1
|
Kojima T, Nakamura T, Saito J, Hidaka Y, Akimoto T, Inoue H, Chick CN, Usuki T, Kaneko M, Miyagi E, Ishikawa Y, Yokoyama U. Hydrostatic pressure under hypoxia facilitates fabrication of tissue-engineered vascular grafts derived from human vascular smooth muscle cells in vitro. Acta Biomater 2023; 171:209-222. [PMID: 37793599 DOI: 10.1016/j.actbio.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Biologically compatible vascular grafts are urgently required. The scaffoldless multi-layered vascular wall is considered to offer theoretical advantages, such as facilitating cells to form cell-cell and cell-matrix junctions and natural extracellular matrix networks. Simple methods are desired for fabricating physiological scaffoldless tissue-engineered vascular grafts. Here, we showed that periodic hydrostatic pressurization under hypoxia (HP/HYP) facilitated the fabrication of multi-layered tunica media entirely from human vascular smooth muscle cells. Compared with normoxic atmospheric pressure, HP/HYP increased expression of N-myc downstream-regulated 1 (NDRG1) and the collagen-cross-linking enzyme lysyl oxidase in human umbilical artery smooth muscle cells. HP/HYP increased N-cadherin-mediated cell-cell adhesion via NDRG1, cell-matrix interaction (i.e., clustering of integrin α5β1 and fibronectin), and collagen fibrils. We then fabricated vascular grafts using HP/HYP during repeated cell seeding and obtained 10-layered smooth muscle grafts with tensile rupture strength of 0.218-0.396 MPa within 5 weeks. Implanted grafts into the rat aorta were endothelialized after 1 week and patent after 5 months, at which time most implanted cells had been replaced by recipient-derived cells. These results suggest that HP/HYP enables fabrication of scaffoldless human vascular mimetics that have a spatial arrangement of cells and matrices, providing potential clinical applications for cardiovascular diseases. STATEMENT OF SIGNIFICANCE: Tissue-engineered vascular grafts (TEVGs) are theoretically more biocompatible than prosthetic materials in terms of mechanical properties and recipient cell-mediated tissue reconstruction. Although some promising results have been shown, TEVG fabrication processes are complex, and the ideal method is still desired. We focused on the environment in which the vessels develop in utero and found that mechanical loading combined with hypoxia facilitated formation of cell-cell and cell-matrix junctions and natural extracellular matrix networks in vitro, which resulted in the fabrication of multi-layered tunica media entirely from human umbilical artery smooth muscle cells. These scaffoldless TEVGs, produced using a simple process, were implantable and have potential clinical applications for cardiovascular diseases.
Collapse
Affiliation(s)
- Tomoyuki Kojima
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan; Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Takashi Nakamura
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Junichi Saito
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuko Hidaka
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Taisuke Akimoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Aichi 468-8502, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
2
|
Nomura T, Takeuchi M, Kim E, Huang Q, Hasegawa Y, Fukuda T. Development of High-Cell-Density Tissue Method for Compressed Modular Bioactuator. MICROMACHINES 2022; 13:1725. [PMID: 36296079 PMCID: PMC9607352 DOI: 10.3390/mi13101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Bioactuators have been developed in many studies in the recent decade for actuators of micro-biorobots. However, bioactuators have not shown the same power as animal muscles. Centrifugal force was used in this study to increase the cell density of cultured muscle cells that make up the bioactuator. The effect of the centrifugal force on cells in the matrix gel before curing was investigated, and the optimal centrifugal force was identified to be around 450× g. The compressed modular bioactuator (C-MBA) fabricated in this study exhibited 1.71 times higher cell density than the conventional method. In addition, the contractile force per unit cross-sectional area was 1.88 times higher. The proposed method will contribute to new bioactuators with the same power as living muscles in animals.
