) and increased acetone (+3.5%) burdens; a 41% increase in the tropospheric burden of peroxyacetic acid due to a decrease in the rate coefficient for its reaction with OH, further contributing to reductions in peroxyacetyl nitrate (PAN; -3.8%) and acetic acid (-3.4%); and a number of minor adjustments to halogen radical cycling. Changes to the global tropospheric burdens of other species include -0.7% for ozone, +0.3% for OH (-0.4% for methane lifetime against oxidation by tropospheric OH), +0.8% for formaldehyde, and -1.7% for NOx. The updated mechanism reflects the current state of the science, including complex chemical dependencies of key atmospheric species on temperature, pressure, and concentrations of other compounds. The improved conservation of carbon and nitrogen will facilitate future studies of their overall atmospheric budgets.
Collapse
Affiliation(s)
- Kelvin H. Bates
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- NOAA Chemical Sciences Laboratory, Earth System Research Laboratories, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80305, USA
| | - Mathew J. Evans
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
- National Centre for Atmospheric Science, University of York, York, UK
| | | | - Daniel J. Jacob
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Wang L, Lun X, Wu J, Wang Q, Tao J, Dou X, Zhang Z. Investigation of biogenic volatile organic compounds emissions in the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165877. [PMID: 37549697 DOI: 10.1016/j.scitotenv.2023.165877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), which are produced and emitted by plants, have significant chemical reactivity in the atmosphere and impacting climate change. Qinghai Province, a vital component of the plateau, has abundant vegetation resources, primarily grasslands and forests, yet BVOCs emissions and their impact on air quality remain understudied. In this study, the emissions rates and compositions of BVOCs from seven dominant vegetation types in Qinghai Province were sampled and analyzed using a closed-loop stripping dynamic headspace sampling approach combined with GC-MS, and the total emissions of BVOCs in Qinghai province in 2021 were estimated by using G95 model. At the same time, the emission characteristics of various vegetation types were also analyzed. The results showed that the emissions rates and compositions of BVOCs differed significantly among vegetation types, with monoterpenes being the dominant emission composition in coniferous forests, which accounted for >70 % of the total BVOCs emissions, while isoprene being the main composition in alpine meadow, accounting for 84.96 %. The emissions of three typical vegetation types, Picea asperata, alpine meadow and alpine steppe, were monitored daily, revealing significant diurnal and clear unimodal patterns. The study also found that the annual average BVOCs emissions from vegetation sources in Qinghai Province were estimated to be 1550.63 Gg yr-1, with isoprene contributing the highest proportion of emissions, accounting for 56.94 %. Grassland was the largest BVOCs emission source in Qinghai Province, with an annual average emission of 1438.52 Gg yr-1. Additionally, BVOCs emissions in Qinghai Province showed strong seasonal and daily variation patterns, with the highest emissions occurring in summer, with the peak in July. These findings provide the characteristics of BVOCs emissions from vegetation sources in the Tibetan Plateau, which will contribute to a better understanding of their impact on atmospheric chemistry and climate change.
Collapse
Affiliation(s)
- Luxi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Ju Wu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jinhua Tao
- State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China
| | - Xiaoyan Dou
- Qinghai Eco-Environment Monitoring Center, Xining 810007, China
| | - Zhijun Zhang
- Qinghai Eco-Environment Monitoring Center, Xining 810007, China
| |
Collapse
|
18
|
Zhang Y, Wang H, Huang L, Qiao L, Zhou M, Mu J, Wu C, Zhu Y, Shen H, Huang C, Wang G, Wang T, Wang W, Xue L. Double-Edged Role of VOCs Reduction in Nitrate Formation: Insights from Observations during the China International Import Expo 2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15979-15989. [PMID: 37821356 DOI: 10.1021/acs.est.3c04629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Aerosol nitrate (NO3-) constitutes a significant component of fine particles in China. Prioritizing the control of volatile organic compounds (VOCs) is a crucial step toward achieving clean air, yet its impact on NO3- pollution remains inadequately understood. Here, we examined the role of VOCs in NO3- formation by combining comprehensive field measurements conducted during the China International Import Expo (CIIE) in Shanghai (from 10 October to 22 November 2018) and multiphase chemical modeling. Despite a decline in primary pollutants during the CIIE, NO3- levels increased compared to pre-CIIE and post-CIIE─NO3- concentrations decreased in the daytime (by -10 and -26%) while increasing in the nighttime (by 8 and 30%). Analysis of the observations and backward trajectory indicates that the diurnal variation in NO3- was mainly attributed to local chemistry rather than meteorological conditions. Decreasing VOCs lowered the daytime NO3- production by reducing the hydroxyl radical level, whereas the greater VOCs reduction at night than that in the daytime increased the nitrate radical level, thereby promoting the nocturnal NO3- production. These results reveal the double-edged role of VOCs in NO3- formation, underscoring the need for transferring large VOC-emitting enterprises from the daytime to the nighttime, which should be considered in formulating corresponding policies.
