1
|
Kurniaty N, Fakih TM, Maharani R, Supratman U, Hidayat AT, Bakar NA, Wei X. Synthesis, Antimalarial Activity and Molecular Dynamics Studies of Pipecolisporin: A Novel Cyclic Hexapeptide with Potent Therapeutic Potential. Molecules 2025; 30:304. [PMID: 39860174 PMCID: PMC11767488 DOI: 10.3390/molecules30020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malaria, caused by Plasmodium species and transmitted by Anopheles mosquitoes, continues to pose a significant global health threat. Pipecolisporin, a cyclic hexapeptide isolated from Nigrospora oryzae, has emerged as a promising antimalarial candidate due to its potent biological activity and stability. This study explores the synthesis, antimalarial activity, and computational studies of pipecolisporin, aiming to better understand its therapeutic potential. The peptide was successfully synthesized using Fmoc-based solid-phase peptide synthesis (SPPS) followed by cyclization in solution. The purified compound was characterized using HPLC and mass spectrometry, confirming a molecular ion peak at m/z [M + H]+ 692.4131, which matched the calculated mass. Structural verification through 1H- and 13C-NMR demonstrated strong alignment with the natural product. Pipecolisporin exhibited significant antimalarial activity with an IC50 of 26.0 ± 8.49 nM, highlighting its efficacy. In addition to the experimental synthesis, computational studies were conducted to analyze the interaction of pipecolisporin with key malaria-related enzymes, such as dihydrofolate reductase, plasmepsin V, and lactate dehydrogenase. These combined experimental and computational insights into pipecolisporin emphasize the importance of hydrophobic interactions, particularly in membrane penetration and receptor binding, for its antimalarial efficacy. Pipecolisporin represents a promising lead for future antimalarial drug development, with its efficacy, stability, and binding characteristics laying a solid foundation for ongoing research.
Collapse
Affiliation(s)
- Nety Kurniaty
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading, Bandung 40116, Indonesia; (N.K.); (T.M.F.)
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading, Bandung 40116, Indonesia; (N.K.); (T.M.F.)
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
- Laboratorium Sentral, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
- Centre of Exploration and Utilization of Natural Resources and Environment Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
- Laboratorium Sentral, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
- Centre of Exploration and Utilization of Natural Resources and Environment Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (U.S.); (A.T.H.)
- Laboratorium Sentral, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
- Centre of Exploration and Utilization of Natural Resources and Environment Studies, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Nurhidanatasha Abu Bakar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.A.B.); (X.W.)
| | - Xiaoshuang Wei
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.A.B.); (X.W.)
| |
Collapse
|
2
|
Klar PB, Waterman DG, Gruene T, Mullick D, Song Y, Gilchrist JB, Owen CD, Wen W, Biran I, Houben L, Regev-Rudzki N, Dzikowski R, Marom N, Palatinus L, Zhang P, Leiserowitz L, Elbaum M. Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin. ACS CENTRAL SCIENCE 2024; 10:1504-1514. [PMID: 39220700 PMCID: PMC11363319 DOI: 10.1021/acscentsci.4c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
Collapse
Affiliation(s)
- Paul Benjamin Klar
- Faculty
of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - David Geoffrey Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K.
- CCP4,
Research Complex at Harwell, Rutherford
Appleton Laboratory, Didcot OX11 0FA, U.K.
| | - Tim Gruene
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Debakshi Mullick
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Yun Song
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - C. David Owen
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Wen Wen
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Idan Biran
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, Institute for Medical Research
Israel-Canada, and The Kuvin Center for the Study of Infectious and
Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112010, Israel
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lukas Palatinus
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - Peijun Zhang
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
- Division
of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Leslie Leiserowitz
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Elbaum
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
3
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
4
|
Mullick D, Rechav K, Leiserowitz L, Regev-Rudzki N, Dzikowski R, Elbaum M. Diffraction contrast in cryo-scanning transmission electron tomography reveals the boundary of hemozoin crystals in situ. Faraday Discuss 2022; 240:127-141. [PMID: 35938388 DOI: 10.1039/d2fd00088a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.