Collapse
Affiliation(s)
- Takuto Nomura
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Masaru Takeuchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Eunhye Kim
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yasuhisa Hasegawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| | - Toshio Fukuda
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 4648603, Japan
| |
Collapse
|
3
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Lau S, Gossen M, Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci 2021; 22:ijms222313120. [PMID: 34884923 PMCID: PMC8658568 DOI: 10.3390/ijms222313120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure–function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
5
|
Miyashita Y, Tsukamoto O, Matsuoka K, Kamikubo K, Kuramoto Y, Ying Fu H, Tsubota T, Hasuike H, Takayama T, Ito H, Hitsumoto T, Okamoto C, Kioka H, Oya R, Shinomiya H, Hakui H, Shintani Y, Kato H, Kitakaze M, Sakata Y, Asano Y, Takashima S. The CR9 element is a novel mechanical load-responsive enhancer that regulates natriuretic peptide genes expression. FASEB J 2021; 35:e21495. [PMID: 33689182 DOI: 10.1096/fj.202002111rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/11/2022]
Abstract
Enhancers regulate gene expressions in a tissue- and pathology-specific manner by altering its activities. Plasma levels of atrial and brain natriuretic peptides, encoded by the Nppa and Nppb, respectively, and synthesized predominantly in cardiomyocytes, vary depending on the severity of heart failure. We previously identified the noncoding conserved region 9 (CR9) element as a putative Nppb enhancer at 22-kb upstream from the Nppb gene. However, its regulatory mechanism remains unknown. Here, we therefore investigated the mechanism of CR9 activation in cardiomyocytes using different kinds of drugs that induce either cardiac hypertrophy or cardiac failure accompanied by natriuretic peptides upregulation. Chronic treatment of mice with either catecholamines or doxorubicin increased CR9 activity during the progression of cardiac hypertrophy to failure, which is accompanied by proportional increases in Nppb expression. Conversely, for cultured cardiomyocytes, doxorubicin decreased CR9 activity and Nppb expression, while catecholamines increased both. However, exposing cultured cardiomyocytes to mechanical loads, such as mechanical stretch or hydrostatic pressure, upregulate CR9 activity and Nppb expression even in the presence of doxorubicin. Furthermore, the enhancement of CR9 activity and Nppa and Nppb expressions by either catecholamines or mechanical loads can be blunted by suppressing mechanosensing and mechanotransduction pathways, such as muscle LIM protein (MLP) or myosin tension. Finally, the CR9 element showed a more robust and cell-specific response to mechanical loads than the -520-bp BNP promoter. We concluded that the CR9 element is a novel enhancer that responds to mechanical loads by upregulating natriuretic peptides expression in cardiomyocytes.
Collapse
Affiliation(s)
- Yohei Miyashita
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Department of Legal Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Kenta Kamikubo
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hai Ying Fu
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Tomoya Tsubota
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Hirona Hasuike
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshio Takayama
- School of Engineering, Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Tatsuro Hitsumoto
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Chisato Okamoto
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryohei Oya
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Haruki Shinomiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideyuki Hakui
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasunori Shintani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | | | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Liu X, Yue T, Kojima M, Huang Q, Arai T. Bio-assembling and Bioprinting for Engineering Microvessels from the Bottom Up. Int J Bioprint 2021; 7:366. [PMID: 34286151 PMCID: PMC8287491 DOI: 10.18063/ijb.v7i3.366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Blood vessels are essential in transporting nutrients, oxygen, metabolic wastes, and maintaining the homeostasis of the whole human body. Mass of engineered microvessels is required to deliver nutrients to the cells included in the constructed large three-dimensional (3D) functional tissues by diffusion. It is a formidable challenge to regenerate microvessels and build a microvascular network, mimicking the cellular viabilities and activities in the engineered organs with traditional or existing manufacturing techniques. Modular tissue engineering adopting the "bottom-up" approach builds one-dimensional (1D) or two-dimensional (2D) modular tissues in micro scale first and then uses these modules as building blocks to generate large tissues and organs with complex but indispensable microstructural features. Building the microvascular network utilizing this approach could be appropriate and adequate. In this review, we introduced existing methods using the "bottom-up" concept developed to fabricate microvessels including bio-assembling powered by different micromanipulation techniques and bioprinting utilizing varied solidification mechanisms. We compared and discussed the features of the artificial microvessels engineered by these two strategies from multiple aspects. Regarding the future development of engineering the microvessels from the bottom up, potential directions were also concluded.
