1
|
Li XZ, Li YL, Zhu JS. Three-Dimensional Structural Heteromorphs of Mating-Type Proteins in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungal Complex. J Fungi (Basel) 2025; 11:244. [PMID: 40278065 PMCID: PMC12028455 DOI: 10.3390/jof11040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
The MAT1-1-1 and MAT1-2-1 proteins are essential for the sexual reproduction of Ophiocordyceps sinensis. Although Hirsutella sinensis has been postulated to be the sole anamorph of O. sinensis and to undergo self-fertilization under homothallism or pseudohomothallism, little is known about the three-dimensional (3D) structures of the mating proteins in the natural Cordyceps sinensis insect-fungal complex, which is a valuable therapeutic agent in traditional Chinese medicine. However, the alternative splicing and differential occurrence and translation of the MAT1-1-1 and MAT1-2-1 genes have been revealed in H. sinensis, negating the self-fertilization hypothesis but rather suggesting the occurrence of self-sterility under heterothallic or hybrid outcrossing. In this study, the MAT1-1-1 and MAT1-2-1 proteins in 173 H. sinensis strains and wild-type C. sinensis isolates were clustered into six and five clades in the Bayesian clustering trees and belonged to 24 and 21 diverse AlphaFold-predicted 3D structural morphs, respectively. Over three-quarters of the strains/isolates contained either MAT1-1-1 or MAT1-2-1 proteins but not both. The diversity of the heteromorphic 3D structures of the mating proteins suggested functional alterations of the proteins and provided additional evidence supporting the self-sterility hypothesis under heterothallism and hybridization for H. sinensis, Genotype #1 of the 17 genome-independent O. sinensis genotypes. The heteromorphic stereostructures and mutations of the MAT1-1-1 and MAT1-2-1 proteins in the wild-type C. sinensis isolates and natural C. sinensis insect-fungi complex suggest that there are various sources of the mating proteins produced by two or more cooccurring heterospecific fungal species in natural C. sinensis that have been discovered in mycobiotic, molecular, metagenomic, and metatranscriptomic studies, which may inspire future studies on the biochemistry of mating and pheromone receptor proteins and the reproductive physiology of O. sinensis.
Collapse
Affiliation(s)
| | | | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (X.-Z.L.); (Y.-L.L.)
| |
Collapse
|
2
|
Németh Z, Paulinné Bukovics M, Sümegi LD, Sturm G, Takács I, Simon-Szabó L. The Importance of Edible Medicinal Mushrooms and Their Potential Use as Therapeutic Agents Against Insulin Resistance. Int J Mol Sci 2025; 26:827. [PMID: 39859540 PMCID: PMC11765957 DOI: 10.3390/ijms26020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to conventional treatments, there is growing interest in preventive and complementary therapies. Proper nutrition can prevent the manifestation of several chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer, and can attenuate the severity of these diseases. Edible mushrooms have been used as nutrition and medicine for thousands of years. The spectrum and quantity of their medicinal compounds made them a widely investigated target both in basic research and clinical trials. The most abundant and medically important components are polysaccharides, terpenoids, phenols, and heterocyclic amines, but bioactive proteins, vitamins, including vitamin D, polyunsaturated fatty acids, and essential minerals are also important ingredients with noteworthy health benefits. Mushroom extracts have anti-diabetic, anti-hyperlipidemic, anti-inflammatory, antioxidant, cardioprotective, anti-osteoporotic, and anti-tumor effects and are well tolerated, even by cancer patients. In our previous review we detailed the molecular aspects of the development of type 2 diabetes, discussing the role of physical activity and diet, but we did not detail the role of medicinal mushrooms as part of nutrition. In this review, we aimed to summarize the most important medical mushrooms, along with their natural habitats, growing conditions, and components, that are presumably sufficient for the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | | | - Liza Dalma Sümegi
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői Út 78/b, 1082 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37–47, 1094 Budapest, Hungary;
| |
Collapse
|
3
|
Li W, Shang J, Bao D, Wan J, Zhou C, Feng Z, Li H, Shao Y, Wu Y. Whole-Genome Sequence Analysis of Flammulina filiformis and Functional Validation of Gad, a Key Gene for γ-Aminobutyric Acid Synthesis. J Fungi (Basel) 2024; 10:862. [PMID: 39728358 DOI: 10.3390/jof10120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Flammulina filiformis is one of the widely produced edible fungi worldwide. It is rich in γ-aminobutyric acid (GABA), a non-protein amino acid with important physiological functions in humans. To investigate the functions of key genes in the GABA metabolic pathway of F. filiformis, we isolated the monokaryon Fv-HL23-1 from the factory-cultivated F. filiformis strain Fv-HL23 and then sequenced and assembled the genome using the PacBio Sequel and Illumina NovaSeq sequencing platforms. The results showed that the genome comprised 140 scaffolds with a total length of 40.96 Mb, a GC content of 49.62%, an N50 of 917,125 bp, and 14,256 protein-coding genes. Phylogenetic analysis based on the whole genome revealed a close evolutionary relationship of Fv-HL23-1 with Armillaria mellea, Lentinula edodes, and Schizophyllum commune. A total of 589 carbohydrate-active enzymes were identified in the genome of Fv-HL23-1, suggesting its strong lignocellulose degradation ability, and 108 CYP450 gene family members were identified, suggesting important functions such as resistance to stress, secondary metabolite synthesis, and growth and development. The F. filiformis proteins glutamate decarboxylase 1 (Ff-GAD1) and glutamate decarboxylase 2 (Ff-GAD2), which may be responsible for GABA synthesis, were identified by protein alignment. Molecular docking analysis showed that Ff-GAD2 may have better catalytic activity than Ff-GAD1. To verify the function of Ff-gad2, its heterologous expression in the mycelia of the mononuclear Hypsizigus marmoreus was analyzed. Compared with wild type, the GABA content of mycelia was increased by 85.40-283.90%, the growth rate was increased by 9.39 ± 2.35%, and the fresh weight was increased by 18.44 ± 7.57%. Ff-GAD2 may play a catalytic role in GABA synthesis. In addition, the expression of the full-length Ff-gad2 gene was increased by 7.96 ± 1.39 times compared with the exon expression level in H. marmoreus mycelia, suggesting that the intron may contribute to the heterologous expression of Ff-GAD2. Based on whole-genome sequencing, we analyzed the enzyme system related to the important life activities of F. filiformis, focusing on the function of Ff-GAD, a key enzyme in the GABA synthesis pathway. The results lay a foundation for elucidating the GABA metabolism pathway of edible fungi and developing targeted breeding strategies for GABA-producing edible fungi.