Collapse
Affiliation(s)
- Debakshi Mullick
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Katya Rechav
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Leslie Leiserowitz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, and The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Verma L, Vekilov PG, Palmer JC. Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals. J Phys Chem B 2021; 125:11264-11274. [PMID: 34609878 DOI: 10.1021/acs.jpcb.1c06589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hematin crystallization, which is an essential component of the physiology of malaria parasites and the most successful target for antimalarial drugs, proceeds in mixed organic-aqueous solvents both in vivo and in vitro. Here we employ molecular dynamics simulations to examine the structuring and dynamics of a water-normal octanol mixture (a solvent that mimics the environment hosting hematin crystallization in vivo) in the vicinity of the typical faces in the habit of a hematin crystal. The simulations reveal that the properties of the solvent in the layer adjacent to the crystal are strongly impacted by the distinct chemical and topological features presented by each crystal face. The solvent organizes into at least three distinct layers. We also show that structuring of the solvent near the different faces of β-hematin strongly impacts the interfacial dynamics. The relaxation time of n-octanol molecules is longest in the contact layers and correlates with the degree of structural ordering at the respective face. We show that the macroscopically homogeneous water-octanol solution holds clusters of water and n-octanol connected by hydrogen bonds that entrap the majority of the water but are mostly smaller than 30 water molecules. Near the crystal surface the clusters anchor on hematin carboxyl groups. These results provide a direct example that solvent structuring is not restricted to aqueous and other hydrogen-bonded solutions. Our findings illuminate two fundamental features of the mechanisms of hematin crystallization: the elongated shapes of natural and synthetic hematin crystals and the stabilization of charged groups of hematin and antimalarials by encasing in water clusters. In addition, these findings suggest that hematin crystallization may be controlled by additives that disrupt or reinforce solvent structuring.
Collapse
Affiliation(s)
- Laksmanji Verma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.,Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C Palmer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
6
|
Gómez F, Silva LS, Araújo GRDS, Frases S, Pinheiro AAS, Agero U, Pontes B, Viana NB. Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties. Phys Rev E 2021; 101:062403. [PMID: 32688571 DOI: 10.1103/physreve.101.062403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/11/2020] [Indexed: 11/07/2022]
Abstract
The red blood cell membrane-cytoskeleton is a complex structure mainly responsible for giving the cell rigidity and shape. It also provides the erythrocyte with the ability to pass through narrow capillaries of the vertebrate blood circulatory system. Although the red blood cell viscoelastic properties have been extensively studied, reported experimental data differ by up to three orders of magnitude. This could be attributed to the natural cell variability, to the different techniques employed, and also to the models used for the cell response, which are highly dependent on cell geometry. Here, we use two methodologies based on optical tweezers to investigate the viscoelastic behavior of healthy human red blood cells, one applying small cell deformations (microrheology) and another imposing large deformations (tether extraction). We also establish a defocusing microscopy-based method to characterize the cell geometry and thus the erythrocyte form factor, an essential parameter that allows comparisons among the viscoelastic properties at different conditions. Moreover, for small deformations, a soft glassy rheology model is used to discuss the results, while for large deformations two surface shear moduli and one surface viscosity are determined, together with the surface tension and bending modulus of the erythrocyte membrane lipid component. We also show that F-actin is not detected in tethers, although the erythrocyte membrane has physical properties like those of other adherent cells, known to have tethers containing F-actin inside. Altogether, our results show good agreement with the reported literature and we argue that, to properly compare the viscoelastic properties of red blood cells in different situations, the task of cell geometry characterization must be accomplished. This may be especially important when the influence of agents, like the malaria parasite, induces changes in both the geometry and chemical constituents of the erythrocyte membrane. Together, the new methodologies and procedures used in this study would allow the erythrocyte community to better explore the mechanical behavior of red blood cells and may be useful to characterize erythrocyte viscoelasticity changes in several blood diseases.
Collapse
Affiliation(s)
- Fran Gómez
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.,LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,CENABIO - Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | | | - Susana Frases
- Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Ubirajara Agero
- Instituto de Ciências Exatas, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bruno Pontes
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.,LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,CENABIO - Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Nathan Bessa Viana
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.,LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,CENABIO - Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
7
|
Kapishnikov S, Hempelmann E, Elbaum M, Als‐Nielsen J, Leiserowitz L. Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite. ChemMedChem 2021; 16:1515-1532. [PMID: 33523575 PMCID: PMC8252759 DOI: 10.1002/cmdc.202000895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine-hematin complex, at the vacuole's membrane.
Collapse
Affiliation(s)
- Sergey Kapishnikov
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Ernst Hempelmann
- Center of Cellular and Molecular Biology of DiseasesInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)City of Knowledge0843 (Republic ofPanama
| | - Michael Elbaum
- Dept. of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Jens Als‐Nielsen
- Niels Bohr InstituteUniversity of Copenhagen2100CopenhagenDenmark
| | - Leslie Leiserowitz
- Dept. of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
8
|
Tsamesidis I, Pério P, Pantaleo A, Reybier K. Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins. Int J Mol Sci 2020; 21:ijms21134799. [PMID: 32646002 PMCID: PMC7369783 DOI: 10.3390/ijms21134799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin redox activation because it is expected to contain reactive iron and it has been described to release free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Correspondence:
| | - Pierre Pério
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Karine Reybier
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (P.P.); (K.R.)
