1
|
Chen H, Zhang B, Chen S, Xiong F, Zhu X, Yu B, Long S. Recent advances in transition metal-mediated/ catalyzed radiofluorination of arenes and heteroarenes for positron emission tomography. Bioorg Chem 2025; 157:108272. [PMID: 40015108 DOI: 10.1016/j.bioorg.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
Positron emission tomography (PET) imaging endows the possibility of precise diagnosis and effective treatment of diseases. Aromatic (hetero)cycle is one of the most fundamental groups in pharmaceuticals as well as in the development of PET tracers. In particular, incorporation of 18F to aromatic (hetero)cycles has accelerated the progress of nuclear medicine tracers. Current trend indicates a rapid progress in 18F-labeling of aromatic (hetero)cycles for PET imaging. Transition metal-catalyzed 18F-labeling method speeds up the reaction by lowering the activation energy of the substrate by the metal complex. The reaction conditions are mild, and a wide range of substrates can be used. In this article we systematically reviewed the methods of radioactive 18F-labeling of aromatic (hetero)cycles with different precursors mediated by transition metals‑copper, ruthenium, nickel, palladium, silver, and titanium. The precursors, radiolabeling conditions, catalytic efficiency, catalytic mechanism, optimization of transition metal-catalyzed 18F-labeling methods, and corresponding frontier applications of 18F-labeled molecular probes were discussed.
Collapse
Affiliation(s)
- Haiyan Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Buchuan Zhang
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Feng Xiong
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Xiaohua Zhu
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China.
| | - Bo Yu
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
2
|
Haveman LYF, de Kruijff AMT, van Eeden SPP, Windhorst AD, Vugts DJ. Triflyl [ 18F]Fluoride as a Solution for Base-Sensitive Late-Stage Nucleophilic Aromatic 18F-Fluorination Reactions. Chemistry 2025; 31:e202403127. [PMID: 39530382 PMCID: PMC11724229 DOI: 10.1002/chem.202403127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Fluorine-18 is the predominant radionuclide used to label Positron Emission Tomography (PET) tracers. One outstanding challenge in nucleophilic aromatic radiofluorination reactions is the sensitivity of precursors and catalysts for basic reaction conditions, which are necessary for the work-up of [18F]fluoride, resulting in limited reproducibility. Triflyl [18F]fluoride is a new [18F]fluoride source that allows freedom in choice of type and amounts of base and cryptand. The aim of the current work is to explore the scope and limitations of triflyl [18F]fluoride in the late-stage nucleophilic aromatic 18F-fluorination of various functionalized precursors, exploring reduced amounts of base and cryptand. The assessment allowed for the application of this new nucleophilic [18F]fluoride reagent to the successful radiosynthesis of boron, stannane, hypervalent iodonium ylide and phenol substrates bearing electron-deficient, -neutral and -rich functional groups as well as the clinically relevant PET tracers [18F]FPEB, [18F]mFBG and [18F]SynVesT-1.
Collapse
Affiliation(s)
- Lizeth Y. F. Haveman
- Deparment of Radiology & Nuclear MedicineAmsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 11171081 HVAmsterdamThe Netherlands
| | - Anna M. T. de Kruijff
- Deparment of Radiology & Nuclear MedicineAmsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 11171081 HVAmsterdamThe Netherlands
| | - Sjoerd P. P. van Eeden
- Deparment of Radiology & Nuclear MedicineAmsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 11171081 HVAmsterdamThe Netherlands
| | - Albert D. Windhorst
- Deparment of Radiology & Nuclear MedicineAmsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 11171081 HVAmsterdamThe Netherlands
| | - Danielle J. Vugts
- Deparment of Radiology & Nuclear MedicineAmsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 11171081 HVAmsterdamThe Netherlands
| |
Collapse
|
3
|
Orlovskaya VV, Fedorova OS, Viktorov NB, Krasikova RN. Simple and Efficient Synthesis of N-Succinimidyl-4-[ 18F]fluorobenzoate ([ 18F]SFB)-An Important Intermediate for the Introduction of Fluorine-18 into Complex Bioactive Compounds. Pharmaceuticals (Basel) 2024; 17:1723. [PMID: 39770565 PMCID: PMC11677304 DOI: 10.3390/ph17121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background:N-succinimidyl-[18F]fluorobenzoate ([18F]SFB) is commonly prepared through a three-step procedure starting from [18F]fluoride ion. A number of methods for the single-step radiosynthesis of [18F]SFB have been introduced recently, including the radiofluorination of diaryliodonium salts and the Cu-mediated 18F-fluorination of pinacol aryl boronates and aryl tributyl stannanes, but they still have the drawbacks of lengthy product purification procedures. In the present work, two approaches for the direct labeling of [18F]SFB from diaryliodonium (DAI) salt (4) and pinacol aryl boronate (6) are evaluated, with a major focus on developing a fast and simple SPE-based purification procedure. Methods: DAI salt precursor 6 was labeled employing the common "minimalist" approach with a two-step reaction heating sequence. The Cu-mediated radiofluorination of 4 was accomplished using Bu4NOTf as a phase transfer catalyst for the elution of [18F]fluoride, followed by radiofluorination in the same solvent. Several types of SPE cartridges were tested in the elution and SPE procedures. Results: The Cu-mediated 18F-fluorination of the pinacol aryl boronate precursor afforded a higher RCC of 56 ± 3% (n = 7), making it better suited for the one-pot synthesis of [18F]SFB. SPE-based purification was achieved using cation exchange and reverse-phase polymer resin cartridges, connected in series. In a full-batch test, [18F]SFB was obtained with an RCY of 30% (n. d. c.), RCP > 99%, Am 96-155 GBq/µmol, and a synthesis time of ≤35 min. Conclusions: Compared to other published methods, [18F]SFB production via the Cu-mediated radiofluorination of pinacol aryl boronate precursor provides significant time and cost savings, coupled with an ease of implementation.
Collapse
Affiliation(s)
- Viktoriya V. Orlovskaya
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197022 St. Petersburg, Russia; (V.V.O.)
| | - Olga S. Fedorova
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197022 St. Petersburg, Russia; (V.V.O.)
| | - Nikolai B. Viktorov
- Faculty of Chemical and Biotechnology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia;
| | - Raisa N. Krasikova
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 197022 St. Petersburg, Russia; (V.V.O.)
| |
Collapse
|
4
|
Yang Q, Song L, Chen Z, Qiu Y, Wang T, Sun X, Huang W, Li C, Wang Z, Kang L. Pharmacokinetic Positron Emission Tomography Imaging of an Optimized CD38-Targeted 68Ga-Labeled Peptide in Multiple Myeloma: A Pilot Study. Bioconjug Chem 2024; 35:1985-1996. [PMID: 39540871 DOI: 10.1021/acs.bioconjchem.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Multiple myeloma (MM) is an incurable disease characterized by its clinical and prognostic heterogeneity. Despite conventional chemotherapy and autologous hematopoietic stem cell transplantation, the management of relapsed and refractory MM disease poses significant challenges, both medically and socioeconomically. CD38, highly expressed on the surface of MM cells, serves as a distinct tumor biological target in MM. Peptides offer advantages over antibodies, enabling precise tumor imaging and facilitating early tumor diagnosis and dynamic immunotherapy monitoring. In this study, we developed PF381, a CD38-targeted peptide, and investigated its role in diagnosis, biodistribution, and dosimetry through 68Ga-labeling for preclinical evaluation in tumor-bearing models. We screened a microchip-based combinatorial chemistry peptide library to obtain the amino acid sequence of PF381. Affinity for human CD38 was evaluated by SPRi. PF381 was conjugated with DOTA for radiolabeling with 68Ga, and the complex was characterized by HPLC. PET imaging was performed in murine tumor models after the administration of [68Ga]Ga-DOTA-PF381. Biodistribution analysis compared CD38-positive H929 and CD38-negative U266 tumors, and human radiation dosimetry was estimated. Tumor sections were stained for CD38 expression. SPRi showed that PF381 had a high affinity for CD38 with a KD of 2.49 × 10-8 M. HPLC measured a radiolabeling efficiency of 78.45 ± 7.91% for [68Ga]Ga-DOTA-PF381, with >98% radiochemical purity. PET imaging revealed rapid and persistent accumulation of radioactivity in CD38-positive H929 tumors, contrasting with negligible uptake in CD38-negative U266 tumors. Biodistribution confirmed higher uptake in H929 tumors (0.75 ± 0.03%ID/g) vs U266 (0.26 ± 0.08%ID/g, P < 0.001). The kidney received the highest radiation dose (3.57 × 10-02 mSv/MBq), with an effective dose of 1.41 × 10-02 mSv/MBq. Immunofluorescence imaging supported PET and biodistribution findings. We developed a novel peptide targeting CD38 and proved that 68Ga-labeled PF381 had rapid targeting and good tumor penetration capabilities. Therefore, 68Ga-labeled PF381 could achieve high sensitivity in vivo imaging for CD38-positive hematological malignancies.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Tianyao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
5
|
Sun J, Jaworski C, Schirrmacher R, Hall DG. Suppressing Protodeboronation in Cu-Mediated 19F/ 18F-Fluorination of Arylboronic Acids: A Mechanistically Guided Approach Towards Optimized PET Probe Development. Chemistry 2024; 30:e202400906. [PMID: 38959115 DOI: 10.1002/chem.202400906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fluorinated arenes play a crucial role in drug discovery, specialty materials, and medical imaging. Although several variants for Cu-mediated nucleophilic fluorination of arylboronic acids and derivatives have been developed, these protocols rarely address the occurrence and control of protodeboronation, which greatly complicates product separation and can compromise the effectiveness of a radiotracer for in vivo imaging. Consequently, simpler and more efficient procedures are needed to allow rapid 18F/19F-fluorination of both arylboronic acids and esters while minimizing protodeboronation. Mechanistic controls revealed that in addition to a high temperature, strong donor ligands such as acetonitrile and pyridine accentuate a Cu-mediated protodeboronation. This observation guided the optimization of a ligandless procedure, with t-BuOH as solvent, to activate fluoride under milder conditions at lower temperatures minimizing protodeboronation. Additionally, a new copper salt, Cu(ONf)2 was employed to further improve the fluorination efficiency. A large range of functional groups are tolerated under the new procedure, which is complete within 30 minutes at a temperature of 60 °C, and affords fluorinated arenes and heteroarenes in 39 % to 84 % yield. With minimal modifications, the protocol can also be applied in 18F-radiofluorination, affording radiochemical conversions (RCCs) between 17 and 54 % with minimal protodeboronation compared to previously established protocols.