Collapse
Affiliation(s)
- Yingnan Zhang
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Liubin Huang
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Jiangshan Mu
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Hengqing Shen
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, 200233 Shanghai, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| | - Likun Xue
- Environment Research Institute, Shandong University, 250100 Ji'nan, China
| |
Collapse
|
19
|
de la Paz D, Borge R, de Andrés JM, Tovar L, Sarwar G, Napelenok SL. Summertime tropospheric ozone source apportionment study in the Madrid region (Spain). ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 24:4949-4972. [PMID: 38846712 PMCID: PMC11151812 DOI: 10.5194/acp-24-4949-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The design of emission abatement measures to effectively reduce high ground-level ozone (O3) concentrations in urban areas is very complex. In addition to the strongly non-linear chemistry of this secondary pollutant, precursors can be released by a variety of sources in different regions, and locally produced O3 is mixed with that transported from the regional or continental scales. All of these processes depend also on the specific meteorological conditions and topography of the study area. Consequently, high-resolution comprehensive modeling tools are needed to understand the drivers of photochemical pollution and to assess the potential of local strategies to reduce adverse impacts from high tropospheric O3 levels. In this study, we apply the Integrated Source Apportionment Method (ISAM) implemented in the Community Multiscale Air Quality (CMAQ v5.3.2) model to investigate the origin of summertime O3 in the Madrid region (Spain). Consistent with previous studies, our results confirm that O3 levels are dominated by non-local contributions, representing around 70 % of mean values across the region. Nonetheless, precursors emitted by local sources, mainly road traffic, play a more important role during O3 peaks, with contributions as high as 25 ppb. The potential impact of local measures is higher under unfavorable meteorological conditions associated with regional accumulation patterns. These findings suggest that this modeling system may be used in the future to simulate the potential outcomes of specific emission abatement measures to prevent high-O3 episodes in the Madrid metropolitan area.
Collapse
Affiliation(s)
- David de la Paz
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Rafael Borge
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Juan Manuel de Andrés
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Luis Tovar
- Laboratory of Environmental Modelling, Department of Chemical & Environmental Engineering, Universidad Politécnica de Madrid, (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Golam Sarwar
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Sergey L. Napelenok
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
20
|
Marais EA, Kelly JM, Vohra K, Li Y, Lu G, Hina N, Rowe EC. Impact of Legislated and Best Available Emission Control Measures on UK Particulate Matter Pollution, Premature Mortality, and Nitrogen-Sensitive Habitats. GEOHEALTH 2023; 7:e2023GH000910. [PMID: 37885915 PMCID: PMC10599219 DOI: 10.1029/2023gh000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Past emission controls in the UK have substantially reduced precursor emissions of health-hazardous fine particles (PM2.5) and nitrogen pollution detrimental to ecosystems. Still, 79% of the UK exceeds the World Health Organization (WHO) guideline for annual mean PM2.5 of 5 μg m-3 and there is no enforcement of controls on agricultural sources of ammonia (NH3). NH3 is a phytotoxin and an increasingly large contributor to PM2.5 and nitrogen deposited to sensitive habitats. Here we use emissions projections, the GEOS-Chem model, high-resolution data sets, and contemporary exposure-risk relationships to assess potential human and ecosystem health co-benefits in 2030 relative to the present day of adopting legislated or best available emission control measures. We estimate that present-day annual adult premature mortality attributable to exposure to PM2.5 is 48,625 (95% confidence interval: 45,188-52,595), that harmful amounts of reactive nitrogen deposit to almost all (95%) sensitive habitat areas, and that 75% of ambient NH3 exceeds levels safe for bryophytes and lichens. Legal measures decrease the extent of the UK above the WHO guideline to 58% and avoid 6,800 premature deaths by 2030. This improves with best available measures to 36% of the UK and 13,300 avoided deaths. Both legal and best available measures are insufficient at reducing the extent of damage of nitrogen pollution to sensitive habitats. Far more ambitious reductions in nitrogen emissions (>80%) than is achievable with best available measures (34%) are required to halve the amount of excess nitrogen deposited to sensitive habitats.