| |
Collapse
|
9
|
Steady state analysis of influx and transbilayer distribution of ergosterol in the yeast plasma membrane. Theor Biol Med Model 2019; 16:13. [PMID: 31412941 PMCID: PMC6694696 DOI: 10.1186/s12976-019-0108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background The transbilayer sterol distribution between both plasma membrane (PM) leaflets has long been debated. Recent studies in mammalian cells and in yeast show that the majority of sterol resides in the inner PM leaflet. Since sterol flip-flop in model membranes is rapid and energy-independent, a mechanistic understanding for net enrichment of sterol in one leaflet is lacking. Import of ergosterol in yeast can take place via the ABC transporters Aus1/Pdr11 under anaerobic growth conditions, eventually followed by rapid non-vesicular sterol transport to the endoplasmic reticulum (ER). Little is known about how these transport steps are dynamically coordinated. Methods Here, a kinetic steady state model is presented which considers sterol import via Aus1/Pdr11, sterol flip-flop across the PM, bi-molecular complex formation and intracellular sterol release followed by eventual transport to and esterification of sterol in the ER. The steady state flux is calculated, and a thermodynamic analysis of feasibility is presented. Results It is shown that the steady state sterol flux across the PM can be entirely controlled by irreversible sterol import via Aus1/Pdr11. The transbilayer sterol flux at steady state is a non-linear function of the chemical potential difference of sterol between both leaflets. Non-vesicular release of sterol on the cytoplasmic side of the PM lowers the attainable sterol enrichment in the inner leaflet. Including complex formation of sterol with phospholipids or proteins can explain several puzzling experimental observations; 1) rapid sterol flip-flop across the PM despite net sterol enrichment in one leaflet, 2) a pronounced steady state sterol gradient between PM and ER despite fast non-vesicular sterol exchange between both compartments and 3) a non-linear dependence of ER sterol on ergosterol abundance in the PM. Conclusions A steady state model is presented that can account for the observed sterol asymmetry in the yeast PM, the strong sterol gradient between PM and ER and threshold-like expansion of ER sterol for increasing sterol influx into the PM. The model also provides new insight into selective uptake of cholesterol and its homeostasis in mammalian cells, and it provides testable predictions for future experiments.
Collapse
|
10
|
Groen J, Conesa JJ, Valcárcel R, Pereiro E. The cellular landscape by cryo soft X-ray tomography. Biophys Rev 2019; 11:611-619. [PMID: 31273607 PMCID: PMC6682196 DOI: 10.1007/s12551-019-00567-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Imaging techniques in structural cell biology are indispensable to understand cell organization and machinery. In this frame, cryo soft X-ray tomography (cryo-SXT), a synchrotron-based imaging technique, is used to analyze the ultrastructure of intact, cryo-preserved cells at nanometric spatial resolution bridging electron microscopy and visible light fluorescence. With their unique interaction with matter and high penetration depth, X-rays are a very useful and complementary source to obtain both high-resolution and quantitative information. In this review, we are elaborating a typical cryo correlative workflow at the Mistral Beamline at the Alba Synchrotron (Spain) with the goal of providing a cartographic description of the cell by cryo-SXT that illustrates the possibilities this technique brings for specific localization of cellular features, organelle organization, and particular events in specific structural cell biology research.
Collapse
Affiliation(s)
- J. Groen
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| | - J. J. Conesa
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
- Department of Macromolecular Structures, Cantoblanco, 28049 Madrid, Spain
| | - R. Valcárcel
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| | - E. Pereiro
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| |
Collapse
|
11
|
Weinhardt V, Chen JH, Ekman A, McDermott G, Le Gros MA, Larabell C. Imaging cell morphology and physiology using X-rays. Biochem Soc Trans 2019; 47:489-508. [PMID: 30952801 PMCID: PMC6716605 DOI: 10.1042/bst20180036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Morphometric measurements, such as quantifying cell shape, characterizing sub-cellular organization, and probing cell-cell interactions, are fundamental in cell biology and clinical medicine. Until quite recently, the main source of morphometric data on cells has been light- and electron-based microscope images. However, many technological advances have propelled X-ray microscopy into becoming another source of high-quality morphometric information. Here, we review the status of X-ray microscopy as a quantitative biological imaging modality. We also describe the combination of X-ray microscopy data with information from other modalities to generate polychromatic views of biological systems. For example, the amalgamation of molecular localization data, from fluorescence microscopy or spectromicroscopy, with structural information from X-ray tomography. This combination of data from the same specimen generates a more complete picture of the system than that can be obtained by a single microscopy method. Such multimodal combinations greatly enhance our understanding of biology by combining physiological and morphological data to create models that more accurately reflect the complexities of life.