Collapse
Affiliation(s)
- Wenyun Li
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junjun Shang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dapeng Bao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianing Wan
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chenli Zhou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhan Feng
- Jiangsu Chinagreen Biological Technology Co., Ltd., Siyang 223700, China
| | - Hewen Li
- Jiangsu Chinagreen Biological Technology Co., Ltd., Siyang 223700, China
| | - Youran Shao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yingying Wu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Kang Q, Zhang J, Chen F, Dong C, Qin Q, Li X, Wang H, Zhang H, Meng Q. Unveiling mycoviral diversity in Ophiocordyceps sinensis through transcriptome analyses. Front Microbiol 2024; 15:1493365. [PMID: 39654673 PMCID: PMC11625762 DOI: 10.3389/fmicb.2024.1493365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Ophiocordyceps sinensis, an entomopathogenic fungus, infects larvae from the Lepidoptera: Hepialidae family, forming the valuable Chinese cordyceps. Mycoviruses are widespread across major lineages of filamentous fungi, oomycetes, and yeasts and have the potential to influence fungal biology and ecology. This study aimed to detect mycovirus within O. sinensis by isolating double-stranded RNA from six stains for transcriptomic sequencing and analyzing publicly available transcriptome data from 13 O. sinensis representative samples. Our analysis revealed 13 mycoviruses, with nine reported for the first time in O. sinensis. These mycoviruses are distributed across five families-Partitiviridae, Mitoviridae, Narnaviridae, Botourmiaviridae, Deltaflexiviridae-and two unclassified lineages, Ormycovirus and Vivivirus. This study also revealed frequent coinfections within individual O. sinensis strains and dynamic shifts in viral composition during fungal development. These findings enhance our knowledge of mycovirus diversity within O. sinensis and provide new insights into their taxonomy.
Collapse
Affiliation(s)
- Qin Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Fangzhou Chen
- China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| |
Collapse
|
5
|
Li XZ, Li YL, Wang YN, Zhu JS. Translation of Mutant Repetitive Genomic Sequences in Hirsutella sinensis and Changes in the Secondary Structures and Functional Specifications of the Encoded Proteins. Int J Mol Sci 2024; 25:11178. [PMID: 39456960 PMCID: PMC11508423 DOI: 10.3390/ijms252011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple repetitive sequences of authentic genes commonly exist in fungal genomes. AT-biased genotypes of Ophiocordyceps sinensis have been hypothesized as repetitive pseudogenes in the genome of Hirsutella sinensis (GC-biased Genotype #1 of O. sinensis) and are generated through repeat-induced point mutation (RIP), which is charactered by cytosine-to-thymine and guanine-to-adenine transitions, concurrent epigenetic methylation, and dysfunctionality. This multilocus study examined repetitive sequences in the H. sinensis genome and transcriptome using a bioinformatic approach and revealed that 8.2% of the authentic genes had repetitive copies, including various allelic insertions/deletions, transversions, and transitions. The transcripts for the repetitive sequences, regardless of the decreases, increases, or bidirectional changes in the AT content, were identified in the H. sinensis transcriptome, resulting in changes in the secondary protein structure and functional specification. Multiple repetitive internal transcribed spacer (ITS) copies containing multiple insertion/deletion and transversion alleles in the genome of H. sinensis were GC-biased and were theoretically not generated through RIP mutagenesis. The repetitive ITS copies were genetically and phylogenetically distinct from the AT-biased O. sinensis genotypes that possess multiple transition alleles. The sequences of Genotypes #2-17 of O. sinensis, both GC- and AT-biased, were absent from the H. sinensis genome, belong to the interindividual fungi, and differentially occur in different compartments of the natural Cordyceps sinensis insect-fungi complex, which contains >90 fungal species from >37 genera. Metatranscriptomic analyses of natural C. sinensis revealed the transcriptional silencing of 5.8S genes in all C. sinensis-colonizing fungi in natural settings, including H. sinensis and other genotypes of O. sinensis. Thus, AT-biased genotypes of O. sinensis might have evolved through advanced evolutionary mechanisms, not through RIP mutagenesis, in parallel with GC-biased Genotype #1 of H. sinensis from a common genetic ancestor over the long course of evolution.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
| | - Ya-Nan Wang
- State Key Laboratory of Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China or (X.-Z.L.); or (Y.-L.L.)
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
6
|
Chatnarin S, Thirabunyanon M. Potential of β-D-glucan polysaccharide from Ophiocordyceps sinensis OS8 cultivated mycelium on anticancer activity via inducing liver cancer cell death apoptosis. Process Biochem 2024; 145:243-249. [DOI: 10.1016/j.procbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Wu L, Hu X, Yan S, Wu Z, Tang X, Xie L, Qiu Y, Li R, Chen J, Tian M. Establishment of an Agrobacterium tumefaciens-Mediated Transformation System for Hirsutella sinensis. Curr Issues Mol Biol 2024; 46:10618-10632. [PMID: 39329981 PMCID: PMC11430471 DOI: 10.3390/cimb46090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the molecular mechanism of O. sinensis formation has been hindered by the lack of effective genetic transformation protocols. Therefore, Agrobacterium tumefaciens-mediated transformation (ATMT) was adopted to genetically transform two H. sinensis strains and optimize the transformation conditions. The results revealed that the most suitable Agrobacterium strain for H. sinensis transformation was AGL1, and that the surfactant Triton X-100 could also induce ATMT, although less effectively than acetosyringone (AS). In addition, the endogenous promoters of H. sinensis genes had a stronger ability to drive the expression of the target gene than did the exogenous promoter. The optimal transformation conditions were as follows: AS and hygromycin B concentrations of 100 μM and 50 μg/mL, respectively; A. tumefaciens OD600 of 0.4; cocultivation at 18 °C for 24 h; and H. sinensis used within three passages. The results lay a foundation for the functional study of key regulatory genes involved in the formation of O. sinensis.
Collapse
Affiliation(s)
- Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Xinkun Hu
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zenglin Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Xuzhong Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Lei Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Yujie Qiu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.W.); (L.X.); (R.L.)
| |
Collapse
|
8
|
Li XZ, Xiao MJ, Li YL, Gao L, Zhu JS. Mutations and Differential Transcription of Mating-Type and Pheromone Receptor Genes in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungi Complex. BIOLOGY 2024; 13:632. [PMID: 39194570 DOI: 10.3390/biology13080632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Meng-Jun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Ling Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| |
Collapse
|
9
|
Sharma A, Ranout AS, Kaur R, Kumari P, Nadda G. Unearthing diverse culturable fungal communities associated with Ophiocordyceps indica sp. nov. from Indian Western Himalaya. J Basic Microbiol 2024; 64:e2300461. [PMID: 38115562 DOI: 10.1002/jobm.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Fungal communities colonizing Ophiocordyceps spp. plays a crucial ecological role in their natural habitat, contributing to infect the host larvae, and influencing their occurrence. Although associated fungi with the newly described Ophiocordyceps indica, from the Indian Western Himalaya remains unclear. Therefore, we untangled the culturable fungal communities associated with O. indica and soil adhered to it, collected from low-height areas of Himachal Pradesh, India. The study resulted in the identification of 111 fungal isolates representing 17 families, with maximum fungal isolates (36.03%) within Cordycipitaceae. Interestingly, a total of 24 genera were found associated with O. indica and adhered soil, of which 12 were common, 8 were exclusive to O. indica and 4 were only limited to soil. Additionally, the influence of soil physicochemical parameters on fungal diversity indices revealed a positive correlation with humidity and available nitrogen and a negative correlation with pH and available phosphorus. These findings provide insights into the culturable fungal diversity of O. indica and the soil adhering to it, thus can contribute to the understanding of host-microbial interactions. Furthermore, these associations can be explored as a source of bioactive metabolites to combat the unending industrial demands.