Collapse
Affiliation(s)
- Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Yue
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Masaru Kojima
- Department of Materials Engineering Science, Osaka University, Osaka 5608531, Japan
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering, the University of Electro-Communications, Tokyo 1828585, Japan
| |
Collapse
|
7
|
Saito J, Yokoyama U, Nakamura T, Kanaya T, Ueno T, Naito Y, Takayama T, Kaneko M, Miyagawa S, Sawa Y, Ishikawa Y. Scaffold-free tissue-engineered arterial grafts derived from human skeletal myoblasts. Artif Organs 2021; 45:919-932. [PMID: 33539557 DOI: 10.1111/aor.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) are in urgent demand for both adult and pediatric patients. Although several approaches have utilized vascular smooth muscle cells (SMCs) and endothelial cells as cell sources for TEVGs, these cell sources have a limited proliferative capacity that results in an inability to reconstitute neotissues. Skeletal myoblasts are attractive cell sources as they possess high proliferative capacity, and they are already being tested in clinical trials for patients with ischemic cardiomyopathy. Our previous study demonstrated that periodic hydrostatic pressurization (PHP) promoted fibronectin fibrillogenesis in vascular SMCs, and that PHP-induced extracellular matrix (ECM) arrangements enabled the fabrication of implantable arterial grafts derived from SMCs without using a scaffold material. We assessed the molecular response of human skeletal myoblasts to PHP exposure, and aimed to fabricate arterial grafts from the myoblasts by exposure to PHP. To examine the PHP-response genes, human skeletal myoblasts were subjected to bulk RNA-sequencing after PHP exposure. Gene-set enrichment analysis revealed significant positive correlations between PHP exposure and vascular development-related genes. Real-time polymerase chain reaction (RT-PCR) demonstrated that PHP significantly upregulated collagen and elastic fiber formation-related gene expression, such as fibronectin, lysyl oxidase, collagen type I α1, collagen type IV α1, and tropoelastin. Based on these findings showing the potential role of PHP in vessel formation, we fabricated arterial grafts by repeated cell seeding and exposure to PHP every 24 hours. The resultant 15-layered myoblast grafts had high collagen content, which provided a tensile rupture strength of 899 ± 104 mm Hg. Human skeletal myoblast grafts were implanted as patch grafts in the aorta of immunosuppressed rats and found to be endothelialized and completely patent until the endpoint of 60 postoperative days. Implanted human myoblasts were gradually replaced by host-derived cells, which successfully formed vascular neotissues with layered elastic fibers. These findings suggest that human skeletal myoblasts have the potential to be a feasible cell source for scaffold-free implantable arterial grafts under PHP culture conditions.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Tokyo, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomomitsu Kanaya
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuji Naito
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Toshio Takayama
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Nagoya, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| |
Collapse
|
8
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Nakamura T, Yokoyama U, Kanaya T, Ueno T, Yoda T, Ishibe A, Hidaka Y, Umemura M, Takayama T, Kaneko M, Miyagawa S, Sawa Y, Endo I, Ishikawa Y. Multilayered Human Skeletal Muscle Myoblast Sheets Promote the Healing Process After Colonic Anastomosis in Rats. Cell Transplant 2021; 30:9636897211009559. [PMID: 33880968 PMCID: PMC8076781 DOI: 10.1177/09636897211009559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal anastomotic leakage is one of the most feared and fatal complications of colorectal surgery. To date, no external coating material that can prevent anastomotic leakage has been developed. As myoblasts possess anti-inflammatory capacity and improve wound healing, we developed a multilayered human skeletal muscle myoblast (HSMM) sheet by periodic exposure to supraphysiological hydrostatic pressure during repeated cell seeding. We assessed whether the application of an HSMM sheet can promote the healing process after colonic anastomosis. Partial colectomy and insufficient suturing were employed to create a high-risk colo-colonic anastomosis model in 60 nude rats. Rats were divided into a control group (n = 30) and an HSMM sheet group (n = 30). Macroscopic findings, anastomotic bursting pressure, and histology at the colonic anastomotic site were evaluated on postoperative day (POD) 3, 5, 7, 14, and 28. The application of an HSMM sheet significantly suppressed abscess formation at the anastomotic site compared to the control group on POD3 and 5. The anastomotic bursting pressure in the HSMM sheet group was higher than that in the control group on POD3 and 5. Inflammatory cell infiltration in the HSMM sheet group was significantly suppressed compared to that in the control group throughout the time course. Collagen deposition in the HSMM sheet group on POD3 was significantly abundant compared to that in the control group. Regeneration of the mucosa at the colonic anastomotic site was promoted in the HSMM sheet group compared to that in the control group on POD14 and 28. Immunohistochemical analysis demonstrated that surviving cells in the HSMM sheet gradually decreased with postoperative time and none were detected on POD14. These results suggest that the application of a multilayered HSMM sheet may prevent postoperative colonic anastomotic leakage.