Collapse
Affiliation(s)
- Jingkai Sun
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Dennis G Hall
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
6
|
Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B, Berton HS, Wu Z, Nicewicz DA, Li Z. One-Step Synthesis of [ 18F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:1609-1618. [PMID: 39220691 PMCID: PMC11363353 DOI: 10.1021/acscentsci.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.
Collapse
Affiliation(s)
- Manshu Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Carla Staton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xinrui Ma
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Weiling Zhao
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Liqin Pan
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ben Giglio
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Haiden S. Berton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Zhanhong Wu
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - David A. Nicewicz
- Department
of Chemistry University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599 United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Nadporojskii MA, Orlovskaya VV, Fedorova OS, Sysoev DS, Krasikova RN. Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate. Molecules 2024; 29:3342. [PMID: 39064920 PMCID: PMC11279627 DOI: 10.3390/molecules29143342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this methodology, in particular, the [18F]fluoride recovery step for the routine preparation of radiotracers, has been the focus of recent research. In our recent study, an organic solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAPOTf) was found to be an efficient PTC for eluting radionuclides retained on the weak anion exchange cartridge, Oasis WAX 1cc, employing the inverse sorption-elution protocol. Notably, the following Cu-mediated radiofluorination of arylBPin precursors in the presence of the Cu(OTf)2(Py)4 catalyst can be performed with high efficiency in the same solvent, bypassing not only the conventional azeotropic drying procedure but any solvent replacement. In the current study, we aimed to translate this methodology, originally developed for remote-controlled operation with manual interventions, into the automated synthesis module on the TRACERlab automation platform. The adjustment of the reagent amounts and solvents allowed for high efficiency in the radiofluorination of a series of model arylBPin substrates on the TRACERlab FXFE Pro synthesis module, which was adapted for nucleophilic radiofluorinations. The practical applicability of the developed radiofluorination approach with DMAPOTf elution was demonstrated in the automated synthesis of 6-L-[18F]FDOPA. The radiotracer was obtained with an activity yield (AY; isolated, not decay-corrected) of 5.2 ± 0.5% (n = 3), with a synthesis time of ca. 70 min on the TRACERlab FX N Pro automation platform. The obtained AY was comparable with one reported by others (6 ± 1%) using the same boronate precursor, while a slightly higher AY of 6-L-[18F]FDOPA (14.5 ± 0.5%) was achieved in our previous work using commercially available Bu4NOTf as the PTC.
Collapse
Affiliation(s)
- Mikhail A. Nadporojskii
- Granov Russian Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia; (M.A.N.); (D.S.S.)
| | - Viktoriya V. Orlovskaya
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| | - Olga S. Fedorova
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| | - Dmitry S. Sysoev
- Granov Russian Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia; (M.A.N.); (D.S.S.)
| | - Raisa N. Krasikova
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| |
Collapse
|
8
|
Tago T, Toyohara J. Step-by-step optimisation of the radiosynthesis of the brain HDAC6 radioligand [ 18F]FSW-100 for clinical applications. EJNMMI Radiopharm Chem 2024; 9:45. [PMID: 38831171 PMCID: PMC11147973 DOI: 10.1186/s41181-024-00277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) is an emerging target for the treatment and diagnosis of proteinopathies. [18F]FSW-100 was recently developed as a promising brain-penetrating radioligand for HDAC6 PET imaging and the process validation of [18F]FSW-100 radiosynthesis for clinical use is complete, but no detailed synthetic strategy nor process optimisation has been reported. Here, we describe the optimisation of several processes in [18F]FSW-100 radiosynthesis, including the 18F-fluorination reaction, semipurification of the 18F-intermediate, and purification of the product by high-performance liquid chromatography (HPLC), to achieve a radiochemical yield (RCY) adequate for clinical applications of the radioligand. Our findings will aid optimisation of radiosynthesis processes in general. RESULTS In the 18F-fluorination reaction, the amount of copper reagent was reduced without reducing the nonisolated RCY of the intermediate (50%), thus reducing the risk of copper contamination in the product injection solution. Optimising the solid-phase extraction (SPE) conditions for semipurification of the intermediate improved its recovery efficiency. The addition of anti-radiolysis reagents to the mobile phase for the HPLC purification of [18F]FSW-100 increased its activity yield in radiosynthesis using a high [18F]fluoride radioactivity of approximately 50 GBq. The SPE-based formulation method and additives for the injection solution were optimised, and the resulting [18F]FSW-100 injection solution was stable for over 2 h with a radiochemical purity of greater than 95%. CONCLUSIONS Of all the reconsidered processes, we found that optimisation of the SPE-based semipurification of the intermediate and of the mobile phase for HPLC purification in particular improved the RCY of [18F]FSW-100, doubling it compared to that of the original protocol. The radioactivity of [18F]FSW-100 synthesized using the optimized protocol was sufficient for multiple doses for a clinical study.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
9
|
Webb EW, Cheng K, Winton WP, Klein BJ, Bowden GD, Horikawa M, Liu SW, Wright JS, Verhoog S, Kalyani D, Wismer M, Krska SW, Sanford MS, Scott PJ. Development of High-Throughput Experimentation Approaches for Rapid Radiochemical Exploration. J Am Chem Soc 2024; 146:10581-10590. [PMID: 38580459 PMCID: PMC11099536 DOI: 10.1021/jacs.3c14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Brandon J.C. Klein
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen 72074, Germany
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S. Wendy Liu
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Stefan Verhoog
- Translational Imaging, Merck and Co., Inc., West Point, PA 19486, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Michael Wismer
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Lai TH, Wenzel B, Dukić-Stefanović S, Teodoro R, Arnaud L, Maisonial-Besset A, Weber V, Moldovan RP, Meister S, Pietzsch J, Kopka K, Juratli TA, Deuther-Conrad W, Toussaint M. Radiosynthesis and biological evaluation of [ 18F]AG-120 for PET imaging of the mutant isocitrate dehydrogenase 1 in glioma. Eur J Nucl Med Mol Imaging 2024; 51:1085-1096. [PMID: 37982850 PMCID: PMC10881675 DOI: 10.1007/s00259-023-06515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.
Collapse
Affiliation(s)
- Thu Hang Lai
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
- Department of Research and Development, ROTOP Pharmaka GmbH, Dresden, Germany
| | - Barbara Wenzel
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Sladjana Dukić-Stefanović
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Rodrigo Teodoro
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Lucie Arnaud
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Valérie Weber
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Rareş-Petru Moldovan
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Sebastian Meister
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tareq A Juratli
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurosurgery, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Magali Toussaint
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany.
| |
Collapse
|
11
|
Morales M, Preshlock S, Sharninghausen LS, Wright JS, Brooks AF, Sanford MS, Scott PJH. Tandem Iridium-Catalyzed C-H Borylation/Copper-Mediated Radiofluorination of Aromatic C-H Bonds with [ 18F]TBAF. Methods Mol Biol 2024; 2729:45-53. [PMID: 38006490 PMCID: PMC10867631 DOI: 10.1007/978-1-0716-3499-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Direct C-H functionalization of (hetero)aromatic C-H bonds with iridium-catalyzed borylation followed by copper-mediated radiofluorination of the in situ generated organoboronates affords fluorine-18 labeled aromatics in high radiochemical conversions and meta-selectivities. This protocol describes the benchtop reaction assembly of the C-H borylation and radiofluorination steps, which can be utilized for the fluorine-18 labeling of densely functionalized bioactive scaffolds.