Collapse
Affiliation(s)
| | - Jamie M. Kelly
- Department of GeographyUniversity College LondonLondonUK
- Now at Centre for Research and Clean AirHelsinkiFinland
| | - Karn Vohra
- Department of GeographyUniversity College LondonLondonUK
| | - Yifan Li
- Reading AcademyNanjing University of Information Science and TechnologyNanjingChina
| | - Gongda Lu
- Department of GeographyUniversity College LondonLondonUK
| | - Naila Hina
- UK Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK
| | - Ed C. Rowe
- UK Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK
| |
Collapse
|
21
|
Zhang D, Martin RV, Bindle L, Li C, Eastham SD, van Donkelaar A, Gallardo L. Advances in Simulating the Global Spatial Heterogeneity of Air Quality and Source Sector Contributions: Insights into the Global South. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6955-6964. [PMID: 37079489 PMCID: PMC10158787 DOI: 10.1021/acs.est.2c07253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
High-resolution simulations are essential to resolve fine-scale air pollution patterns due to localized emissions, nonlinear chemical feedbacks, and complex meteorology. However, high-resolution global simulations of air quality remain rare, especially of the Global South. Here, we exploit recent developments to the GEOS-Chem model in its high-performance implementation to conduct 1-year simulations in 2015 at cubed-sphere C360 (∼25 km) and C48 (∼200 km) resolutions. We investigate the resolution dependence of population exposure and sectoral contributions to surface fine particulate matter (PM2.5) and nitrogen dioxide (NO2), focusing on understudied regions. Our results indicate pronounced spatial heterogeneity at high resolution (C360) with large global population-weighted normalized root-mean-square difference (PW-NRMSD) across resolutions for primary (62-126%) and secondary (26-35%) PM2.5 species. Developing regions are more sensitive to spatial resolution resulting from sparse pollution hotspots, with PW-NRMSD for PM2.5 in the Global South (33%), 1.3 times higher than globally. The PW-NRMSD for PM2.5 for discrete southern cities (49%) is substantially higher than for more clustered northern cities (28%). We find that the relative order of sectoral contributions to population exposure depends on simulation resolution, with implications for location-specific air pollution control strategies.
Collapse
Affiliation(s)
- Dandan Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Randall V. Martin
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Liam Bindle
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Chi Li
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sebastian D. Eastham
- Laboratory
for Aviation and the Environment, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Joint
Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aaron van Donkelaar
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Laura Gallardo
- Center
for Climate and Resilience Research, Santiago 8370448, Chile
- Department
of Geophysics, Faculty of Physical Sciences and Mathematics, University of Chile, Santiago 8370448, Chile
| |
Collapse
|
22
|
Quadros FDA, van Loo M, Snellen M, Dedoussi IC. Nitrogen deposition from aviation emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159855. [PMID: 36336055 DOI: 10.1016/j.scitotenv.2022.159855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Excess nitrogen deposition from anthropogenic sources of atmospheric emissions, such as agriculture and transportation, can have negative effects on natural environments. Designing effective conservation efforts requires knowledge of the contribution of individual sectors. This study utilizes a global atmospheric chemistry-transport model to quantify, for the first time, the contribution of global aviation NOx emissions to nitrogen deposition for 2005 and 2019. We find that aviation led to an additional 1.39 Tg of nitrogen deposited globally in 2019, up 72 % from 2005, with 67 % of each year's total occurring through wet deposition. In 2019, aviation was responsible for an average of 0.66 %, 1.13 %, and 1.61 % of modeled nitrogen deposition from all sources over Asia, Europe, and North America, respectively. These impacts are spatially widespread, with 56 % of deposition occurring over water. Emissions during the landing, taxi and takeoff (LTO) phases of flight are responsible for 8 % of aviation's nitrogen deposition impacts on average globally, and between 16 and 32 % over most land in regions with high aviation activity. Despite currently representing less than 1.2 % of nitrogen deposition globally, further growth of aviation emissions would result in increases in aviation's contribution to nitrogen deposition and associated critical loads.