Collapse
Affiliation(s)
- Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Tomomitsu Kanaya
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takanori Yoda
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toshio Takayama
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
10
|
Shi X, He L, Zhang SM, Luo J. Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Rev Rep 2020; 17:862-877. [PMID: 33230612 DOI: 10.1007/s12015-020-10091-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) generated from human primary cells represent a promising vascular interventional therapy. However, generation and application of these TEVGs may be significantly hindered by the limited accessibility, finite expandability, donor-donor functional variation and immune-incompatibility of primary seed cells from donors. Alternatively, human induced pluripotent stem cells (hiPSCs) offer an infinite source to obtain functional vascular cells in large quantity and comparable quality for TEVG construction. To date, TEVGs (hiPSC-TEVGs) with significant mechanical strength and implantability have been generated using hiPSC-derived seed cells. Despite being in its incipient stage, this emerging field of hiPSC-TEVG research has achieved significant progress and presented promising future potential. Meanwhile, a series of challenges pertaining hiPSC differentiation, vascular tissue engineering technologies and future production and application await to be addressed. Herein, we have composed this review to introduce progress in TEVG generation using hiPSCs, summarize the current major challenges, and encapsulate the future directions of research on hiPSC-based TEVGs. Graphical abstract.
Collapse
Affiliation(s)
- Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, 06520, New Haven, CT, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA. .,Yale Stem Cell Center, 06520, New Haven, CT, USA.
| |
Collapse
|
11
|
Cong X, Zhang SM, Batty L, Luo J. Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells Dev 2019; 28:1581-1594. [PMID: 31663439 DOI: 10.1089/scd.2019.0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In pace with the advancement of tissue engineering during recent decades, tissue-engineered blood vessels (TEBVs) have been generated using primary seed cells, and their impressive success in clinical trials have demonstrated the great potential of these TEBVs as implantable vascular grafts in human regenerative medicine. However, the production, therapeutic efficacy, and readiness in emergencies of current TEBVs could be hindered by the accessibility, expandability, and donor-donor variation of patient-specific primary seed cells. Alternatively, using human induced pluripotent stem cells (hiPSCs) to derive seed vascular cells for vascular tissue engineering could fundamentally address this current dilemma in TEBV production. As an emerging research field with a promising future, the generation of hiPSC-based TEBVs has been reported recently with significant progress. Simultaneously, to further promote hiPSC-based TEBVs into vascular grafts for clinical use, several challenges related to the safety, readiness, and structural integrity of vascular tissue need to be addressed. Herein, this review will focus on the evolution and role of hiPSCs in vascular tissue engineering technology and summarize the current progress, challenges, and future directions of research on hiPSC-based TEBVs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Luke Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Tanaka R, Umemura M, Narikawa M, Fujita T, Yokoyama U, Ishigami T, Kimura K, Tamura K, Ishikawa Y. Hydrostatic pressure suppresses fibrotic changes via Akt/GSK-3 signaling in human cardiac fibroblasts. Physiol Rep 2019; 6:e13687. [PMID: 29722156 PMCID: PMC5932570 DOI: 10.14814/phy2.13687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Mechanical stresses play important roles in the process of constructing and modifying heart structure. It has been well established that stretch force acting on cardiac fibroblasts induces fibrosis. However, the effects of compressive force, that is, hydrostatic pressure (HP), have not been well elucidated. We thus evaluated the effects of HP using a pressure‐loading apparatus in human cardiac fibroblasts (HCFs) in vitro. In this study, high HP (200 mmHg) resulted in significant phosphorylation of Akt in HCFs. HP then greatly inhibited glycogen synthase kinase 3 (GSK‐3)α, which acts downstream of the PI3K/Akt pathway. Similarly, HP suppressed mRNA transcription of inflammatory cytokine‐6, collagen I and III, and matrix metalloproteinase 1, compared with an atmospheric pressure condition. Furthermore, HP inhibited collagen matrix production in a three‐dimensional HCF culture. Taken together, high HP suppressed the differentiation of fibroblasts into the myofibroblast phenotype. HP under certain conditions suppressed cardiac fibrosis via Akt/GSK‐3 signaling in HCFs. These results might help to elucidate the pathology of some types of heart disease.