Collapse
Affiliation(s)
- Maria Morales
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Ovdiichuk O, Lahdenpohja S, Béen Q, Tanguy L, Kuhnast B, Collet-Defossez C. [ 18F]fluoride Activation and 18F-Labelling in Hydrous Conditions-Towards a Microfluidic Synthesis of PET Radiopharmaceuticals. Molecules 2023; 29:147. [PMID: 38202730 PMCID: PMC10779751 DOI: 10.3390/molecules29010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
18F-labelled radiopharmaceuticals are indispensable in positron emission tomography. The critical step in the preparation of 18F-labelled tracers is the anhydrous F-18 nucleophilic substitution reaction, which involves [18F]F- anions generated in aqueous media by the cyclotron. For this, azeotropic drying by distillation is widely used in standard synthesisers, but microfluidic systems are often not compatible with such a process. To avoid this step, several methods compatible with aqueous media have been developed. We summarised the existing approaches and two of them have been studied in detail. [18F]fluoride elution efficiencies have been investigated under different conditions showing high 18F-recovery. Finally, a large scope of precursors has been assessed for radiochemical conversion, and these hydrous labelling techniques have shown their potential for tracer production using a microfluidic approach, more particularly compatible with iMiDEV™ cassette volumes.
Collapse
Affiliation(s)
- Olga Ovdiichuk
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
| | - Salla Lahdenpohja
- Université Paris Saclay, CEA Inserm, CNRS, BioMaps, 91401 Orsay, France
| | - Quentin Béen
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
| | | | - Bertrand Kuhnast
- Université Paris Saclay, CEA Inserm, CNRS, BioMaps, 91401 Orsay, France
| | - Charlotte Collet-Defossez
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
- Université de Lorraine, Inserm, IADI, 54000 Nancy, France
| |
Collapse
|
13
|
Kim MP, Cho H, Kayal S, Jeon MH, Seo JK, Son J, Jeong J, Hong SY, Chun JH. Direct 18F-Fluorosulfurylation of Phenols and Amines Using an [ 18F]FSO 2+ Transfer Agent Generated In Situ. J Org Chem 2023; 88:6263-6273. [PMID: 37032486 DOI: 10.1021/acs.joc.3c00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
We report the direct radiofluorosulfurylation method for the synthesis of 18F-labeled fluorosulfuryl derivatives from phenols and amines using an [18F]FSO2+ transfer agent generated in situ. Nucleophilic radiofluorination is achieved even in a hydrous organic medium, obviating the need for azeotropic drying and the use of cryptands. This unprecedented, operationally simple isotopic functionalization facilitates the reliable production of potential radiotracers for positron emission tomography, rendering facile access to SuFEx radiochemistry.
Collapse
Affiliation(s)
- Min Pyeong Kim
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Swatilekha Kayal
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinsil Jeong
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung You Hong
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Orlovskaya VV, Fedorova OS, Viktorov NB, Vaulina DD, Krasikova RN. One-Pot Radiosynthesis of [18F]Anle138b—5-(3-Bromophenyl)-3-(6-[18F]fluorobenzo[d][1,3]dioxol-5-yl)-1H-pyrazole—A Potential PET Radiotracer Targeting α-Synuclein Aggregates. Molecules 2023; 28:molecules28062732. [PMID: 36985703 PMCID: PMC10052605 DOI: 10.3390/molecules28062732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Availability of PET imaging radiotracers targeting α-synuclein aggregates is important for early diagnosis of Parkinson’s disease and related α-synucleinopathies, as well as for the development of new therapeutics. Derived from a pyrazole backbone, 11C-labelled derivatives of anle138b (3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole)—an inhibitor of α-synuclein and prion protein oligomerization—are currently in active development as the candidates for PET imaging α-syn aggregates. This work outlines the synthesis of a radiotracer based on the original structure of anle138b, labelled with fluorine-18 isotope, eminently suitable for PET imaging due to half-life and decay energy characteristics (97% β+ decay, 109.7 min half-life, and 635 keV positron energy). A three-step radiosynthesis was developed starting from 6-[18F]fluoropiperonal (6-[18F]FP) that was prepared using (piperonyl)(phenyl)iodonium bromide as a labelling precursor. The obtained 6-[18F]FP was used directly in the condensation reaction with tosylhydrazide followed by 1,3-cycloaddition of the intermediate with 3′-bromophenylacetylene eliminating any midway without any intermediate purifications. This one-pot approach allowed the complete synthesis of [18F]anle138b within 105 min with RCY of 15 ± 3% (n = 3) and Am in the range of 32–78 GBq/µmol. The [18F]fluoride processing and synthesis were performed in a custom-built semi-automated module, but the method can be implemented in all the modern automated platforms. While there is definitely space for further optimization, the procedure developed is well suited for preclinical studies of this novel radiotracer in animal models and/or cell cultures.
Collapse
Affiliation(s)
- Viktoriya V. Orlovskaya
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Science, 197376 St. Petersburg, Russia
| | - Olga S. Fedorova
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Science, 197376 St. Petersburg, Russia
| | - Nikolai B. Viktorov
- St. Petersburg State Technological Institute, Technical University, 190013 St. Petersburg, Russia
| | - Daria D. Vaulina
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Science, 197376 St. Petersburg, Russia
| | - Raisa N. Krasikova
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Science, 197376 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
15
|
Mixdorf JC, Hoffman SLV, Aluicio-Sarduy E, Barnhart TE, Engle JW, Ellison PA. Copper-Mediated Radiobromination of (Hetero)Aryl Boronic Pinacol Esters. J Org Chem 2023; 88:2089-2094. [PMID: 36745853 PMCID: PMC9957949 DOI: 10.1021/acs.joc.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.
Collapse
Affiliation(s)
- Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Sabrina L. V. Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Paul A. Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| |
Collapse
|
16
|
Xu Y, Cen P, Ma L, Tian M, Zhang X, Zhang Q, Yu K, Zhang H, Gu W, He Q. Highly efficient radiosynthesis and biological evaluation of [18F]safinamide, a radiolabelled anti-parkinsonian drug for PET imaging. ChemMedChem 2022; 17:e202200472. [PMID: 36068922 DOI: 10.1002/cmdc.202200472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
As an add-on drug approved for Parkinson's disease treatment, safinamide has multiple functions, such as selective and reversible monoamine oxidase-B inhibition, voltage-sensitive sodium/potassium channel blockage, and glutamate release inhibition. Meanwhile, safinamide shows tremendous therapeutic potential in the context of other central nervous system diseases (e.g., ischaemic stroke, amyotrophic lateral sclerosis, depression, etc.). In this work, [18F]safinamide, which is safinamide labelled by the positron-emitting radionuclide [18F]fluorine, was synthesized automatically based on iodonium ylide precursors with high radiochemical yield and high molar activity. Density functional theory was applied to calculate the Gibbs free energy change during iodonium ylide-mediated fluorination and to interpret the effect of tetraethylammonium (TEA+) as the counter cation in these reactions to improve the nucleophilicity of [18F/19F]fluoride. In addition, positron emission tomography studies on Sprague Dawley rats were carried out to determine the imaging characteristics, pharmacokinetics, and metabolism of the [18F]safinamide radiotracer. The results displayed the complete biodistribution of the radiotracer, especially in rat brains, and revealed that [18F]safinamide has moderate brain uptake, rapid and reversible binding kinetics, and good stability.