Collapse
Affiliation(s)
- Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Gerry McDermott
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Mark A Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
12
|
Yang Y, Fus F, Pacureanu A, da Silva JC, De Nolf W, Biot C, Bohic S, Cloetens P. Three-Dimensional Correlative Imaging of a Malaria-Infected Cell with a Hard X-ray Nanoprobe. Anal Chem 2019; 91:6549-6554. [DOI: 10.1021/acs.analchem.8b05957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Y. Yang
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | - F. Fus
- ESRF - the European Sychrotron, 38043 Grenoble, France
- Université Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Médicale, 38058 Grenoble, France
| | - A. Pacureanu
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | | | - W. De Nolf
- ESRF - the European Sychrotron, 38043 Grenoble, France
| | - C. Biot
- Université de Lille, Faculté des sciences et technologies, 59655 Villeneuve d’ Ascq, France
| | - S. Bohic
- ESRF - the European Sychrotron, 38043 Grenoble, France
- Université Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Médicale, 38058 Grenoble, France
| | - P. Cloetens
- ESRF - the European Sychrotron, 38043 Grenoble, France
| |
Collapse
|
13
|
Shinohara K, Toné S, Ejima T, Ohigashi T, Ito A. Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM). Cells 2019; 8:cells8020164. [PMID: 30781492 PMCID: PMC6406381 DOI: 10.3390/cells8020164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Soft X-ray microscopy was applied to study the quantitative distribution of DNA, RNA, histone, and proteins other than histone (represented by BSA) in mammalian cells, apoptotic nuclei, and a chromosome at spatial resolutions of 100 to 400 nm. The relative distribution of closely related molecules, such as DNA and RNA, was discriminated by the singular value decomposition (SVD) method using aXis2000 software. Quantities of nucleic acids and proteins were evaluated using characteristic absorption properties due to the 1s–π * transition of N=C in nucleic acids and amide in proteins, respectively, in the absorption spectra at the nitrogen K absorption edge. The results showed that DNA and histone were located in the nucleus. By contrast, RNA was clearly discriminated and found mainly in the cytoplasm. Interestingly, in a chromosome image, DNA and histone were found in the center, surrounded by RNA and proteins other than histone. The amount of DNA in the chromosome was estimated to be 0.73 pg, and the content of RNA, histone, and proteins other than histone, relative to DNA, was 0.48, 0.28, and 4.04, respectively. The method we present in this study could be a powerful approach for the quantitative molecular mapping of biological samples at high resolution.
Collapse
Affiliation(s)
- Kunio Shinohara
- School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Shigenobu Toné
- School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
| | - Takeo Ejima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
| | - Takuji Ohigashi
- UVSOR Synchrotron, Institute Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Atsushi Ito
- School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.
| |
Collapse
|
14
|
Expanding horizons of cryo-tomography to larger volumes. Curr Opin Microbiol 2018; 43:155-161. [DOI: 10.1016/j.mib.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
15
|
Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerg Top Life Sci 2018; 2:81-92. [PMID: 33525785 PMCID: PMC7289011 DOI: 10.1042/etls20170086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Cryo-soft X-ray tomography is an imaging technique that addresses the need for mesoscale imaging of cellular ultrastructure of relatively thick samples without the need for staining or chemical modification. It allows the imaging of cellular ultrastructure to a resolution of 25–40 nm and can be used in correlation with other imaging modalities, such as electron tomography and fluorescence microscopy, to further enhance the information content derived from biological samples. An overview of the technique, discussion of sample suitability and information about sample preparation, data collection and data analysis is presented here. Recent developments and future outlook are also discussed.
Collapse
|
16
|
Unraveling heme detoxification in the malaria parasite by in situ correlative X-ray fluorescence microscopy and soft X-ray tomography. Sci Rep 2017; 7:7610. [PMID: 28790371 PMCID: PMC5548722 DOI: 10.1038/s41598-017-06650-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/14/2017] [Indexed: 11/08/2022] Open
Abstract
A key drug target for malaria has been the detoxification pathway of the iron-containing molecule heme, which is the toxic byproduct of hemoglobin digestion. The cornerstone of heme detoxification is its sequestration into hemozoin crystals, but how this occurs remains uncertain. We report new results of in vivo rate of heme crystallization in the malaria parasite, based on a new technique to measure element-specific concentrations at defined locations in cell ultrastructure. Specifically, a high resolution correlative combination of cryo soft X-ray tomography has been developed to obtain 3D parasite ultrastructure with cryo X-ray fluorescence microscopy to measure heme concentrations. Our results are consistent with a model for crystallization via the heme detoxification protein. Our measurements also demonstrate the presence of considerable amounts of non-crystalline heme in the digestive vacuole, which we show is most likely contained in hemoglobin. These results suggest a tight coupling between hemoglobin digestion and heme crystallization, highlighting a new link in the crystallization pathway for drug development.
Collapse
|