Collapse
Affiliation(s)
- Aakriti Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Aditya Singh Ranout
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Rupinder Kaur
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Gireesh Nadda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| |
Collapse
|
10
|
Dai Y, Chen S, Wang Y, Wang Y, Yang Z, Yu H. Molecular phylogenetics of the Ophiocordyceps sinensis-species complex lineage (Ascomycota, Hypocreales), with the discovery of new species and predictions of species distribution. IMA Fungus 2024; 15:2. [PMID: 38336758 PMCID: PMC10858606 DOI: 10.1186/s43008-023-00131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Ophiocordyceps sinensis is a famous traditional Chinese medicine adapted to the alpine environment of the Qinghai-Tibet Plateau and adjacent regions. Clarification of the species diversity of Ophiocordyceps sinensis and its relatives could expand the traditional medicinal resources and provide insights into the speciation and adaptation. The study is prompted by the discovery of a new species, O. megala, described here from a biodiversity hotspot in the Hengduan Mountains, China. Combined morphological, ecological, and phylogenetic evidence supports its distinctiveness from O. sinensis, O. xuefengensis, and O. macroacicularis. Additionally, based on the phylogenetic construction of Ophiocordyceps, a special clade was focused phylogenetically on the more closely related O. sinensis complex, which was defined as the O. sinensis- species complex lineage. A total of 10 species were currently confirmed in this lineage. We made a comprehensive comparison of the sexual/asexual morphological structures among this species complex, distinguishing their common and distinctive features. Furthermore, using the method of species distribution modelling, we studied the species ocurrences in relation to climatic, edaphic, and altitudinal variables for the eight species in the O. sinensis-species complex, and determined that their potential distribution could extend from the southeastern Qinghai-Tibet Plateau to the Xuefeng Mountains without isolating barrier. Thus, the biodiversity corridor hypothesis was proposed around the O. sinensis-species complex. Our study highlights the phylogeny, species diversity, and suitable distribution of the O. sinensis-species complex lineage, which should have a positive implication for the resource discovery and adaptive evolution of this unique and valuable group.
Collapse
Affiliation(s)
- Yongdong Dai
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
- School of Basic Medical Science, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Siqi Chen
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
| | - Yuanbing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
| | - Zhuliang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China.
- , Kunming, China.
| |
Collapse
|
11
|
He L, Wang JY, Su QJ, Chen ZH, Xie F. Selection and validation of reference genes for RT-qPCR in ophiocordyceps sinensis under different experimental conditions. PLoS One 2024; 19:e0287882. [PMID: 38319940 PMCID: PMC10846742 DOI: 10.1371/journal.pone.0287882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/14/2023] [Indexed: 02/08/2024] Open
Abstract
The Chinese caterpillar mushroom, Ophiocordyceps sinensis (O. sinensis), is a rarely medicinal fungus in traditional chinese herbal medicine due to its unique medicinal values, and the expression stability of reference genes is essential to normalize its gene expression analysis. In this study, BestKeeper, NormFinder and geNorm, three authoritative statistical arithmetics, were applied to evaluate the expression stability of sixteen candidate reference genes (CRGs) in O. sinensis under different stress [low temperature (4°C), light treatment (300 lx), NaCl (3.8%)] and different development stages (mycelia, primordia and fruit bodies) and formation of morphologic mycelium (aeriasubstrate, hyphae knot mycelium). The paired variation values indicated that two genes could be enough to accurate standardization exposed to different conditions of O.sinensis. Among these sixteen CRGs, 18S ribosomal RNA (18S rRNA) and beta-Tubulin (β-TUB) showed the topmost expression stability in O.sinensis exposed to all conditions, while glutathione hydrolase proenzym (GGT) and Phosphoglucose isomerase (PGI) showed the least expression stability. The optimal reference gene in different conditions was various. β-TUB and Ubiquitin (UBQ) were identified as the two most stable genes in different primordia developmental stage, while phosphoglucomutase (PGM) with elongation factor 1-alpha (EF1-α) and 18S rRNA with UBQ were the most stably expressed for differentially morphologic mycelium stages and different stresses, respectively. These results will contribute to more accurate evaluation of the gene relative expression levels in O.sinensis under different conditions using the optimal reference gene in real-time quantitative PCR (RT-qPCR) analysis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Jin Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Qiang Jun Su
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| |
Collapse
|
12
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
13
|
Parker D, Meyling NV, De Fine Licht HH. Phenotypic variation and genomic variation in insect virulence traits reveal patterns of intraspecific diversity in a locust-specific fungal pathogen. J Evol Biol 2023; 36:1438-1454. [PMID: 37702110 DOI: 10.1111/jeb.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 04/18/2023] [Indexed: 09/14/2023]
Abstract
Intraspecific pathogen diversity is crucial for understanding the evolution and maintenance of adaptation in host-pathogen interactions. Traits associated with virulence are often a significant source of variation directly impacted by local selection pressures. The specialist fungal entomopathogen, Metarhizium acridum, has been widely implemented as a biological control agent of locust pests in tropical regions of the world. However, few studies have accounted for natural intraspecific phenotypic and genetic variation. Here, we examine the diversity of nine isolates of M. acridum spanning the known geographic distribution, in terms of (1) virulence towards two locust species, (2) growth rates on three diverse nutrient sources, and (3) comparative genomics to uncover genomic variability. Significant variability in patterns of virulence and growth was shown among the isolates, suggesting intraspecific ecological specialization. Different patterns of virulence were shown between the two locust species, indicative of potential host preference. Additionally, a high level of diversity among M. acridum isolates was observed, revealing increased variation in subtilisin-like proteases from the Pr1 family. These results culminate in the first in-depth analysis regarding multiple facets of natural variation in M. acridum, offering opportunities to understand critical evolutionary drivers of intraspecific diversity in pathogens.
Collapse
Affiliation(s)
- Dinah Parker
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai V Meyling
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik H De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Sharma A, Kaur E, Joshi R, Kumari P, Khatri A, Swarnkar MK, Kumar D, Acharya V, Nadda G. Systematic analyses with genomic and metabolomic insights reveal a new species, Ophiocordyceps indica sp. nov. from treeline area of Indian Western Himalayan region. Front Microbiol 2023; 14:1188649. [PMID: 37547690 PMCID: PMC10399244 DOI: 10.3389/fmicb.2023.1188649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.
Collapse
Affiliation(s)
- Aakriti Sharma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ekjot Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Li S, Zhu Y, Xu Z, Chen L, Wang W, Cheng Z. The phylogeny and divergence time of Ophiocordyceps sinensis and its host insects based on elongation factor 1 alpha. Arch Microbiol 2023; 205:98. [PMID: 36853446 DOI: 10.1007/s00203-023-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/18/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Ophiocordyceps sinensis Berk. is a fungal parasite that parasitizes the larvae of Hepialidae and is endemic to the Qinghai-Tibet Plateau (QTP). The phylogeny and divergence time of O. sinensis and its host insects were analyzed for 137 individuals from 48 O. sinensis populations based on the elongation factor 1 alpha (EF-1α) gene. Lower nucleotide variation, with only 7 and 16 EF-1α haplotypes, was detected in O. sinensis and its host insects, respectively. The isolated and broad distribution patterns coexisted in both O. sinensis and its host insects on the QTP. The divergence time estimates show that O. sinensis and its host insects originated later than 14.33 million years (Myr) and earlier than 23.60 Myr in the Miocene period, and the major differentiation occurred later than 4 Myr. Their origin and differentiation match well with the second and third uplifts of the QTP, respectively. The host insects from the O. sinensis populations distributed around Qinghai Lake are inferred as an ancient and relict species that has survived various geological events of the QTP. It is suitable to estimate the divergence times of both O. sinensis and its host insects from the same individuals using one gene: EF-1α. Our findings of the origin, phylogeny, and evolution of the endemic species also support the epoch of geological events on the QTP.