Collapse
Affiliation(s)
- Yangyang Xu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Peili Cen
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Lijuan Ma
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Mei Tian
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Xue Zhang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, CHINA
| | - Qinghua Zhang
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Kaiwu Yu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Hong Zhang
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Wangjun Gu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Qinggang He
- Zhejiang University, Chemical Engineering, 38 Zheda Rd., 310027, Hangzhou, CHINA
| |
Collapse
|
17
|
Gendron T, Destro G, Straathof NJW, Sap JBI, Guibbal F, Vriamont C, Caygill C, Atack JR, Watkins AJ, Marshall C, Hueting R, Warnier C, Gouverneur V, Tredwell M. multi-patient dose synthesis of [18F]Flumazenil via a copper-mediated 18F-fluorination. EJNMMI Radiopharm Chem 2022; 7:5. [PMID: 35306596 PMCID: PMC8934836 DOI: 10.1186/s41181-022-00158-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Flumazenil (FMZ) is a functionally silent imidazobenzodiazepine which binds to the benzodiazepine binding site of approximately 75% of the brain γ-aminobutyric acid-A receptors (GABAARs). Positron Emission Tomography (PET) imaging of the GABAARs with [11C]FMZ has been used to evidence alterations in neuronal density, to assess target engagement of novel pharmacological agents, and to study disorders such as epilepsy and Huntington’s disease. Despite the potential of FMZ PET imaging the short half-life (t1/2) of carbon-11 (20 min) has limited the more widespread clinical use of [11C]FMZ. The fluorine-18 (18F) isotopologue with a longer t1/2 (110 min) is ideally suited to address this drawback. However, the majority of current radiochemical methods for the synthesis of [18F]FMZ are non-trivial and low yielding. We report a robust, automated protocol that is good manufacturing practice (GMP) compatible, and yields multi-patient doses of [18F]FMZ. Results The fully automated synthesis was developed on the Trasis AllinOne (AIO) platform using a single-use cassette. [18F]FMZ was synthesized in a one-step procedure from [18F]fluoride, via a copper-mediated 18F-fluorination of a boronate ester precursor. Purification was performed by semi-preparative radio-HPLC and the collected fraction formulated directly into the final product vial. The overall process from start of synthesis to delivery of product is approximately 55 min. Starting with an initial activity of 23.6 ± 5.8 GBq (n = 3) activity yields of [18F]FMZ were 8.0 ± 1 GBq (n = 3). The synthesis was successfully reproduced at two independent sites, where the product passed quality control release criteria in line with the European Pharmacopoeia standards and ICH Q3D(R1) guidelines to be suitable for human use. Conclusion Reported is a fully automated cassette-based synthesis of [18F]FMZ that is Good Manufacturing Practice (GMP) compatible and produces multi-patient doses of [18F]FMZ. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-022-00158-z.
Collapse
Affiliation(s)
| | - Gianluca Destro
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Natan J W Straathof
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jeroen B I Sap
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Florian Guibbal
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Claire Caygill
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Andrew J Watkins
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK
| | - Christopher Marshall
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK
| | - Rebekka Hueting
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK. .,School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
18
|
Lee SJ, Morales-Colón MT, Brooks AF, Wright JS, Makaravage KJ, Scott PJH, Sanford MS. S NAr Radiofluorination with In Situ Generated [ 18F]Tetramethylammonium Fluoride. J Org Chem 2021; 86:14121-14130. [PMID: 34505779 DOI: 10.1021/acs.joc.1c01491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes a method for the nucleophilic radiofluorination of (hetero)aryl chlorides, (hetero)aryl triflates, and nitroarenes using a combination of [18F]KF·K2.2.2 and Me4NHCO3 for the in situ formation of a strongly nucleophilic fluorinating reagent (proposed to be [18F]Me4NF). This method is applied to 24 substrates bearing diverse functional groups, and it generates [18F](hetero)aryl fluoride products in good to excellent radiochemical yields in the presence of ambient air/moisture. The reaction is applied to the preparation of 18F-labeled HQ-415 for potential (pre)clinical use.
Collapse
Affiliation(s)
- So Jeong Lee
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114,United States
| | - María T Morales-Colón
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Bratteby K, Shalgunov V, Battisti UM, Petersen IN, van den Broek SL, Ohlsson T, Gillings N, Erlandsson M, Herth MM. Insights into Elution of Anion Exchange Cartridges: Opening the Path toward Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers. ACS Pharmacol Transl Sci 2021; 4:1556-1566. [PMID: 34661074 PMCID: PMC8506604 DOI: 10.1021/acsptsci.1c00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 01/16/2023]
Abstract
![]()
Aliphatic nucleophilic
substitution (SN2) with [18F]fluoride is the
most widely applied method to prepare 18F-labeled positron
emission tomography (PET) tracers. Strong
basic conditions commonly used during 18F-labeling procedures
inherently limit or prohibit labeling of base-sensitive scaffolds.
The high basicity stems from the tradition to trap [18F]fluoride
on anion exchange cartridges and elute it afterward with basic anions.
This sequence is used to facilitate the transfer of [18F]fluoride from an aqueous to an aprotic organic, polar reaction
medium, which is beneficial for SN2 reactions. Furthermore,
this sequence also removes cationic radioactive contaminations from
cyclotron-irradiated [18O]water from which [18F]fluoride is produced. In this study, we developed an efficient
elution procedure resulting in low basicity that permits SN2 18F-labeling of base-sensitive scaffolds. Extensive
screening of trapping and elution conditions (>1000 experiments)
and
studying their influence on the radiochemical yield (RCY) allowed
us to identify a suitable procedure for this. Using this procedure,
four PET tracers and three synthons could be radiolabeled in substantially
higher RCYs (up to 2.5-fold) compared to those of previously published
procedures, even from lower precursor amounts. Encouraged by these
results, we applied our low-basicity method to the radiolabeling of
highly base-sensitive tetrazines, which cannot be labeled using state-of-art
direct aliphatic 18F-labeling procedures. Labeling succeeded
in RCYs of up to 20%. We believe that our findings facilitate PET
tracer development by opening the path toward simple and direct SN2 18F fluorination of base-sensitive substrates.
Collapse
Affiliation(s)
- Klas Bratteby
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden.,Department of Clinical Physiology Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Ida Nyman Petersen
- Department of Clinical Physiology Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Tomas Ohlsson
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Nic Gillings
- Department of Clinical Physiology Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Maria Erlandsson
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Ajenjo J, Destro G, Cornelissen B, Gouverneur V. Closing the gap between 19F and 18F chemistry. EJNMMI Radiopharm Chem 2021; 6:33. [PMID: 34564781 PMCID: PMC8464544 DOI: 10.1186/s41181-021-00143-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Positron emission tomography (PET) has become an invaluable tool for drug discovery and diagnosis. The positron-emitting radionuclide fluorine-18 is frequently used in PET radiopharmaceuticals due to its advantageous characteristics; hence, methods streamlining access to 18F-labelled radiotracers can make a direct impact in medicine. For many years, access to 18F-labelled radiotracers was limited by the paucity of methodologies available, and the poor diversity of precursors amenable to 18F-incorporation. During the last two decades, 18F-radiochemistry has progressed at a fast pace with the appearance of numerous methodologies for late-stage 18F-incorporation onto complex molecules from a range of readily available precursors including those that do not require pre-functionalisation. Key to these advances is the inclusion of new activation modes to facilitate 18F-incorporation. Specifically, new advances in late-stage 19F-fluorination under transition metal catalysis, photoredox catalysis, and organocatalysis combined with the availability of novel 18F-labelled fluorination reagents have enabled the invention of novel processes for 18F-incorporation onto complex (bio)molecules. This review describes these major breakthroughs with a focus on methodologies for C-18F bond formation. This reinvigorated interest in 18F-radiochemistry that we have witnessed in recent years has made a direct impact on 19F-chemistry with many laboratories refocusing their efforts on the development of methods using nucleophilic fluoride instead of fluorination reagents derived from molecular fluorine gas.
Collapse
Affiliation(s)
- Javier Ajenjo
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gianluca Destro
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
21
|
Bowden GD, Chailanggar N, Pichler BJ, Maurer A. Scalable 18F processing conditions for copper-mediated radiofluorination chemistry facilitate DoE optimization studies and afford an improved synthesis of [ 18F]olaparib. Org Biomol Chem 2021; 19:6995-7000. [PMID: 34351339 DOI: 10.1039/d1ob00903f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A convenient and scalable base-free method for processing [18F]fluoride as [18F]TBAF is reported and applied to copper-mediated radiofluorination radiosyntheses. A central feature of this method is that a single production of [18F]TBAF can be divided into small aliquots that can be used to perform multiple small-scale reactions in DoE optimization studies. The results of these studies can then be reliably translated to full batch tracer productions using automated synthesizers. The processing method was applied to the DoE optimization of [18F]olaparib, affording the tracer in high radiochemical yields via both manual (%RCY = 78 ± 6%, n = 4 (CMRF step only)) and automated (up to 80% (%RCY); 41% activity yield (%AY)) radiosynthesis procedures.
Collapse
Affiliation(s)
- Gregory D Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.
| | | | | | | |
Collapse
|
22
|
Bratteby K, Shalgunov V, Herth MM. Aliphatic 18 F-Radiofluorination: Recent Advances in the Labeling of Base-Sensitive Substrates*. ChemMedChem 2021; 16:2612-2622. [PMID: 34169672 DOI: 10.1002/cmdc.202100303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Aliphatic fluorine-18 radiolabeling is the most commonly used method to synthesize tracers for PET-imaging. With an increasing demand for 18 F-radiotracers for clinical applications, new labeling strategies aiming to increase radiochemical yields of established tracers or, more importantly, to enable 18 F-labeling of new scaffolds have been developed. In recent years, increased attention has been focused on the direct aliphatic 18 F-fluorination of base-sensitive substrates in this respect. This minireview gives a concise overview of the recent advances within this field and aims to highlight the advantages and limitations of these methods.