Collapse
Affiliation(s)
- Flávio D A Quadros
- Aircraft Noise and Climate Effects section, Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, the Netherlands
| | - Marijn van Loo
- Aircraft Noise and Climate Effects section, Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, the Netherlands
| | - Mirjam Snellen
- Aircraft Noise and Climate Effects section, Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, the Netherlands
| | - Irene C Dedoussi
- Aircraft Noise and Climate Effects section, Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, the Netherlands.
| |
Collapse
|
23
|
Zhang R, Wang S, Zhang S, Xue R, Zhu J, Zhou B. MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass. J Environ Sci (China) 2022; 120:63-73. [PMID: 35623773 DOI: 10.1016/j.jes.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 06/15/2023]
Abstract
As a passive remote sensing technique, MAX-DOAS method was widely used to investigate the vertical profiles of aerosol and trace gases in the lower troposphere. However, the measurements for midlatitude marine boundary layer are rarely reported, especially during the storm weather system. In this study, the MAX-DOAS was used to retrieve the aerosol, HCHO and NO2 vertical distribution at Huaniao Island of East China Sea in summer 2018, during which a strong tropical cyclone developed and passed through the measurement site. The observed aerosol optical depth (AOD), HCHO- and NO2-VCDs (Vertical Column Density) were in the range of 0.19-0.97, (2.57-12.27) × 1015 molec/cm2, (1.24-4.71) × 1015 molec/cm2, which is much higher than remote ocean area due to the short distance to continent. The vertically resolved aerosol extinction coefficient (AEC), HCHO and NO2 presented the decline trend with the increase of height. After the typhoon passing through, the distribution of high levels of aerosol and HCHO stretched to about 1 km and the abundances of the bottom layer were found as double higher than before, reaching 0.51 km-1 and 2.44 ppbv, while NO2 was still constrained within about 300 m with 2.59 ppbv in the bottom layer. The impacts of typhoon process forced air mass were also observed at the suburban site in Shanghai in view of both the aerosol extinction and chemical components. The different changes on air quality associated with typhoon and its mechanism in two different environments: coastal island and coastal city are worthy of further investigation as it frequent occurred in East Asia during summer and fall.
Collapse
Affiliation(s)
- Ruifeng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), No. 20 Cuiniao Road, Shanghai 202162, China.
| | - Sanbao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ruibin Xue
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jian Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), No. 20 Cuiniao Road, Shanghai 202162, China; Zhuhai Fudan Innovation Institute, Zhuhai 519000, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
24
|
Sharma S, Chandra M, Harsha Kota S. Four year long simulation of carbonaceous aerosols in India: Seasonality, sources and associated health effects. ENVIRONMENTAL RESEARCH 2022; 213:113676. [PMID: 35728639 DOI: 10.1016/j.envres.2022.113676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
India's air quality is in a dismal state, with many studies ascribing it to PM2.5. Most of these corroborate that carbonaceous aerosol (CA) constitute significant fraction of PM2.5. However, investigations on the effect of long-term meteorological or emission changes on PM2.5 and its components, and their associated health effects are rare. In this work, WRF-Chem simulations for three seasons over four years (2016-2019) were carried out to cogitate the spatial and temporal changes in PM2.5 and its components in India. Model predicted PM2.5 concentrations were in good agreement with the ground-based observations for 25 cities. PM2.5 was highest in winter and lowest in pre-monsoon. PM2.5 reduced by ∼8% in Indo-Gangetic Plain (IGP) but increased by ∼38% and ∼130% in south and northeast India, respectively, from 2016 to 2019. IGP witnessed three times higher average PM2.5 concentrations than south India. No significant interannual change in CA contributions was observed, however, it peaked in the winter season. Other inorganics (OIN) were the major component of PM2.5, contributing more than 40%. Primary organic aerosol (POA) fractions were higher in north India, while secondary inorganic aerosol (SIA) dominated south India. Transport and residential sectors were the chief contributors to CA across India. Biomass burning contributed up to ∼23% of PM2.5 in regions of IGP during post-monsoon, with CA fractions up to 50%. Associations between PM2.5 and its components with daily inpatient admissions from a tertiary care centre in Delhi showed that PM2.5 and OIN had lower associations with daily hospital admissions than CA. Every 10 μg/m3 increase in POA, black carbon (BC), and secondary organic aerosol (SOA) were associated with ∼1.09%, ∼3.07% and ∼4.93% increase in the risk of daily hospital admissions. This invigorates the need for more policies targeting CA rather than PM2.5 to mitigate associated health risks, in India.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Mina Chandra
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Sri Harsha Kota
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India; Arun Duggal Centre of Excellence for Research in Climate Change and Air Pollution (CERCA), IIT Delhi, New Delhi, 110016, India.