Collapse
Affiliation(s)
- Shan Li
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yunguo Zhu
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zixian Xu
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lingling Chen
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenqian Wang
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zhou Cheng
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
16
|
de Menezes TA, Aburjaile FF, Quintanilha-Peixoto G, Tomé LMR, Fonseca PLC, Mendes-Pereira T, Araújo DS, Melo TS, Kato RB, Delabie JHC, Ribeiro SP, Brenig B, Azevedo V, Drechsler-Santos ER, Andrade BS, Góes-Neto A. Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles. J Fungi (Basel) 2023; 9:jof9010110. [PMID: 36675931 PMCID: PMC9864599 DOI: 10.3390/jof9010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Ophiocordyceps australis (Ascomycota, Hypocreales, Ophiocordycipitaceae) is a classic entomopathogenic fungus that parasitizes ants (Hymenoptera, Ponerinae, Ponerini). Nonetheless, according to our results, this fungal species also exhibits a complete set of genes coding for plant cell wall degrading Carbohydrate-Active enZymes (CAZymes), enabling a full endophytic stage and, consequently, its dual ability to both parasitize insects and live inside plant tissue. The main objective of our study was the sequencing and full characterization of the genome of the fungal strain of O. australis (CCMB661) and its predicted secretome. The assembled genome had a total length of 30.31 Mb, N50 of 92.624 bp, GC content of 46.36%, and 8,043 protein-coding genes, 175 of which encoded CAZymes. In addition, the primary genes encoding proteins and critical enzymes during the infection process and those responsible for the host-pathogen interaction have been identified, including proteases (Pr1, Pr4), aminopeptidases, chitinases (Cht2), adhesins, lectins, lipases, and behavioral manipulators, such as enterotoxins, Protein Tyrosine Phosphatases (PTPs), and Glycoside Hydrolases (GHs). Our findings indicate that the presence of genes coding for Mad2 and GHs in O. australis may facilitate the infection process in plants, suggesting interkingdom colonization. Furthermore, our study elucidated the pathogenicity mechanisms for this Ophiocordyceps species, which still is scarcely studied.
Collapse
Affiliation(s)
- Thaís Almeida de Menezes
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel Quintanilha-Peixoto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Thairine Mendes-Pereira
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Daniel Silva Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Tarcisio Silva Melo
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana 44036-900, BA, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Jacques Hubert Charles Delabie
- Laboratory of Myrmecology, Centro de Pesquisa do Cacau, Ilhéus 45600-000, BA, Brazil
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45600-970, BA, Brazil
| | - Sérvio Pontes Ribeiro
- Laboratory of Ecology of Diseases and Forests, Nucleus of Biological Science, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto 35402-163, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Bruno Silva Andrade
- Department of Biological Sciences, Universidade Federal do Sudoeste da Bahia, Av. José Moreira Sobrinho, s/n, Jequiezinho, Jequié 45205-490, BA, Brazil
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-3409-3050
| |
Collapse
|
17
|
Xu M, Ashley NA, Vaghefi N, Wilkinson I, Idnurm A. Isolation of strains and their genome sequencing to analyze the mating system of Ophiocordyceps robertsii. PLoS One 2023; 18:e0284978. [PMID: 37130139 PMCID: PMC10153710 DOI: 10.1371/journal.pone.0284978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis, which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative species are being sought. Ophiocordyceps robertsii, found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis, but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis. The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two (MAT1-2-1, MAT1-2-2) or three (MAT1-1-1, MAT1-1-2, MAT1-1-3) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis, as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand.
Collapse
Affiliation(s)
- Melvin Xu
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Darling Heights, Queensland, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian Wilkinson
- GhostMothLabs, 20 Lynch Drive, Echuca, Victoria, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Tong X, Peng T, Liu S, Zhang D, Guo J. Transcriptomic Analysis Insight into the Immune Modulation during the Interaction of Ophiocordyceps sinensis and Hepialus xiaojinensis. INSECTS 2022; 13:1119. [PMID: 36555029 PMCID: PMC9788539 DOI: 10.3390/insects13121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus that can infect the larva of the ghost moth, Hepialus xiaojinensis, causing mummification after more than one year. This prolonged infection provides a valuable model for studying the immunological interplay between an insect host and a pathogenic fungus. A comparative transcriptome analysis of pre-infection (L) and one-year post-infection (IL) larvae was performed to investigate the immune response in the host. Here, a total of 59,668 unigenes were obtained using Illumina Sequencing in IL and L. Among the 345 identified immune-related genes, 83 out of 86 immune-related differentially expressed genes (DEGs) had a much higher expression in IL than in L. Furthermore, the immune-related DEGs were classified as pathogen recognition receptors (PRRs), signal modulators or transductors, and immune effector molecules. Serpins and protease inhibitors were found to be upregulated in the late phase of infection, suppressing the host’s immune response. Based on the above analysis, the expression levels of most immune-related genes would return to the baseline with the immune response being repressed in the late phase of infection, leading to the fungal immunological tolerance after prolonged infection. Meanwhile, the transcriptomes of IL and the mummified larva (ML) were compared to explore O. sinensis invasion. A total of 1408 novel genes were identified, with 162 of them annotated with putative functions. The gene families likely implicated in O. sinensis pathogenicity have been identified, primarily including serine carboxypeptidase, peroxidase, metalloprotease peptidase, aminopeptidases, cytochrome P450, and oxidoreductase. Furthermore, quantitative real-time PCR (qPCR) was used to assess the expression levels of some critical genes that were involved in immune response and fungal pathogenicity. The results showed that their expression levels were consistent with the transcriptomes. Taken together, our findings offered a comprehensive and precise transcriptome study to understand the immune defense in H. xiaojinensis and O. sinensis invasion, which would accelerate the large-scale artificial cultivation of this medicinal fungus.
Collapse
|
19
|
High Throughput Identification of the Potential Antioxidant Peptides in Ophiocordyceps sinensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020438. [PMID: 35056752 PMCID: PMC8780859 DOI: 10.3390/molecules27020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Ophiocordyceps sinensis, an ascomycete caterpillar fungus, has been used as a Traditional Chinese Medicine owing to its bioactive properties. However, until now the bio-active peptides have not been identified in this fungus. Here, the raw RNA sequences of three crucial growth stages of the artificially cultivated O. sinensis and the wild-grown mature fruit-body were aligned to the genome of O. sinensis. Both homology-based prediction and de novo-based prediction methods were used to identify 8541 putative antioxidant peptides (pAOPs). The expression profiles of the cultivated mature fruiting body were similar to those found in the wild specimens. The differential expression of 1008 pAOPs matched genes had the highest difference between ST and MF, suggesting that the pAOPs were primarily induced and play important roles in the process of the fruit-body maturation. Gene ontology analysis showed that most of pAOPs matched genes were enriched in terms of ‘cell redox homeostasis’, ‘response to oxidative stresses’, ‘catalase activity’, and ‘ integral component of cell membrane’. A total of 1655 pAOPs was identified in our protein-seqs, and some crucial pAOPs were selected, including catalase, peroxiredoxin, and SOD [Cu–Zn]. Our findings offer the first identification of the active peptide ingredients in O. sinensis, facilitating the discovery of anti-infectious bio-activity and the understanding of the roles of AOPs in fungal pathogenicity and the high-altitude adaptation in this medicinal fungus.