Collapse
Affiliation(s)
- Klas Bratteby
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 222 42, Lund, Sweden.,Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
23
|
Wright JS, Sharninghausen LS, Preshlock S, Brooks AF, Sanford MS, Scott PJH. Sequential Ir/Cu-Mediated Method for the Meta-Selective C-H Radiofluorination of (Hetero)Arenes. J Am Chem Soc 2021; 143:6915-6921. [PMID: 33914521 PMCID: PMC8832069 DOI: 10.1021/jacs.1c00523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article describes a sequential Ir/Cu-mediated process for the meta-selective C-H radiofluorination of (hetero)arene substrates. In the first step, Ir-catalyzed C(sp2)-H borylation affords (hetero)aryl pinacolboronate (BPin) esters. The intermediate organoboronates are then directly subjected to copper-mediated radiofluorination with [18F]tetrabutylammonium fluoride to afford fluorine-18 labeled (hetero)arenes in high radiochemical yield and radiochemical purity. This entire process is performed on a benchtop without Schlenk or glovebox techniques and circumvents the need to isolate (hetero)aryl boronate esters. The reaction was automated on a TracerLab FXFN module with 1,3-dimethoxybenzene and a meta-tyrosine derivative. The products, [18F]1-fluoro-3,5-dimethoxybenzene and an 18F-labeled meta-tyrosine derivative, were obtained in 37 ± 5% isolated radiochemical yield and >99% radiochemical purity and 25% isolated radiochemical yield and 99% radiochemical purity, and 0.52 Ci/μmol (19.24 GBq/μmol) molar activity (Am), respectively.
Collapse
Affiliation(s)
- Jay S. Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Varlow C, Mossine AV, Bernard-Gauthier V, Scott PJH, Vasdev N. Radiofluorination of oxazole-carboxamides for preclinical PET neuroimaging of GSK-3. J Fluor Chem 2021; 245. [PMID: 33840834 DOI: 10.1016/j.jfluchem.2021.109760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is an enzyme that is dysregulated in oncology neurodegeneration, neuroinflammation and several mental health illnesses. As such, GSK-3 is a long-sought after target for positron emission tomography (PET) imaging and therapeutic intervention. Herein, we report on the development and radiofluorination of two oxazole-4-carboxamides, including one bearing a non-activated aromatic ring. Both compounds demonstrated excellent selectivity in a kinase screen and inhibit GSK-3 with high affinity. [18F]OCM-49 was synthesized from [18F]fluoride using a copper-mediated reaction of an aryl boronic acid precursor, while [18F]OCM-50 used a trimethylammonium triflate precursor, and both radiotracers were translated for preclinical PET imaging in rodents. Due to superior radiochemical yields and brain uptake (peak standardized uptake value of ~2.0), [18F]OCM-50 was further evaluated in non-human primate and also showed good brain uptake and rapid clearance. Further studies to consider clinical translation of both radiotracers are underway.
Collapse
Affiliation(s)
- Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Vadim Bernard-Gauthier
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
25
|
Cesarec S, Robson JA, Carroll LS, Aboagye EO, Spivey AC. Direct incorporation of [ 18F] into Aliphatic Systems: A promising Mn-catalysed Labelling Technique for PET Imaging. Curr Radiopharm 2021; 14:101-106. [PMID: 32895047 DOI: 10.2174/1874471013666200907115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the challenges in positron emission tomography (PET) is labelling complex aliphatic molecules. OBJECTIVE This study aimed to develop a method of metal-catalysed radiofluorination that is site-selective and works in moderate to good yields under facile conditions. METHODS Herein, we report on the optimisation of an aliphatic C-H to C-18F bond transformation catalysed by a Mn(porphyrin) complex. RESULTS The successful oxidation of 11 aliphatic molecules, including progesterone, is reported. Radiochemical Incorporations (RCIs) up to 69% were achieved within 60 min without the need for pre-activation or special equipment. CONCLUSION The method features mild conditions (60 °C) and promises to constitute a valuable approach to labelling of biomolecules and drug substances.
Collapse
Affiliation(s)
- Sara Cesarec
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Jonathan A Robson
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Laurence S Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Alan C Spivey
- Department of Chemistry, Molecular Sciences Research Hub (MSRH), White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
26
|
Orlovskaya V, Fedorova O, Kuznetsova O, Krasikova R. Cu‐Mediated Radiofluorination of Aryl Pinacolboronate Esters: Alcohols as Solvents with Application to 6‐L‐[
18
F]FDOPA Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Viktoriya Orlovskaya
- N.P. Bechtereva Institute of the Human Brain Russian Academy of Sciences 9, Pavlova street 197376 Saint‐Petersburg Russia
| | - Olga Fedorova
- N.P. Bechtereva Institute of the Human Brain Russian Academy of Sciences 9, Pavlova street 197376 Saint‐Petersburg Russia
| | - Olga Kuznetsova
- N.P. Bechtereva Institute of the Human Brain Russian Academy of Sciences 9, Pavlova street 197376 Saint‐Petersburg Russia
| | - Raisa Krasikova
- N.P. Bechtereva Institute of the Human Brain Russian Academy of Sciences 9, Pavlova street 197376 Saint‐Petersburg Russia
| |
Collapse
|
27
|
McDonald AF, Goh YW, White JM, Scott AM, Ackermann U. Automated synthesis of 18F radiolabelled indole containing Oncrasin-like molecules; a comparison of iodonium salts and boronic ester chemistry. EJNMMI Radiopharm Chem 2020; 5:23. [PMID: 33169204 PMCID: PMC7652984 DOI: 10.1186/s41181-020-00104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background Oncrasin-1 is a small molecule which was identified from a screen of KRAS mutant cancer cells and has shown specificity for KRAS mutant cell killing. We aimed to develop a radiolabelled form of Oncrasin-1 to enable in-vivo imaging of mutant KRAS expression in malignant tumours. This work outlines the synthesis of 3 fluorinated derivatives and development of iodonium salt and boronic ester precursors for radiolabelling with the 18F isotope. Results In our hands, synthesis of iodonium salts were not easily accessible due to the 3-carbaldehyde indole structure being preferentially oxidized by conditions required for iodonium salt formation, rather than benzyl iodide. Synthesis and radiolabelling of boronic acid pinacol ester precursors were successful, with the products being obtained in yields of 10.76% ± 0.96% (n = 5), 14.7% ±8.58% (n = 3) and 14.92% ±3.9% (n = 3) for 18F KAM001, 18F KAM002 and 18F KAM003 respectively, with radiochemical purity of greater than 99%. Conclusions The successful synthesis of these tracers has been undertaken utilizing boronic ester radio-fluorination methods and will allow for investigation of Oncrasin based molecules as potential diagnostics for cancers expressing mutant KRAS protein. Supplementary Information Supplementary information accompanies this paper at 10.1186/s41181-020-00104-x.
Collapse
Affiliation(s)
- Alexander F McDonald
- The Olivia Newton-John Cancer Research Insititute, and School of Cancer Medicine, La Trobe University, Heidelberg, 3084, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, 3010, Australia
| | | | - Jonathan M White
- School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Andrew M Scott
- The Olivia Newton-John Cancer Research Insititute, and School of Cancer Medicine, La Trobe University, Heidelberg, 3084, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Faculty of Medicine, The University of Melbourne, Parkville, 3010, Australia
| | - Uwe Ackermann
- The Olivia Newton-John Cancer Research Insititute, and School of Cancer Medicine, La Trobe University, Heidelberg, 3084, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia. .,Faculty of Medicine, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
28
|
Tanzey SS, Mossine AV, Sowa AR, Torres J, Brooks AF, Sanford MS, Scott PJH. A spot test for determination of residual TBA levels in 18F-radiotracers for human use using Dragendorff reagent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5004-5009. [PMID: 33000785 PMCID: PMC11345741 DOI: 10.1039/d0ay01565b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When utilizing [18F]tetrabutylammonium fluoride ([18F]TBAF) in the synthesis of 18F-labeled radiotracers for clinical positron emission tomography (PET) imaging, it is necessary to confirm that residual TBA levels in formulated doses do not exceed established specifications (≤2.6 mg per patient dose). Historically this has been accomplished using HPLC, but this is time consuming for short-lived PET radiotracers and limited by the need for expensive equipment. This motivated us to introduce a TLC spot test for determining residual TBA, and we have developed a new method which employs the Dragendorff reagent. Herein we report details of the TLC method and use it to quantify residual TBA in different formulations of 6-[18F]fluoro-DOPA.