Collapse
Affiliation(s)
- Ryo Tanaka
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masatoshi Narikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
On-Chip Cell Incubator for Simultaneous Observation of Culture with and without Periodic Hydrostatic Pressure. MICROMACHINES 2019; 10:mi10020133. [PMID: 30781557 PMCID: PMC6412444 DOI: 10.3390/mi10020133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
This paper proposes a microfluidic device which can perform simultaneous observation on cell growth with and without applying periodic hydrostatic pressure (Yokoyama et al. Sci. Rep.2017, 7, 427). The device is called on-chip cell incubator. It is known that culture with periodic hydrostatic pressure benefits the elasticity of a cultured cell sheet based on the results in previous studies, but how the cells respond to such a stimulus during the culture is not yet clear. In this work, we focused on cell behavior under periodic hydrostatic pressure from the moment of cell seeding. The key advantage of the proposed device is that we can compare the results with and without periodic hydrostatic pressure while all other conditions were kept the same. According to the results, we found that cell sizes under periodic hydrostatic pressure increase faster than those under atmospheric pressure, and furthermore, a frequency-dependent fluctuation of cell size was found using Fourier analysis.
Collapse
|
14
|
Ishikawa Y. VASCULAR GRAFT MADE FROM CULTURED CELLS. PATHOPHYSIOLOGY 2018. [DOI: 10.1016/j.pathophys.2018.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
16
|
Shimazu Y, Zhang B, Yue Z, Wallace GG, Fukuda J. Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment. J Biosci Bioeng 2018; 127:114-120. [PMID: 30072116 DOI: 10.1016/j.jbiosc.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Perfusable vasculatures are essential for engineering three-dimensional thick tissues and organs in the fields of tissue engineering and regenerative medicine. Here, we describe an approach for the fabrication of double-layered vascular-like structures (DVSs) composed of a monolayer of human vascular endothelial cells (HUVECs) covered with a dense human smooth muscle cell (SMC) layer. HUVECs were attached to a gold needle via the oligopeptide self-assembled monolayer and grown to form a HUVEC monolayer that was subsequently embedded in a photo-crosslinkable gelatin hydrogel containing SMC spheroids in a culture chamber. During four days of culture, the hydrogel significantly contracted and formed a dense SMC layer around the needle. The binding between the HUVEC layer and the gold needle was cleaved by applying a negative potential to desorb the oligopeptide and the needle was extracted from the chamber, resulting in a perfusable DVS composed of HUVEC and SMC layers. The DVS was cultured under perfusion, and the cells in the DVS showed greater expressions of SMC-specific genes compared to those of spheroids. The DVS possessed a dynamic contraction ability in response to acetylcholine as observed in the in vivo SMC layer. This study proposes a promising approach for the fabrication of perfusable vasculatures for the engineering of fully vascularized tissues and organs.
Collapse
Affiliation(s)
- Yuka Shimazu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Binbin Zhang
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
17
|
Colunga T, Dalton S. Building Blood Vessels with Vascular Progenitor Cells. Trends Mol Med 2018; 24:630-641. [PMID: 29802036 PMCID: PMC6050017 DOI: 10.1016/j.molmed.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Vascular progenitor cells have been identified from perivascular cell fractions and peripheral blood and bone marrow mononuclear fractions. These vascular progenitors share the ability to generate some of the vascular lineages, including endothelial cells, smooth muscle cells, and pericytes. The potential therapeutic uses for vascular progenitor cells are broad and relate to stroke, ischemic disease, and to the engineering of whole organs and tissues that require a vascular component. This review summarizes the best-characterized sources of vascular progenitor cells and discusses advances in 3D printing and electrospinning using blended polymers for the creation of biomimetic vascular grafts. These advances are pushing the field of regenerative medicine closer to the creation of small-diameter vascular grafts with long-term clinical utility.
Collapse
Affiliation(s)
- Thomas Colunga
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Stephen Dalton
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA.
| |
Collapse
|
18
|
Camasão DB, Pezzoli D, Loy C, Kumra H, Levesque L, Reinhardt DP, Candiani G, Mantovani D. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells. Biotechnol J 2018; 14:e1700768. [PMID: 29802760 DOI: 10.1002/biot.201700768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/23/2018] [Indexed: 01/04/2023]
Abstract
Vascular tissue engineering combines cells with scaffold materials in vitro aiming the development of physiologically relevant vascular models. For natural scaffolds such as collagen gels, where cells can be mixed with the material solution before gelation, cell seeding density is a key parameter that can affect extracellular matrix deposition and remodeling. Nonetheless, this parameter is often overlooked and densities sensitively lower than those of native tissues, are usually employed. Herein, the effect of seeding density on the maturation of tubular collagen gel-based scaffolds cellularized with smooth muscle cells is investigated. The compaction, the expression, and deposition of key vascular proteins and the resulting mechanical properties of the constructs are evaluated up to 1 week of maturation. Results show that increasing cell seeding density accelerates cell-mediated gel compaction, enhances elastin expression (more than sevenfold increase at the highest density, Day 7) and finally improves the overall mechanical properties of constructs. Of note, the tensile equilibrium elastic modulus, evaluated by stress-relaxation tests, reach values comparable to native arteries for the highest cell density, after a 7-day maturation. Altogether, these results show that higher cell seeding densities promote the rapid maturation of collagen gel-based vascular constructs toward structural and mechanical properties better mimicking native arteries.