Collapse
|
20
|
Li H, Fang X, qiangjun S, yinxia X, gang Z, Zhaohe C. Transcriptome analysis the effects of light treatment on Ophiocordyceps sinensis metabolism. Int J Med Mushrooms 2022; 24:81-97. [DOI: 10.1615/intjmedmushrooms.2022044445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Zhang H, Yue P, Tong X, Gao T, Peng T, Guo J. Comparative analysis of fatty acid metabolism based on transcriptome sequencing of wild and cultivated Ophiocordyceps sinensis. PeerJ 2021; 9:e11681. [PMID: 34249512 PMCID: PMC8255070 DOI: 10.7717/peerj.11681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ophiocordyceps sinensis is a species endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. Although O. sinensis has been cultivated since the past few years, whether cultivated O. sinensis can completely replace wild O. sinensis remains to be determined. Methods To explore the differences of O. sinensis grown in varied environments, we conducted morphological and transcriptomic comparisons between wild and cultivated samples who with the same genetic background. Results The results of morphological anatomy showed that there were significant differences between wild and cultivated O. sinensis, which were caused by different growth environments. Then, a total of 9,360 transcripts were identified using Illumina paired-end sequencing. Differential expression analysis revealed that 73.89% differentially expressed genes (DEGs) were upregulated in O. sinensis grown under natural conditions compared with that grown under artificial conditions. Functional enrichment analysis showed that some key DEGs related to fatty acid metabolism, including acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-ketoacyl-CoA thiolase, and acetyl-CoA acetyltransferase, were upregulated in wild O. sinensis. Furthermore, gas chromatography-mass spectrometry results confirmed that the fatty acid content of wild O. sinensis was significantly higher than that of cultivated O. sinensis and that unsaturated fatty acids accounted for a larger proportion. Conclusion These results provide a theoretical insight to the molecular regulation mechanism that causes differences between wild and cultivated O. sinensis and improving artificial breeding.
Collapse
Affiliation(s)
- Han Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Yue
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinxin Tong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tinghui Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Meng Q, Wu PP, Li MM, Shu RH, Zhou GL, Zhang JH, Zhang H, Jiang H, Qin QL, Zou Z. Distinct Responses of Thitarodes xiaojinensis β-1,3-Glucan Recognition Protein-1 and Immulectin-8 to Ophiocordyceps sinensis and Cordyceps militaris Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:200-209. [PMID: 34162722 DOI: 10.4049/jimmunol.2000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Melanization and encapsulation are prominent defense responses against microbes detected by pattern recognition receptors of their host insects. In the ghost moth Thitarodes xiaojinensis, an activated immune system can melanize and encapsulate the fungus Cordyceps militaris However, these responses were hardly detected in the host hemolymph postinfection of another fungus Ophiocordyceps sinensis The immune interaction between O. sinensis and the host remains largely unknown, which hinders the artificial cultivation of Chinese cordyceps. We found that T. xiaojinensis β-1,3-glucan recognition protein-1 (βGRP1) was needed for prophenoloxidase activation induced by C. militaris Failure of βGRP1 to recognize O. sinensis is a primary reason for the lack of melanization in the infected host. Lyticase or snailase treatment combined with binding and immunofluorescence detection showed the existence of a protective layer preventing the fungus from βGRP1 recognition. Coimmunoprecipitation and mass spectrometry analysis indicated that βGRP1 interacted with immulectin-8 (IML8) via binding to C. militaris IML8 promotes encapsulation. This study suggests the roles of T. xiaojinensis βGRP1 and IML8 in modulating immune responses against C. militaris Most importantly, the data indicate that O. sinensis may evade melanization by preventing βGRP1 recognition.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK; and
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Zhang H, Yue P, Tong X, Bai J, Yang J, Guo J. mRNA-seq and miRNA-seq profiling analyses reveal molecular mechanisms regulating induction of fruiting body in Ophiocordyceps sinensis. Sci Rep 2021; 11:12944. [PMID: 34155233 PMCID: PMC8217512 DOI: 10.1038/s41598-021-91718-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Ophiocordyceps sinensis has been a source of valuable materials in traditional Asian medicine for over two thousand years. With recent global warming and overharvest, however, the availability of these wild fungi has decreased dramatically. While fruiting body of O. sinensis has been artificially cultivated, the molecular mechanisms that govern the induction of fruiting body at the transcriptional and post-transcriptional levels are unclear. In this study, we carried out both mRNA and small RNA sequencing to identify crucial genes and miRNA-like RNAs (milRNAs) involved in the development of fruiting body. A total of 2875 differentially expressed genes (DEGs), and 71 differentially expressed milRNAs (DEMs) were identified among the mycoparasite complex, the sclerotium (ST) and the fruiting body stage. Functional enrichment and Gene Set Enrichment Analysis indicated that the ST had increased oxidative stress and energy metabolism and that mitogen-activated protein kinase signaling might induce the formation of fruiting body. Integrated analysis of DEGs and DEMs revealed that n_os_milR16, n_os_milR21, n_os_milR34, and n_os_milR90 could be candidate milRNAs that regulate the induction of fruiting body. This study provides transcriptome-wide insight into the molecular basis of fruiting body formation in O. Sinensis and identifies potential candidate genes for improving induction rate.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyan Yang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Tong X, Wang F, Zhang H, Bai J, Dong Q, Yue P, Jiang X, Li X, Wang L, Guo J. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2021; 9:e10940. [PMID: 33717691 PMCID: PMC7936569 DOI: 10.7717/peerj.10940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, using an isobaric tags for relative and absolute quantitation (iTRAQ ) approach coupled with LC-MS / MS and bioinformatics, the proteomes were analyzed for the crucial three stages covering the fruiting body development of Ophiocordyceps sinensis, including sclerotium (ST), primordium (PR) and mature fruiting body (MF), with a focus on fruiting body development-related proteins and the potential mechanisms of the development. A total of 1,875 proteins were identified. Principal Component Analysis (PCA) demonstrated that the protein patterns between PR and MF were more similar than ST. Differentially accumulated proteins (DAPs) analysis showed that there were 510, 173 and 514 DAPs in the comparisons of ST vs. PR, PR vs. MF and ST vs. MF, respectively. A total of 62 shared DAPs were identified and primarily enriched in proteins related to ‘carbon transport and mechanism’, ‘the response to oxidative stress’, ‘antioxidative activity’ and ‘translation’. KEGG and GO databases showed that the DAPs were enriched in terms of ‘primary metabolisms (amino acid/fatty acid/energy metabolism)’, ‘the response to oxidative stress’ and ‘peroxidase’. Furthermore, 34 DAPs involved in reactive oxygen species (ROS) metabolism were identified and clustered across the three stages using hierarchical clustering implemented in hCluster R package . It was suggested that their roles and the underlying mechanisms may be stage-specific. ROS may play a role in fungal pathogenicity in ST, the fruit-body initiation in PR, sexual reproduction and highland adaptation in MF. Crucial ROS-related proteins were identified, such as superoxide dismutase (SOD, T5A6F1), Nor-1 (T5AFX3), electron transport protein (T5AHD1), histidine phosphotransferase (HPt, T5A9Z5) and Glutathione peroxidase (T5A9V1). Besides, the accumulation of ROS at the three stages were assayed using 2,7-dichlorofuorescin diacetate (DCFH-DA) stanning. A much stronger ROS accumulation was detected at the stage MF, compared to the stages of PR and ST. Sections of ST and fruit-body part of MF were stained by DCFH-DA and observed under the fluorescencemicroscope, showing ROS was distributed within the conidiospore and ascus. Besides, SOD activity increased across the three stages, while CAT activity has a strong increasement in MF compared to the stages of ST and PR. It was suggested that ROS may act in gradient-dependent manner to regulate the fruiting body development. The coding region sequences of six DAPs were analyzed at mRNA level by quantitative real-time PCR (qRT-PCR). The results support the result of DAPs analysis and the proteome sequencing data. Our findings offer the perspective of proteome to understand the biology of fruiting body development and highland adaptation in O. sinensis, which would inform the big industry of this valuable fungus.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiang Dong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Jiang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Li