Collapse
Affiliation(s)
- Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Orlovskaya V, Antuganov D, Fedorova O, Timofeev V, Krasikova R. Tetrabutylammonium tosylate as inert phase-transfer catalyst: The key to high efficiency SN2 radiofluorinations. Appl Radiat Isot 2020; 163:109195. [DOI: 10.1016/j.apradiso.2020.109195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
|
30
|
Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH. Copper-Mediated Late-stage Radiofluorination: Five Years of Impact on Pre-clinical and Clinical PET Imaging. Clin Transl Imaging 2020; 8:167-206. [PMID: 33748018 PMCID: PMC7968072 DOI: 10.1007/s40336-020-00368-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, and in-human imaging studies of new and established imaging agents containing aromatic C-18F bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, although key developments that have enabled or improved upon the syntheses of fluorine-18 imaging agents are discussed. METHODS A comprehensive literature search from April 2014 onwards of the Web of Science and PubMed library databases was performed to find reports that utilize CMRF for the synthesis of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in this minireview. Select conference proceedings, previous reports describing alternative methods for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been included for discussion. CONCLUSIONS CMRF has significantly expanded the chemical space that is accessible to fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the development of new radiofluorination methodologies.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Wiesner
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Mota F, Jadhav R, Ruiz-Bedoya CA, Ordonez AA, Klunk MH, Freundlich JS, Jain SK. Radiosynthesis and Biodistribution of 18F-Linezolid in Mycobacterium tuberculosis-Infected Mice Using Positron Emission Tomography. ACS Infect Dis 2020; 6:916-921. [PMID: 32243132 DOI: 10.1021/acsinfecdis.9b00473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxazolidinones are a novel class of antibacterials with excellent activity against resistant Gram-positive bacteria including strains causing multidrug-resistant tuberculosis (TB). Despite their excellent efficacy, optimal dosing strategies to limit their toxicities are still under development. Here, we developed a novel synthetic strategy for fluorine-18-radiolabeled oxazolidinones. As proof-of-concept, we performed whole-body 18F-linezolid positron emission tomography (PET) in a mouse model of pulmonary TB for noninvasive in situ measurements of time-activity curves in multiple compartments with subsequent confirmation by ex vivo tissue gamma counting. After intravenous injection, 18F-linezolid rapidly distributed to all organs with excellent penetration into Mycobacterium tuberculosis-infected lungs. Drug biodistribution studies with PET can provide unbiased, in situ drug measurements, which could boost efforts to optimize antibiotic dosing strategies.
Collapse
Affiliation(s)
| | - Ravindra Jadhav
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Newark, New Jersey 07103, United States
| | | | | | | | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Newark, New Jersey 07103, United States
| | | |
Collapse
|
32
|
Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, Henderson BD, Erhard T, Bruetting C, Skaddan MB, Sanford MS, Scott PJH. Synthesis of high-molar-activity [ 18F]6-fluoro-L-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc 2020; 15:1742-1759. [PMID: 32269382 PMCID: PMC7333241 DOI: 10.1038/s41596-020-0305-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022]
Abstract
[18F]6-fluoro-L-DOPA ([18F]FDOPA) is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that is used to image Parkinson's disease, brain tumors, and focal hyperinsulinism of infancy. Despite these important applications, [18F]FDOPA PET remains underutilized because of synthetic challenges associated with accessing the radiotracer for clinical use; these stem from the need to radiofluorinate a highly electron-rich catechol ring in the presence of an amino acid. To address this longstanding challenge in the PET radiochemistry community, we have developed a one-pot, two-step synthesis of high-molar-activity [18F]FDOPA by Cu-mediated fluorination of a pinacol boronate (BPin) precursor. The method is fully automated, has been validated to work well at two separate sites (an academic facility with a cyclotron on site and an industry lab purchasing [18F]fluoride from an outside vendor), and provides [18F]FDOPA in reasonable radiochemical yield (2.44 ± 0.70 GBq, 66 ± 19 mCi, 5 ± 1%), excellent radiochemical purity (>98%) and high molar activity (76 ± 30 TBq/mmol, 2,050 ± 804 Ci/mmol), n = 26. Herein we report a detailed protocol for the synthesis of [18F]FDOPA that has been successfully implemented at two sites and validated for production of the radiotracer for human use.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Curium Pharma, Nuclear Medicine Manufacturing, Noblesville, IN, USA
| | - Sean S Tanzey
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Takeda Pharmaceuticals International Co., Process Chemistry, Boston, MA, USA
| | - Jason M Miller
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Environmental Analysis Branch, US Army Corps of Engineers, Detroit, MI, USA
| | | | - Thomas Erhard
- AbbVie Deustschland GmbH & Co. KG Ludwigschafen, Ludwigshafen, Germany
| | | | | | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Inkster JAH, Akurathi V, Sromek AW, Chen Y, Neumeyer JL, Packard AB. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18F-fluorination chemistry. Sci Rep 2020; 10:6818. [PMID: 32321927 PMCID: PMC7176689 DOI: 10.1038/s41598-020-61845-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/03/2020] [Indexed: 11/30/2022] Open
Abstract
Fluorine-18 radiolabeling typically includes several conserved steps including elution of the [18F]fluoride from an anion exchange cartridge with a basic solution of K2CO3 or KHCO3 and Kryptofix 2.2.2. in mixture of acetonitrile and water followed by rigorous azeotropic drying to remove the water. In this work we describe an alternative "non-anhydrous, minimally basic" ("NAMB") technique that simplifies the process and avoids the basic conditions that can sometimes limit the scope and efficiency of [18F]fluoride incorporation chemistry. In this approach, [18F]F- is eluted from small (10-12 mg) anion-exchange cartridges with solutions of tetraethylammonium bicarbonate, perchlorate or tosylate in polar aprotic solvents containing 10-50% water. After dilution with additional aprotic solvent, these solutions are used directly in nucleophilic aromatic and aliphatic 18F-fluorination reactions, obviating the need for azeotropic drying. Perchlorate and tosylate are minimally basic anions that are nevertheless suitable for removal of [18F]F- from the anion-exchange cartridge. As proof-of-principle, "NAMB" chemistry was utilized for the synthesis of the dopamine D2/D3 antagonist [18F]fallypride.
Collapse
Affiliation(s)
- J A H Inkster
- Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - V Akurathi
- Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - A W Sromek
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Y Chen
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - J L Neumeyer
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - A B Packard
- Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Sharninghausen LS, Brooks AF, Winton WP, Makaravage KJ, Scott PJH, Sanford MS. NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. J Am Chem Soc 2020; 142:7362-7367. [PMID: 32250612 DOI: 10.1021/jacs.0c02637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[18F]-labeled aryl fluorides are widely used as radiotracers for positron emission tomography (PET) imaging. Aryl halides (ArX) are particularly attractive precursors to these radiotracers, as they are readily available, inexpensive, and stable. However, to date, the direct preparation of [18F]-aryl fluorides from aryl halides remains limited to SNAr reactions between highly activated ArX substrates and K18F. This report describes an aryl halide radiofluorination reaction in which the C(sp2)-18F bond is formed via a copper-mediated pathway. Copper N-heterocyclic carbene complexes serve as mediators for this transformation, using aryl halide substrates with directing groups at the ortho position. This reaction is applied to the radiofluorination of electronically diverse aryl halide derivatives, including the bioactive molecules vismodegib and PH089.
Collapse
Affiliation(s)
- Liam S Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Evaluation of Organo [ 18F]Fluorosilicon Tetrazine as a Prosthetic Group for the Synthesis of PET Radiotracers. Molecules 2020; 25:molecules25051208. [PMID: 32156020 PMCID: PMC7179430 DOI: 10.3390/molecules25051208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023] Open
Abstract
Fluorine-18 is the most widely used positron emission tomography (PET) radionuclide currently in clinical application, due to its optimal nuclear properties. The synthesis of 18F-labeled radiotracers often requires harsh reaction conditions, limiting the use of sensitive bio- and macromolecules as precursors for direct radiolabeling with fluorine-18. We aimed to develop a milder and efficient in vitro and in vivo labeling method for trans-cyclooctene (TCO) functionalized proteins, through the bioorthogonal inverse-electron demand Diels-Alder (IEDDA) reaction with fluorine-18 radiolabeled tetrazine ([18F]SiFA-Tz). Here, we used TCO-modified bovine serum albumin (BSA) as the model protein, and isotopic exchange (IE) (19F/18F) chemistry as the labeling strategy. The radiolabeling of albumin-TCO with [18F]SiFA-Tz ([18F]6), providing [18F]fluoroalbumin ([18F]10) in high radiochemical yield (99.1 ± 0.2%, n = 3) and a molar activity (MA) of 1.1 GBq/µmol, confirmed the applicability of [18F]6 as a quick in vitro fluorination reagent for the TCO functionalized proteins. While the biological evaluation of [18F]6 demonstrated defluorination in vivo, limiting the utility for pretargeted applications, the in vivo stability of the radiotracer was dramatically improved when [18F]6 was used for the radiolabeling of albumin-TCO ([18F]10) in vitro, prior to administration. Due to the detected defluorination in vivo, structural optimization of the prosthetic group for improved stability is needed before further biological studies and application of pretargeted PET imaging.