| |
Collapse
|
25
|
Lal RM, Tibrewal K, Venkataraman C, Tong K, Fang A, Ma Q, Wang S, Kaiser J, Ramaswami A, Russell AG. Impact of Circular, Waste-Heat Reuse Pathways on PM 2.5-Air Quality, CO 2 Emissions, and Human Health in India: Comparison with Material Exchange Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9773-9783. [PMID: 35706337 PMCID: PMC9261188 DOI: 10.1021/acs.est.1c05897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
India is home to 1.3 billion people who are exposed to some of the highest levels of ambient air pollution in the world. In addition, India is one of the fastest-growing carbon-emitting countries. Here, we assess how two strategies to reuse waste-heat from coal-fired power plants and other large sources would impact PM2.5-air quality, human health, and CO2 emissions in 2015 and a future year, 2050, using varying levels of policy adoption (current regulations, proposed single-sector policies, and ambitious single-sector strategies). We find that power plant and industrial waste-heat reuse as input to district heating systems (DHSs), a novel, multisector strategy to reduce local biomass burning for heating emissions, can offset 71.3-85.2% of residential heating demand in communities near a power plant (9.3-12.4% of the nationwide heating demand) with the highest benefits observed during winter months in areas with collocated industrial activity and higher residential heating demands (e.g., New Delhi). Utilizing waste-heat to generate electricity via organic Rankine cycles (ORCs) can generate an additional 22 (11% of total coal-fired generating capacity), 41 (8%), 32 (13%), and 6 (5%) GW of electricity capacity in the 2015, 2050-current regulations, 2050-single-sector, and 2050-ambitious-single-sector scenarios, respectively. Emission estimates utilizing these strategies were input to the GEOS-Chem model, and population-weighted, simulated PM2.5 showed small improvements in the DHS (0.2-0.4%) and ORC (0.3-3.4%) scenarios, where the minimal DHS PM2.5-benefit is attributed to the small contribution of biomass burning for heating to nationwide PM2.5 emissions (much of the biomass burning activity is for cooking). The PM2.5 reductions lead to ∼130-36,000 mortalities per year avoided among the scenarios, with the largest health benefits observed in the ORC scenarios. Nationwide CO2 emissions reduced <0.04% by DHSs but showed larger reductions using ORCs (1.9-7.4%). Coal fly-ash as material exchange in cement and brick production was assessed, and capacity exists to completely reutilize unused fly-ash toward cement and brick production in each of the scenarios.
Collapse
Affiliation(s)
- Raj M. Lal
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Mumbai 400076, India
| | - Kushal Tibrewal
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| | - Chandra Venkataraman
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Mumbai 400076, India
| | - Kangkang Tong
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201308, China
| | - Andrew Fang
- Center
for Environment, Energy, and Infrastructure, US Agency for International Development, Washington, D.C. 20004, United States
| | - Qiao Ma
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Shuxiao Wang
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Jennifer Kaiser
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anu Ramaswami
- Civil
and Environmental Engineering, Princeton Institute for International
and Regional Studies, and the Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Armistead G. Russell
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Zhang X, Wu Z, He Z, Zhong X, Bi F, Li Y, Gao R, Li H, Wang W. Spatiotemporal patterns and ozone sensitivity of gaseous carbonyls at eleven urban sites in southeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153719. [PMID: 35149078 DOI: 10.1016/j.scitotenv.2022.153719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Gaseous carbonyls are essential trace gases for tropospheric chemistry and contribute significantly to the formation of ambient air ozone (O3) in densely populated regions, especially in China. Pollution characterization and the analysis of O3, nitrogen oxides, and volatile organic compounds (O3-NOX-VOCs) sensitivities of carbonyls were investigated from October 22 to 28, 2018 at eleven urban sites in nine cities in Fujian Province, southeastern China. The total mixing ratios of 15 kinds of gaseous carbonyls (Σ15OVOCs) was 12.15 ± 2.53 ppbv in Fujian Province. The concentrations in the eastern coastal regions were higher than those in the western mountainous regions. Formaldehyde, acetone, and acetaldehyde were the top three species of Σ15OVOCs concentration. Photochemical formation during the daytime and vehicle emission during the rush hours significantly contributed to formaldehyde and acetaldehyde. The shoe-making industry is well developed in