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Li M, Meng Q, Zhang H, Shu R, Zhao Y, Wu P, Li X, Zhou G, Qin Q, Zhang J. Changes in transcriptomic and metabolomic profiles of morphotypes of Ophiocordyceps sinensis within the hemocoel of its host larvae, Thitarodes xiaojinensis. BMC Genomics 2020; 21:789. [PMID: 33176684 PMCID: PMC7659167 DOI: 10.1186/s12864-020-07209-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background Ophiocordyceps sinensis (Berk.) is a well-known entomopathogenic and medicinal fungus. It parasitizes and mummifies the underground ghost moth larvae to produce a fruiting body named Chinese cordyceps. Specific for the fungus, O. sinensis experiences a biotrophic vegetative growth period spanning over 5 months. During this vegetative growth, it appears successively in the host hemocoel in three/four morphotypes, namely, the yeast-like blastospores (subdivided into proliferative (BP) and stationary phase (BS)), prehyphae (PreHy) and the hyphae (Hy). This peculiar morphogenesis has been elucidated through morphological and ultrastructural observations, but its molecular basis remains cryptic. In this study, transcriptome and metabolome profiling of BP, BS, PreHy and Hy stages were performed to characterize the key genes, metabolites, and signaling pathways that regulated the vegetative development of O. sinensis in Thitarodes xiaojinensis larva. Results The molecular events and metabolic pathways that regulated different intracellular processes at various stages were examined. Cluster analyses of differentially expressed genes across the four stages revealed the stage specifically enriched pathways. Analysis of metabolome profiles showed that carbon metabolism and several amino acids biosynthesis were significantly perturbed during the tested development stages of O. sinensis in the host hemocoel. Genes homologous to Saccharomyces cerevisiae MAPK cascade were significantly up-regulated during the transition from blastospore to hypha. The up-regulation of Sho1, a regulator protein, suggested nutrient starvation act a role in activation of MAPK pathway and filamentous growth. In addition, up-regulation of several fatty acid synthesis genes and their corresponding products accumulation in the samples of BS might explain more lipid droplets were observed in BS than in BP. Coupled with the up-regulation of fatty acid degradation during PreHy and Hy stages, it is presumed that lipid accumulation and mobilization play important roles in filamentous development. Conclusions This is the first report comprehensively describing developmental transcriptomics and metabolomics of O. sinensis in vivo. Our findings provide new perspectives into the key pathways and hub genes involved in morphological changes of fungus developed in the hemocoel of its host, and are expected to guide future studies on morphogenesis and morphotype changes of entomopathogenic fungi in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07209-2.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruihao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guiling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Liu J, Guo L, Li Z, Zhou Z, Li Z, Li Q, Bo X, Wang S, Wang J, Ma S, Zheng J, Yang Y. Genomic analyses reveal evolutionary and geologic context for the plateau fungus Ophiocordyceps sinensis. Chin Med 2020; 15:107. [PMID: 33042212 PMCID: PMC7542391 DOI: 10.1186/s13020-020-00365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ophiocordyceps sinensis, which is only naturally found in the high-elevation extreme environment of the Tibetan Plateau, has been used in traditional Chinese medicine. Information concerning the evolutionary and geologic context of O. sinensis remains limited, however. Methods We constructed the high-quality genome of O. sinensis and provided insight into the evolution and ecology of O. sinensis using comparative genomics. Results We mapped the whole genome of the anamorph/asexual form Hirsutella of O. sinensis using Illumina and PacBio sequencing technologies and obtained a well assembled genome of 119.2 Mbp size. Long-read Single Molecule Real Time (SMRT) sequencing technology generated an assembly with more accurate representation of repeat sequence abundances and placement. Evolutionary analyses indicated that O. sinensis diverged from other fungi 65.9 Mya in the Upper Cretaceous, during the uplift of the Tibetan Plateau. Gene family expansions and contractions in addition to genome inflation via long terminal repeat (LTR) retrotransposon insertions were implicated as an important driver of O. sinensis divergence. The insertion rate of LTR sequences into the O. sinensis genome peaked ~ 30-40 Mya, when the Tibetan Plateau rose rapidly. Gene Ontology (GO) enrichment analysis suggested that O. sinensis contained more genes related to ice binding compared to other closely related fungi, which may aid in their adaptability to the cold Tibetan Plateau. Further, heavy metal resistance genes were in low abundance in the O. sinensis genome, which may help to explain previous observations that O. sinensis tissues contain high levels of heavy metals. Conclusions Our results reveal the evolutionary, geological, and ecological context for the evolution of the O. sinensis genome and the factors that have contributed to the environmental adaptability of this valuable fungus. These findings suggest that genome inflation via LTR retrotransposon insertions in O. sinensis coincided with the uplift of the Tibetan Plateau. LTRs and the specific genetic mechanisms of O. sinensis contributed to its adaptation to the environment on the plateau.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050 China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Linong Guo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050 China
| | - Zongwei Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Zhe Zhou
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Zhen Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Qian Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050 China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Junli Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050 China
| | - Jian Zheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050 China
| | - Ying Yang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| |
Collapse
|
27
|
Xu Z, Li S, Chen L, Zhu Y, Xuan L, Cheng Z. Effects of fungus–host associations on nucleoside differences among Ophiocordyceps sinensis populations on the Qinghai–Tibet Plateau of China. Arch Microbiol 2020; 202:2323-2328. [DOI: 10.1007/s00203-020-01919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/09/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
|
28
|
RIP mutated ITS genes in populations of Ophiocordyceps sinensis and their implications for molecular systematics. IMA Fungus 2020; 11:18. [PMID: 32974122 PMCID: PMC7493409 DOI: 10.1186/s43008-020-00040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Different hypotheses have been proposed to interpret the observed unusual ITS (internal transcribed spacer) sequences in Ophiocordyceps sinensis. The coexistence of diverged ITS paralogs in a single genome was previously shown by amplifying the ITS region from mono-ascospore isolates using specific primers designed for different ITS paralog groups. Among those paralogs, are AT-biased ITS sequences which were hypothesized to result from repeat-induced point mutation (RIP). This is a process that detects and mutates repetitive DNA and frequently leads to epigenetic silencing, and these mutations have been interpreted as pseudogenes. Here we investigate the occurrence and frequency of ITS pseudogenes in populations of O. sinensis using large-scale sampling, and discusses the implications of ITS pseudogenes for fungal phylogenetic and evolutionary studies. Our results demonstrate a wide distribution of ITS pseudogenes amongst different geographic populations, and indicate how ITS pseudogenes can contribute to the reconstruction of the evolutionary history of the species.