Collapse
|
36
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
S. Clemente G, Zarganes-Tzitzikas T, Dömling A, H. Elsinga P. Late-Stage Copper-Catalyzed Radiofluorination of an Arylboronic Ester Derivative of Atorvastatin. Molecules 2019; 24:E4210. [PMID: 31756986 PMCID: PMC6930542 DOI: 10.3390/molecules24234210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
There is an unmet need for late-stage 18F-fluorination strategies to label molecules with a wide range of relevant functionalities to medicinal chemistry, in particular (hetero)arenes, aiming to obtain unique in vivo information on the pharmacokinetics/pharmacodynamics (PK/PD) using positron emission tomography (PET). In the last few years, Cu-mediated oxidative radiofluorination of arylboronic esters/acids arose and has been successful in small molecules containing relatively simple (hetero)aromatic groups. However, this technique is sparsely used in the radiosynthesis of clinically significant molecules containing more complex backbones with several aromatic motifs. In this work, we add a new entry to this very limited database by presenting our recent results on the 18F-fluorination of an arylboronic ester derivative of atorvastatin. The moderate average conversion of [18F]F- (12%), in line with what has been reported for similarly complex molecules, stressed an overview through the literature to understand the radiolabeling variables and limitations preventing consistently higher yields. Nevertheless, the current disparity of procedures reported still hampers a consensual and conclusive output.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
38
|
Lahdenpohja SO, Rajala NA, Rajander J, Kirjavainen AK. Fast and efficient copper-mediated 18F-fluorination of arylstannanes, aryl boronic acids, and aryl boronic esters without azeotropic drying. EJNMMI Radiopharm Chem 2019; 4:28. [PMID: 31659523 PMCID: PMC6795642 DOI: 10.1186/s41181-019-0079-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Copper-mediated radiofluorination is a straightforward method to produce a variety of [18F]fluoroarenes and [18F]fluoroheteroarenes. To minimize the number of steps in the production of 18F-labelled radiopharmaceuticals, we have developed a short and efficient azeotropic drying-free 18F-labelling method using copper-mediated fluorination. Our goal was to improve the copper-mediated method to achieve wide substrate scope with good radiochemical yields with short synthesis time. Results Solid phase extraction with Cu (OTf)2 in dimethylacetamide is a suitable activation method for [18F]fluoride. Elution efficiency with Cu (OTf)2 is up to 79% and radiochemical yield (RCY) of a variety of model molecules in the crude reaction mixture has reached over 90%. Clinically relevant molecules, norepinephrine transporter tracer [18F]NS12137 and monoamine transporter tracer [18F]CFT were produced with 16.5% RCY in 98 min and 5.3% RCY in 64 min, respectively. Conclusions Cu (OTf)2 is a suitable elution agent for releasing [18F]fluoride from an anion exchange cartridge. The method is fast and efficient and the Cu-complex is customizable after the release of [18F]fluoride. Alterations in the [18F]fluoride elution techniques did not have a negative effect on the subsequent labelling reactions. We anticipate this improved [18F]fluoride elution technique to supplant the traditional azeotropic drying of [18F]fluoride in the long run and to concurrently enable the variations of the copper-complex.
Collapse
Affiliation(s)
- Salla Orvokki Lahdenpohja
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Noora Annika Rajala
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Porthaninkatu 3, 20500, Turku, Finland
| | - Anna Kaarina Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| |
Collapse
|
39
|
Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, Henderson BD, Skaddan MB, Sanford MS, Scott PJH. One-pot synthesis of high molar activity 6-[ 18F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor. Org Biomol Chem 2019; 17:8701-8705. [PMID: 31536095 PMCID: PMC6812483 DOI: 10.1039/c9ob01758e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A one-pot two-step synthesis of 6-[18F]fluoro-l-DOPA ([18F]FDOPA) has been developed involving Cu-mediated radiofluorination of a pinacol boronate ester precursor. The method is fully automated, provides [18F]FDOPA in good activity yield (104 ± 16 mCi, 6 ± 1%), excellent radiochemical purity (>99%) and high molar activity (3799 ± 2087 Ci mmol-1), n = 3, and has been validated to produce the radiotracer for human use.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jason M Miller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Marc B Skaddan
- AbbVie Translational Imaging, North Chicago, IL 60030, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Orlovskaya VV, Modemann DJ, Kuznetsova OF, Fedorova OS, Urusova EA, Kolks N, Neumaier B, Krasikova RN, Zlatopolskiy BD. Alcohol-Supported Cu-Mediated 18F-Fluorination of Iodonium Salts under "Minimalist" Conditions. Molecules 2019; 24:molecules24173197. [PMID: 31484375 PMCID: PMC6749259 DOI: 10.3390/molecules24173197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023] Open
Abstract
In the era of personalized precision medicine, positron emission tomography (PET) and related hybrid methods like PET/CT and PET/MRI gain recognition as indispensable tools of clinical diagnostics. A broader implementation of these imaging modalities in clinical routine is closely dependent on the increased availability of established and emerging PET-tracers, which in turn could be accessible by the development of simple, reliable, and efficient radiolabeling procedures. A further requirement is a cGMP production of imaging probes in automated synthesis modules. Herein, a novel protocol for the efficient preparation of 18F-labeled aromatics via Cu-mediated radiofluorination of (aryl)(mesityl)iodonium salts without the need of evaporation steps is described. Labeled aromatics were prepared in high radiochemical yields simply by heating of iodonium [18F]fluorides with the Cu-mediator in methanolic DMF. The iodonium [18F]fluorides were prepared by direct elution of 18F- from an anion exchange resin with solutions of the corresponding precursors in MeOH/DMF. The practicality of the novel method was confirmed by the racemization-free production of radiolabeled fluorophenylalanines, including hitherto unknown 3-[18F]FPhe, in 22-69% isolated radiochemical yields as well as its direct implementation into a remote-controlled synthesis unit.
Collapse
Affiliation(s)
| | - Daniel J Modemann
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Olga F Kuznetsova
- N.P.Bechtereva Institute of the Human Brain, 197376 St.-Petersburg, Russia.
| | - Olga S Fedorova
- N.P.Bechtereva Institute of the Human Brain, 197376 St.-Petersburg, Russia.
| | - Elizaveta A Urusova
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, 50937 Cologne, Germany.
| | - Niklas Kolks
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, 50937 Cologne, Germany.
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, 50937 Cologne, Germany.
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany.
| | - Raisa N Krasikova
- N.P.Bechtereva Institute of the Human Brain, 197376 St.-Petersburg, Russia.
- St.-Petersburg State University, 199034 St.-Petersburg, Russia.
| | - Boris D Zlatopolskiy
- Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
- Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, 50937 Cologne, Germany.
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany.
| |
Collapse
|
41
|
A Design of Experiments (DoE) Approach Accelerates the Optimization of Copper-Mediated 18F-Fluorination Reactions of Arylstannanes. Sci Rep 2019; 9:11370. [PMID: 31388076 PMCID: PMC6684620 DOI: 10.1038/s41598-019-47846-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022] Open
Abstract
Recent advancements in 18F radiochemistry, such as the advent of copper-mediated radiofluorination (CMRF) chemistry, have provided unprecedented access to novel chemically diverse PET probes; however, these multicomponent reactions have come with a new set of complex optimization problems. Design of experiments (DoE) is a statistical approach to process optimization that is used across a variety of industries. It possesses a number of advantages over the traditionally employed "one variable at a time" (OVAT) approach, such as increased experimental efficiency as well as an ability to resolve factor interactions and provide detailed maps of a process's behavior. Here we demonstrate the utility of DoE to the development and optimization of new radiochemical methodologies and novel PET tracer synthesis. Using DoE to construct experimentally efficient factor screening and optimization studies, we were able to identify critical factors and model their behavior with more than two-fold greater experimental efficiency than the traditional OVAT approach. Additionally, the use of DoE allowed us to glean new insights into the behavior of the CMRF of a number of arylstannane precursors. This information has guided our decision-making efforts while developing efficient reaction conditions that suit the unique process requirements of 18F PET tracer synthesis.