Putian, where the acetone mixing ratio was significantly higher than in other cities. The O3-NOX-VOCs sensitivities at all urban sites were in VOC-limited or transitional regimes based on the ratios of formaldehyde to NO2; from morning to afternoon, the VOC-limited sensitivity decreased, and the NOX-limited sensitivity increased gradually. Formaldehyde contributed the most significant O3 formation potential (OFP) proportion of the Σ15OVOCs. The OFP of carbonyl species accounted for half of the total VOCs in Fuzhou and Putian, suggesting that more attention needs to be given to gaseous carbonyls control. Overall, the links inferred by this study provide evidence and clues to mitigate the increasing ambient O3 concentration on the west coast of the Taiwan Strait.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xuefen Zhong
- Fujian Academy of Environmental Sciences, Fuzhou 350013, China
| | - Fang Bi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenxing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
27
|
Kong H, Lin J, Chen L, Zhang Y, Yan Y, Liu M, Ni R, Liu Z, Weng H. Considerable Unaccounted Local Sources of NO x Emissions in China Revealed from Satellite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7131-7142. [PMID: 35302752 DOI: 10.1021/acs.est.1c07723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
High-resolution (e.g., 5 km) emission data of nitrogen oxides (NOx = NO + NO2) provide localized knowledge of pollution sources for targeted regulations, yet such data are lacking or inaccurate over most regions at present. Here we improve our PHLET-based inversion method to derive NOx emissions in China at a 5-km resolution in summer 2019, based on the TROPOMI-POMINO satellite product of nitrogen dioxide (NO2) columns. With low computational costs, our inversion explicitly accounts for the effects of horizontal transport and nonlinear chemistry. We find numerous small-to-medium sources related to minor roads and small human settlements at relatively low affluence levels, in addition to clear emission signals along major transportation lines, consistent with road line density and Tencent location data. Many small-to-medium sources and transportation emissions are unclear or missing in the spatial distributions of four widely used emission inventories. Our emissions offer a unique reference for targeted emission control.
Collapse
Affiliation(s)
- Hao Kong
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Lulu Chen
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Yuhang Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Yingying Yan
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Mengyao Liu
- R&D Satellite Observations Department, Royal Netherlands Meteorological Institute, De Bilt, NL-3731 GA The Netherlands
| | - Ruijing Ni
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Zehui Liu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Hongjian Weng
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
28
|
Song W, Liu XY, Houlton BZ, Liu CQ. Isotopic constraints confirm the significant role of microbial nitrogen oxides emissions from the land and ocean environment. Natl Sci Rev 2022; 9:nwac106. [PMID: 36128454 PMCID: PMC9477198 DOI: 10.1093/nsr/nwac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Nitrogen oxides (NOx, the sum of nitric oxide (NO) and N dioxide (NO2)) emissions and deposition have increased markedly over the past several decades, resulting in many adverse outcomes in both terrestrial and oceanic environments. However, because the microbial NOx emissions have been substantially underestimated on the land and unconstrained in the ocean, the global microbial NOx emissions and their importance relative to the known fossil-fuel NOx emissions remain unclear. Here we complied data on stable N isotopes of nitrate in atmospheric particulates over the land and ocean to ground-truth estimates of NOx emissions worldwide. By considering the N isotope effect of NOx transformations to particulate nitrate combined with dominant NOx emissions in the land (coal combustion, oil combustion, biomass burning and microbial N cycle) and ocean (oil combustion, microbial N cycle), we demonstrated that microbial NOx emissions account for 24 ± 4%, 58 ± 3% and 31 ± 12% in the land, ocean and global environment, respectively. Corresponding amounts of microbial NOx emissions in the land (13.6 ± 4.7 Tg N yr−1), ocean (8.8 ± 1.5 Tg N yr−1) and globe (22.5 ± 4.7 Tg N yr−1) are about 0.5, 1.4 and 0.6 times on average those of fossil-fuel NOx emissions in these sectors. Our findings provide empirical constraints on model predictions, revealing significant contributions of the microbial N cycle to regional NOx emissions into the atmospheric system, which is critical information for mitigating strategies, budgeting N deposition and evaluating the effects of atmospheric NOx loading on the world.