Collapse
|
29
|
Shu R, Zhang J, Meng Q, Zhang H, Zhou G, Li M, Wu P, Zhao Y, Chen C, Qin Q. A New High-Quality Draft Genome Assembly of the Chinese Cordyceps Ophiocordyceps sinensis. Genome Biol Evol 2020; 12:1074-1079. [PMID: 32579174 PMCID: PMC7486949 DOI: 10.1093/gbe/evaa112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 01/07/2023] Open
Abstract
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus endemic to the Qinghai-Tibet Plateau. It parasitizes and mummifies the underground ghost moth larvae, then produces a fruiting body. The fungus-insect complex, called Chinese cordyceps or "DongChongXiaCao," is not only a valuable traditional Chinese medicine, but also a major source of income for numerous Himalayan residents. Here, taking advantage of rapid advances in single-molecule sequencing, we assembled a highly contiguous genome assembly of O. sinensis. The assembly of 23 contigs was ∼110.8 Mb with a N50 length of 18.2 Mb. We used RNA-seq and homologous protein sequences to identify 8,916 protein-coding genes in the IOZ07 assembly. Moreover, 63 secondary metabolite gene clusters were identified in the improved assembly. The improved assembly and genome features described in this study will further inform the evolutionary study and resource utilization of Chinese cordyceps.
Collapse
Affiliation(s)
- Ruihao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guiling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanni Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Chen
- Beijing Tongrentang Health Pharmaceutical (Qinghai) Co., Ltd., Delingha, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Haplotype Diversity of NADPH-Cytochrome P450 Reductase Gene of Ophiocordyceps sinensis and the Effect on Fungal Infection in Host Insects. Microorganisms 2020; 8:microorganisms8070968. [PMID: 32610431 PMCID: PMC7409138 DOI: 10.3390/microorganisms8070968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/29/2022] Open
Abstract
Ophiocordyceps sinensis Berk. is a fungal parasite that parasitizes the larvae of Hepialidae and is used as a traditional Chinese medicine. However, it is not clear how O. sinensis infects its host. The encoding gene haplotype diversity and predicted function of the nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) related to the fungal pathogenicity was analyzed for 219 individuals from 47 O. sinensis populations. Two NADPH CPR genes of O. sinensis were detected and their dominant haplotypes were widely distributed throughout the entire distribution range in Western China. Only 5.43% of all O. sinensis individuals possessed the specific private haplotypes of NADPH CPR-1 and CPR-2 genes. Bioinformatic analyses predicted that the phosphorylation sites, motifs, and domains of NADPH CPR of O. sinensis were different between those encoding by the dominant and private gene haplotypes. The one-to-one match fungus–host correspondence of the same individual suggested that the widely distributed O. sinensis with the dominant NADPH CPR gene haplotypes may strongly infect almost all host insects through a random infection by oral or respiratory pores. Conversely, O. sinensis with the specific private NADPH CPR gene haplotypes is likely to infect only a few corresponding host insects by breaching the cuticle, due to the changed NADPH CPR structure and function.
Collapse
|
31
|
Further discussion with Li et al. (2013, 2019) regarding the “ITS pseudogene hypothesis” for Ophiocordyceps sinensis. Mol Phylogenet Evol 2020; 146:106728. [DOI: 10.1016/j.ympev.2019.106728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 11/21/2022]
|
32
|
Draft Genome Assembly of Floccularia luteovirens, an Edible and Symbiotic Mushroom on Qinghai-Tibet Plateau. G3-GENES GENOMES GENETICS 2020; 10:1167-1173. [PMID: 32098800 PMCID: PMC7144084 DOI: 10.1534/g3.120.401037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Floccularia luteovirens, also known as "Yellow mushroom", is an edible ectomycorrhizal fungus widely distributed in the Qinghai-Tibet Plateau alpine meadow. So far, little genomic information is known about F. luteovirens, which is not conductive to the protection and utilization of it. In this manuscript, we present a first draft genome assembly and annotation of F. luteovirens The fruiting body of F. luteovirens was sequenced with PacBio Sequel and Illumina Hiseq 2500 system. The assembled genome size was 28.8 Mb, and comprising 183 contigs with a N50 contig size of 571 kb. A total of 8,333 protein-coding genes were predicted and 7,999 genes were further assigned to different public protein databases. Besides, 400 CAZymes were identified in F. luteovirens Phylogenetic analysis suggested that F. luteovirens should belong to the Agaricaceae family. Time tree result showed that the speciation of F. luteovirens happened approximately 170 Million years ago. Furthermore, 357 species-specific gene families were annotated against KEGG and GO database. This genome assembly and annotation should be an essential genomic foundation for understanding the phylogenetic, metabolic and symbiotic traits of F. luteovirens.
Collapse
|
33
|
Xu R, Liu X, Peng B, Liu P, Li Z, Dai Y, Xiao S. Genomic Features of Cladobotryum dendroides, Which Causes Cobweb Disease in Edible Mushrooms, and Identification of Genes Related to Pathogenicity and Mycoparasitism. Pathogens 2020; 9:pathogens9030232. [PMID: 32245129 PMCID: PMC7157644 DOI: 10.3390/pathogens9030232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cladobotryum dendroides, which causes cobweb disease in edible mushrooms, is one of the major fungal pathogens. Our previous studies focused on the genetic and morphological characterization of this fungus, as well as its pathogenicity and the identification of appropriate fungicides. However, little is known about the genome characters, pathogenic genes, and molecular pathogenic mechanisms of C. dendroides. Herein, we reported a high-quality de novo genomic sequence of C. dendroides and compared it with closely-related fungi. The assembled C. dendroides genome was 36.69 Mb, consisting of eight contigs, with an N50 of 4.76 Mb. This genome was similar in size to that of C. protrusum, and shared highly conserved syntenic blocks and a few inversions with C. protrusum. Phylogenetic analysis revealed that, within the Hypocreaceae, Cladobotryum was closer to Mycogone than to Trichoderma, which is consistent with phenotypic evidence. A significant number of the predicted expanded gene families were strongly associated with pathogenicity, virulence, and adaptation. Our findings will be instrumental for the understanding of fungi-fungi interactions, and for exploring efficient management strategies to control cobweb disease.
Collapse
Affiliation(s)
- Rong Xu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiaochen Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Bing Peng
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Peibin Liu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China;
| | - Yueting Dai
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- Correspondence: (Y.D.); (S.X.); Tel.: +86-431-8453-2989 (Y.D. & S.X.)
| | - Shijun Xiao
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China; (R.X.); (B.P.)
- Correspondence: (Y.D.); (S.X.); Tel.: +86-431-8453-2989 (Y.D. & S.X.)