Collapse
|
42
|
Thompson S, Lee SJ, Jackson IM, Ichiishi N, Brooks AF, Sanford MS, Scott PJH. Synthesis of [ 18F]-γ-fluoro-α,β,-unsaturated esters and ketones via vinylogous 18F-fluorination of α-diazoacetates with [ 18F]AgF. SYNTHESIS-STUTTGART 2019; 51:4401-4407. [PMID: 32612311 DOI: 10.1055/s-0039-1690012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This communication reports a method for the vinylogous radiofluorination of α-diazoacetates to generate γ-[18F]fluoro-α,β-unsaturated esters and ketones in moderate to good radiochemical yields. The method uses no-carrier-added [18F]AgF and is compatible with aromatic and non-aromatic substrates and a number of different functional groups. The labeling method is showcased in the synthesis of a fluorinated 5-cholesten-3-one derivative as well as a difluorinated product pertinent to drug discovery.
Collapse
Affiliation(s)
- Stephen Thompson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - So Jeong Lee
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Isaac M Jackson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Verhoog S, Brooks AF, Winton WP, Viglianti BL, Sanford MS, Scott PJH. Ring opening of epoxides with [ 18F]FeF species to produce [ 18F]fluorohydrin PET imaging agents. Chem Commun (Camb) 2019; 55:6361-6364. [PMID: 31062010 DOI: 10.1039/c9cc02779c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A simple technique for the preparation of [18F]HF has been developed and applied to the generation of an [18F]FeF species for opening sterically hindered epoxides. This method has been successfully employed to prepare four drug-like molecules, including 5-[18F]fluoro-6-hydroxy-cholesterol, a potential adrenal/endocrine PET imaging agent. This easily automated one-pot procedure produces sterically hindered fluorohydrin PET imaging agents in good yields and high molar activities.
Collapse
Affiliation(s)
- Stefan Verhoog
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Guibbal F, Meneyrol V, Ait-Arsa I, Diotel N, Patché J, Veeren B, Bénard S, Gimié F, Yong-Sang J, Khantalin I, Veerapen R, Jestin E, Meilhac O. Synthesis and Automated Labeling of [ 18F]Darapladib, a Lp-PLA 2 Ligand, as Potential PET Imaging Tool of Atherosclerosis. ACS Med Chem Lett 2019; 10:743-748. [PMID: 31097993 DOI: 10.1021/acsmedchemlett.8b00643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis and its associated clinical complications are major health issues in industrialized countries. Lipoprotein-associated phospholipase A2 (Lp-PLA2) was demonstrated to play an important role in atherogenesis and to be a potential risk prediction factor of plaque rupture. Darapladib is one of the most potent Lp-PLA2 inhibitors with an IC50 of 0.25 nM. Using its affinity for Lp-PLA2, we describe herein the total synthesis of darapladib radiolabeling precursor and the automated radiolabeling process for positron emission tomography (PET) imaging via an arylboronate moiety. The tracer thus obtained was tested in a mouse model of atherosclerosis (ApoE KO) and compared with the widely used [18F]fluorodeoxyglucose ([18F]FDG) PET tracer, known to label metabolically active cells. [18F]Darapladib showed a significant accumulation within mice aortic atheromatous plaques dissected out ex vivo compared to [18F]FDG. Incubation of the radiotracer with human carotid samples showed a strong accumulation within the atherosclerotic plaques and supports its potential for use in PET imaging.
Collapse
Affiliation(s)
- Florian Guibbal
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Vincent Meneyrol
- CYclotron Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte-Clotilde, France
| | - Imade Ait-Arsa
- CYclotron Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte-Clotilde, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patché
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Sébastien Bénard
- CYclotron Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte-Clotilde, France
| | - Fanny Gimié
- CYclotron Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte-Clotilde, France
| | - Jennyfer Yong-Sang
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | | | - Reuben Veerapen
- Clinique de Sainte-Clotilde, 127, Route de Bois de Nèfles, Sainte-Clotilde, Réunion, France
| | - Emmanuelle Jestin
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CYclotron Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis de La Réunion, France
| |
Collapse
|
45
|
Lee SJ, Brooks AF, Ichiishi N, Makaravage KJ, Mossine AV, Sanford MS, Scott PJH. C-H 18F-fluorination of 8-methylquinolines with Ag[ 18F]F. Chem Commun (Camb) 2019; 55:2976-2979. [PMID: 30778496 PMCID: PMC6556205 DOI: 10.1039/c9cc00641a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report describes a Pd-mediated C-H radiofluorination of 8-methylquinoline derivatives with no-carrier-added Ag[18F]F. To achieve this transformation, a new method was developed for the generation of Ag[18F]F using a sep-pak cartridge. The C-H radiofluorination was then optimized and applied to a series of substituted 8-methylquinoline derivatives. Finally, this method was fully automated using a radiochemistry synthesis module.
Collapse
Affiliation(s)
- So Jeong Lee
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang X, Basuli F, Swenson RE. An azeotropic drying-free approach for copper-mediated radiofluorination without addition of base. J Labelled Comp Radiopharm 2019; 62:139-145. [PMID: 30644121 DOI: 10.1002/jlcr.3705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
Copper-mediated radiofluorination provides a quick and versatile approach for 18 F-labeling of arenes and heteroarenes. However, this method is known to be base sensitive, which has been a barrier for preparative scale radiosynthesis. In this report, we provide an approach for copper-mediated radiofluorination without azeotropic drying or adding a base. [18 F]Fluoride trapped on a PS-HCO3 Sep-Pak was quantitatively eluted with a solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAP·OTf) in anhydrous N,N-dimethylformamide (DMF). The eluted solution was directly used for copper-mediated radiofluorination. Twelve boronic ester substrates were tested, yielding fluorinated products in 27% to 83% radiochemical yield based on HPLC analysis. This approach was successfully applied to the radiosynthesis of [18 F]flumazenil, a well-known positron emission tomography (PET) tracer for imaging central benzodiazepine receptors, with a radiochemical yield of 47%. This highly efficient protocol significantly augments the powerful copper-mediated radiofluorination approach.
Collapse
Affiliation(s)
- Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland
| | - Falguni Basuli
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
47
|
Antuganov D, Zykov M, Timofeev V, Timofeeva K, Antuganova Y, Orlovskaya V, Fedorova O, Krasikova R. Copper-Mediated Radiofluorination of Aryl Pinacolboronate Esters: A Straightforward Protocol by Using Pyridinium Sulfonates. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dmitrii Antuganov
- PET Centre; National Almazov Medical Research Centre; 2 Akkuratova street 197341 St. Petersburg Russia
| | - Michail Zykov
- PET Centre; National Almazov Medical Research Centre; 2 Akkuratova street 197341 St. Petersburg Russia
| | - Vasilii Timofeev
- PET Centre; National Almazov Medical Research Centre; 2 Akkuratova street 197341 St. Petersburg Russia
| | - Ksenija Timofeeva
- PET Centre; National Almazov Medical Research Centre; 2 Akkuratova street 197341 St. Petersburg Russia
| | - Yulija Antuganova
- PET Centre; National Almazov Medical Research Centre; 2 Akkuratova street 197341 St. Petersburg Russia
| | - Victoriya Orlovskaya
- N.P. Bechtereva Institute of Human Brain; Laboratory of Radiochemisty; Russian Academy of Science; 9 Ak. Pavlova st. 197376 St. Petersburg Russia
| | - Olga Fedorova
- N.P. Bechtereva Institute of Human Brain; Laboratory of Radiochemisty; Russian Academy of Science; 9 Ak. Pavlova st. 197376 St. Petersburg Russia
| | - Raisa Krasikova
- N.P. Bechtereva Institute of Human Brain; Laboratory of Radiochemisty; Russian Academy of Science; 9 Ak. Pavlova st. 197376 St. Petersburg Russia
- Institute of Chemistry; Laboratory of Radiochemisty; St.-Petersburg State University; Universitetskaya Emb., 13B 199034 St. Petersburg Russia
| |
Collapse
|
48
|
Azeotropic drying-free aliphatic radiofluorination to produce PET radiotracers in a mixed organic solvent system. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
|
50
|
Zhou D, Chu W, Voller T, Katzenellenbogen JA. Copper-Mediated Nucleophilic Radiobromination of Aryl Boron Precursors: Convenient Preparation of a Radiobrominated PARP-1 Inhibitor. Tetrahedron Lett 2018; 59:1963-1967. [PMID: 30349147 DOI: 10.1016/j.tetlet.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The copper-mediated nucleophilic radiobromination of aryl boron precursors with a radiobromide ion is a novel radiolabeling method that is efficient and robust. High radiochemical conversion (RCC) was observed using a variety of solvents, temperatures and catalysts. The reaction is also clean and is feasible for purification to obtain high chemical and radiochemical purity. This method provides a very useful route for the preparation of radiobrominated pharmaceuticals, including a radiobromine labeled PARP-1 inhibitor, and it is a valuable addition to the family of copper-mediated radiolabeling processes.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110
| | - Wenhua Chu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110
| | - Thomas Voller
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110
| | | |
Collapse
|