Collapse
Affiliation(s)
- Wei Song
- School of Earth System Science, Tianjin University , Tianjin , 300072 , China
| | - Xue-Yan Liu
- School of Earth System Science, Tianjin University , Tianjin , 300072 , China
| | - Benjamin Z Houlton
- Department of Global Development and Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, NY 14850 , USA
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University , Tianjin , 300072 , China
| |
Collapse
|
29
|
Ke P, Kang R, Avery LK, Zhang J, Yu Q, Xie D, Duan L. Temporal variations of soil NO and NO 2 fluxes in two typical subtropical forests receiving contrasting rates of N deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118696. [PMID: 34953951 DOI: 10.1016/j.envpol.2021.118696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Soils have been widely acknowledged as important natural sources of nitric oxide (NO) and meanwhile sinks of nitric dioxide (NO2). High nitrogen deposition across South China could potentially result in large NO emissions from subtropical forests soils there. In this study, the dynamic chamber method was applied to monitor NO and NO2 fluxes at two subtropical forest sites in South China, namely "Qianyanzhou" (QYZ) and "Tieshanping" (TSP). Chronically higher N deposition occurred at TSP than that at QYZ. Besides soil water filled pore spaces (WFPS) and temperature, ambient NO concentration could also possibly be important in regulating temporal NO emissions, especially in the winter. For both sites, the optimum soil temperature was above 25 °C, while the optimum WFPS for NO release at QYZ was higher (65-70%) than that at TSP (<23%). Moreover, heavy rainfall could trigger NO emission pulses from moist soils at QYZ, while rainfall-induced NO pulses were only observed after a long drying period at TSP. Distinctly different contents of mineral nitrogen and soil moisture conditions between the two sites might induce the divergent preference of WFPS and responses to rainfall. The cumulative soil emission of NO reached 0.41 ± 0.01 and 0.76 ± 0.01 kg N ha-1 yr-1 at QYZ and TSP, contributing to 2.5% and 1.4% of the annual throughfall N input, respectively. At both sites, NO2 were mainly deposited to soils, accounting for 2% and 21% of soil-emitted NO at QYZ and TSP, respectively. The observed annual NO emissions at these two sites were larger than the median values observed for tropical and temperate forests and unfertilized croplands. Higher N deposition could induce larger NO emission potential, while soil temperature and pH might also be important in regulating regional soil NO emissions as N-loss from subtropical forests.
Collapse
Affiliation(s)
- Piaopiao Ke
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ronghua Kang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Loreena K Avery
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qian Yu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Danni Xie
- School of Land Engineering, Chang'an University, Shanxi, 710064, China
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Tian R, Ma X, Sha T, Pan X, Wang Z. Exploring dust heterogeneous chemistry over China: Insights from field observation and GEOS-Chem simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149307. [PMID: 34375256 DOI: 10.1016/j.scitotenv.2021.149307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Dust heterogeneous chemistry plays an important role in tropospheric chemistry, but its parameterization in numerical models is often quite simplified, which hampers accurate prediction of particulate matter and its chemical component. In this study, we investigate the evolution of dust heterogeneous chemical process and its potential impacts on gaseous and aerosol components during a dust pollution episode from March 27 to April 2, 2015 over North China. Based on field measurements, the significant role of relative humidity (RH) in dust heterogeneous chemistry is found and a RH-dependent parameterization for uptake coefficients of HNO3 and SO2 is incorporated in GEOS-Chem to reproduce the dust heterogeneous chemical process. During the study period, observed dust sulfate (DSO4) and dust nitrate (DNIT) exhibit maximum concentrations of 9.1 and 22.8 μg m-3 respectively, accompanied by high RH and gaseous precursor concentrations. DSO4 concentrations are positively related to RH. The observed dust sulfate oxidation ratio (DSOR) is elevated evidently with increased RH, especially when RH is higher than ~40%, implying that enhanced RH could promote heterogeneous oxidation of SO2 to DSO4. Model simulation shows that when incorporating the RH-dependent parameterization, DNIT and DSO4 are generally well captured and the model performance of total sulfate oxidation ratio (TSOR) and total nitrate oxidation ratio (TNOR) are improved. High contribution of DNIT and DSO4 are found to be located over the regions close to source areas (>60%) and downwind regions (>40%), respectively. Sensitivity results show that SO2 and HNO3 reduce by 2-24 μg m-3 and 1-18 μg m-3 when considering dust heterogeneous impacts, thus leading to reduction in non-dust sulfate and non-dust nitrate concentrations. As a result, simulated NH3 increases and ammonium reduces by more than 20%. Our study indicates that the contribution of heterogeneous reactions to sulfate formation is 20-30% over North China.