Collapse
Affiliation(s)
- Dimitria B Camasão
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Caroline Loy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Heena Kumra
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Lucie Levesque
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20131, Italy.,The Protein Factory Research Center, Politecnico di Milano and University of Insubria, Milan 20131, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
19
|
Masuda T, Ukiki M, Yamagishi Y, Matsusaki M, Akashi M, Yokoyama U, Arai F. Fabrication of engineered tubular tissue for small blood vessels via three-dimensional cellular assembly and organization ex vivo. J Biotechnol 2018; 276-277:46-53. [PMID: 29689281 DOI: 10.1016/j.jbiotec.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
Abstract
Although there is a great need for suitable vascular replacements in clinical practice, much progress needs to be made toward the development of a fully functional tissue-engineered construct. We propose a fabrication method of engineered tubular tissue for small blood vessels via a layer-by-layer cellular assembly technique using mouse smooth muscle cells, the construction of a poly-(l-lactide-co-ε-caprolactone) (PLCL) scaffold, and integration in a microfluidic perfusion culture system. The cylindrical PLCL scaffold is incised, expanded, and its surface is laminated with the cell layers. The construct confirms into tubular structures due to residual stress imposed by the cylindrical PLCL scaffold. The perfusion culture system allows simulation of static, perfusion (laminar flow), and perfusion with pulsatile pressure (Pulsatile flow) conditions in which mimicking the in vivo environments. The aim of this evaluation was to determine whether fabricated tubular tissue models developed their mechanical properties. The cellular response to hemodynamic stimulus imposed by the dynamic culture system is monitored through expression analysis of fibrillin-1 and fibrillin-2, elastin and smooth muscle myosin heavy chains isoforms transcription factors, which play an important role in tissue elastogenesis. Among the available materials for small blood vessel construction, these cellular hybrid vascular scaffolds hold much potential due to controllability of the mechanical properties of synthetic polymers and biocompatibility of integrated cellular components.
Collapse
Affiliation(s)
- Taisuke Masuda
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Mitsuhiro Ukiki
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuka Yamagishi
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
20
|
LED-CT Scan for pH Distribution on a Cross-Section of Cell Culture Medium. SENSORS 2018; 18:s18010191. [PMID: 29324699 PMCID: PMC5795824 DOI: 10.3390/s18010191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 02/01/2023]
Abstract
In cell culture, the pH of the culture medium is one of the most important conditions. However, the culture medium may have non-uniform pH distribution due to activities of cells and changes in the environment. Although it is possible to measure the pH distribution with an existing pH meter using distributed electrodes, the method involves direct contact with the medium and would greatly increase the risk of contamination. Here in this paper, we propose a computed tomography (CT) scan for measuring pH distribution using the color change of phenol red with a light-emitting diode (LED) light source. Using the principle of CT scan, we can measure pH distribution without contacting culture medium, and thus, decrease the risk of contamination. We have developed the device with a LED, an array of photo receivers and a rotation mechanism. The system is firstly calibrated with different shapes of wooden objects that do not pass light, we succeeded in obtaining their 3D topographies. The system was also used for measuring a culture medium with two different pH values, it was possible to obtain a pH distribution that clearly shows the boundary.
Collapse
|
21
|
Wu Y, Qin Y, Wang Z, Wang J, Zhang C, Li C, Kong D. The regeneration of macro-porous electrospun poly(ɛ-caprolactone) vascular graft during long-termin situimplantation. J Biomed Mater Res B Appl Biomater 2017; 106:1618-1627. [DOI: 10.1002/jbm.b.33967] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yifan Wu
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University; Tianjin 300071 China
| | - Yibo Qin
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jianing Wang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University; Tianjin 300071 China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University; Tianjin 300071 China
| |
Collapse
|