Collapse
Affiliation(s)
- Rong Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoyan Ma
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tong Sha
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| | - Zhe Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| |
Collapse
|
31
|
Lu X, Ye X, Zhou M, Zhao Y, Weng H, Kong H, Li K, Gao M, Zheng B, Lin J, Zhou F, Zhang Q, Wu D, Zhang L, Zhang Y. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat Commun 2021; 12:5021. [PMID: 34408153 PMCID: PMC8373933 DOI: 10.1038/s41467-021-25147-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Intensive agricultural activities in the North China Plain (NCP) lead to substantial emissions of nitrogen oxides (NOx) from soil, while the role of this source on local severe ozone pollution is unknown. Here we use a mechanistic parameterization of soil NOx emissions combined with two atmospheric chemistry models to investigate the issue. We find that the presence of soil NOx emissions in the NCP significantly reduces the sensitivity of ozone to anthropogenic emissions. The maximum ozone air quality improvements in July 2017, as can be achieved by controlling all domestic anthropogenic emissions of air pollutants, decrease by 30% due to the presence of soil NOx. This effect causes an emission control penalty such that large additional emission reductions are required to achieve ozone regulation targets. As NOx emissions from fuel combustion are being controlled, the soil emission penalty would become increasingly prominent and shall be considered in emission control strategies.
Collapse
Affiliation(s)
- Xiao Lu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xingpei Ye
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Mi Zhou
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Yuanhong Zhao
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
| | - Hongjian Weng
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Hao Kong
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Ke Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| | - Bo Zheng
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Feng Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Sciences, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China.
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
32
|
Naimark JG, Fiore AM, Jin X, Wang Y, Klovenski E, Braneon C. Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2020GL091520. [PMID: 35860786 PMCID: PMC9285578 DOI: 10.1029/2020gl091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 06/15/2023]
Abstract
Prior work suggests drought exacerbates US air quality by increasing surface ozone concentrations. We analyze 2005-2015 tropospheric column concentrations of two trace gases that serve as proxies for surface ozone precursors retrieved from the OMI/Aura satellite: Nitrogen dioxide (ΩNO2; NOx proxy) and formaldehyde (ΩHCHO; VOC proxy). We find 3.5% and 7.7% summer drought enhancements (classified by SPEI) for ΩNO2 and ΩHCHO, respectively, corroborating signals previously extracted from ground-level observations. When we subset by land cover type, the strongest ΩHCHO drought enhancement (10%) occurs in the woody savannas of the Southeast US. By isolating the influences of precipitation and temperature, we infer that enhanced biogenic VOC emissions in this region increase ΩHCHO independently with both high temperature and low precipitation during drought. The strongest ΩNO2 drought enhancement (6.0%) occurs over Midwest US croplands and grasslands, which we infer to reflect the sensitivity of soil NOx emissions to temperature.
Collapse
Affiliation(s)
- Jacob G. Naimark
- Department of Earth and Environmental Sciences, Columbia CollegeColumbia UniversityNew YorkNYUSA
- Department of Earth and Environmental Sciences, Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNYUSA
| | - Arlene M. Fiore
- Department of Earth and Environmental Sciences, Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNYUSA
| | - Xiaomeng Jin
- Department of ChemistryUniversity of California BerkeleyBerkeleyNYUSA
| | - Yuxuan Wang
- Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonTXUSA
| | - Elizabeth Klovenski
- Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonTXUSA
| | - Christian Braneon
- NASA Goddard Institute for Space Studies (GISS)New YorkNYUSA
- SciSpaceLLCBethesdaMDUSA
| |
Collapse
|