| |
Collapse
|
34
|
Tong X, Zhang H, Wang F, Xue Z, Cao J, Peng C, Guo J. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2020; 8:e8379. [PMID: 31988806 PMCID: PMC6970007 DOI: 10.7717/peerj.8379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is a highly valued fungus that has been used as traditional Asian medicine. This fungus is one of the most important sources of income for the nomadic populations of the Tibetan Plateau. With global warming and excessive collection, the wild O. sinensis resources declined dramatically. The cultivation of O. sinensis hasn’t been fully operational due to the unclear genetic basis of the fruiting body development. Here, our study conducted pairwise comparisons between transcriptomes acquired from different growth stages of O. sinensis including asexual mycelium (CM), developing fruiting body (DF) and mature fruiting body (FB). All RNA-Seq reads were aligned to the genome of O. sinensis CO18 prior to comparative analyses. Cluster analysis showed that the expression profiles of FB and DF were highly similar compared to CM. Alternative splicing analysis (AS) revealed that the stage-specific splicing genes may have important functions in the development of fruiting body. Functional enrichment analyses showed that differentially expressed genes (DEGs) were enriched in protein synthesis and baseline metabolism during fruiting body development, indicating that more protein and energy might be required for fruiting body development. In addition, some fruiting body development-associated genes impacted by ecological factors were up-regulated in FB samples, such as the nucleoside diphosphate kinase gene (ndk), β subunit of the fatty acid synthase gene (cel-2) and the superoxide dismutase gene (sod). Moreover, the expression levels of several cytoskeletons genes were significantly altered during all these growth stages, suggesting that these genes play crucial roles in both vegetative growth and the fruiting body development. Quantitative PCR (qPCR) was used to validate the gene expression profile and the results supported the accuracy of the RNA-Seq and DEGs analysis. Our study offers a novel perspective to understand the underlying growth stage-specific molecular differences and the biology of O. sinensis fruiting body development.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengyao Xue
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Jing Cao
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Adenosine Biosynthesis in Anamorph Strain of Caterpillar Fungus. BIOMED RESEARCH INTERNATIONAL 2020; 2019:1864168. [PMID: 31915684 PMCID: PMC6935459 DOI: 10.1155/2019/1864168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/28/2019] [Indexed: 01/19/2023]
Abstract
Caterpillar fungus is a well-known fungal Chinese medicine. To reveal molecular changes during early and late stages of adenosine biosynthesis, transcriptome analysis was performed with the anamorph strain of caterpillar fungus. A total of 2,764 differentially expressed genes (DEGs) were identified (p ≤ 0.05, |log2 Ratio| ≥ 1), of which 1,737 were up-regulated and 1,027 were down-regulated. Gene expression profiling on 4–10 d revealed a distinct shift in expression of the purine metabolism pathway. Differential expression of 17 selected DEGs which involved in purine metabolism (map00230) were validated by qPCR, and the expression trends were consistent with the RNA-Seq results. Subsequently, the predicted adenosine biosynthesis pathway combined with qPCR and gene expression data of RNA-Seq indicated that the increased adenosine accumulation is a result of down-regulation of ndk, ADK, and APRT genes combined with up-regulation of AK gene. This study will be valuable for understanding the molecular mechanisms of the adenosine biosynthesis in caterpillar fungus.
Collapse
|
36
|
Lin S, Zhou C, Zhang H, Cai Z. Expression, purification and characterization of 5'-nucleotidase from caterpillar fungus by efficient genome-mining. Protein Expr Purif 2020; 168:105566. [PMID: 31899296 DOI: 10.1016/j.pep.2019.105566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
5'- nucleotidase (5'-NT) is a key enzyme in nucleoside/nucleotide metabolic pathway, it plays an important role in the biosynthesis of cordycepin in caterpillar fungus. In this study, a 5'-NT gene was identified and mined from genomic DNA of caterpillar fungus, which was 1968 bp in length and encoded 656 amino acid residues. The recombinant 5'-NT was first time heterologously expressed in Pichia pastoris GS115, subsequently purified and functionally characterized. The optimal reaction temperature for 5'-NT was 35 °C, and it retained 52.8% of its residual activity after incubation at 50 °C for 1 h. The optimal reaction pH was 6.0 and it exhibited high activity over a neutral pH range. Furthermore, 5'-NT exhibited excellent Km (1.107 mM), Vmax (0.113 μmol/mg·min) and kcat (4.521 S-1) values compared with other typical 5'-nucleotidase. Moreover, substrate specificity analyses indicated that 5'-NT exhibited different phosphatase activity towards the substrates containing different basic groups. The work presented here could be useful to 5'-NT applications and provide more scientific basis and new ideas for the biosynthesis of artificial control cordycepin.
Collapse
Affiliation(s)
- Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518100, Guangdong, China; Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Cuibing Zhou
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Hancheng Zhang
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhiming Cai
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
37
|
Liang Y, Hong Y, Mai Z, Zhu Q, Guo L. Internal and External Microbial Community of the Thitarodes Moth, the Host of Ophiocordyceps sinensis. Microorganisms 2019; 7:microorganisms7110517. [PMID: 31683719 PMCID: PMC6920881 DOI: 10.3390/microorganisms7110517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Ophiocordyceps sinensis is a widely known medicinal entomogenous fungus, which parasitizes the soil-borne larva of Thitarodes (Hepialidae, Lepidoptera) distributed in the Qinghai–Tibetan Plateau and its adjacent areas. Previous research has involved artificial cultivation of Chinese cordyceps (the fungus-caterpillar complex), but it is difficult to achieve large-scale cultivation because the coupling relation between the crucial microbes and their hosts is not quite clear. To clarify the influence of the internal microbial community on the occurrence of Chinese cordyceps, in this study, the unfertilized eggs of Thitarodes of different sampling sites were chosen to analyze the bacterial and fungal communities via 16S rRNA and ITS sequencing for the first time. The results showed that for bacteria, 348 genera (dominant genera include Wolbachia, Spiroplasma, Carnobacterium, Sphingobium, and Acinetobacter) belonging to 26 phyla (dominant phyla include Proteobacteria, Firmicutes, Tenericutes, Actinobacteria, Acidobacteria, and Bacteroidetes), 58 classes, 84 orders, and 120 families were identified from 1294 operational taxonomic units (OTUs). The dominant bacterial genus (Spiroplasma) may be an important bacterial factor promoting the occurrence of Chinese cordyceps. For fungi, 289 genera, mainly including Aureobasidium, Candida, and Cryptococcus, were identified, and they belonged to 5 phyla (Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, and Zygomycota), 26 classes, 82 orders, and 165 families. Eight bacterial OTUs and 12 fungal OTUs were shared among all of the detected samples and were considered as core species. Among them, Wolbachia, Spiroplasma, Carnobacterium, Aureobasidium, and Phoma may play important roles in helping the host larva to digest foods, adapt to extreme environments, or resist pathogens. On the other hand, the external (soil) microbial community was synchronously and comparatively analyzed. Comparative analysis revealed that external microbial factors might play a more significant role in the occurrence of Chinese cordyceps, owing to the significant differences revealed by α-diversity and β-diversity analyses among different groups. In summary, the results of this study may contribute to the large-scale cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Yi Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yuehui Hong
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medical College, Jiangmen 529000, China.
| | - Zhanhua Mai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Qijiong Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
38
|
Shao JL, Lai B, Jiang W, Wang JT, Hong YH, Chen FB, Tan SQ, Guo LX. Diversity and Co-Occurrence Patterns of Soil Bacterial and Fungal Communities of Chinese Cordyceps Habitats at Shergyla Mountain, Tibet: Implications for the Occurrence. Microorganisms 2019; 7:microorganisms7090284. [PMID: 31443515 PMCID: PMC6780579 DOI: 10.3390/microorganisms7090284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
Chinese Cordyceps is a well-known medicinal larva-fungus symbiote distributed in the Qinghai-Tibetan Plateau and adjacent areas. Previous studies have involved its artificial cultivation but commercial cultivation is difficult to perform because the crucial factors triggering the occurrence of Chinese Cordyceps are not quite clear. The occurrence of Chinese Cordyceps is greatly affected by the soil environment, including the soil’s physicochemical and microecological properties. In this study, the effects of these soil properties on the occurrence of Chinese Cordyceps were investigated. The results show that the physicochemical properties, including easily oxidizable organic carbon (EOC), soil organic carbon (SOC), humic acid carbon (HAC), humin carbon (HMC), and pH, might be negatively related to the occurrence of Chinese Cordyceps, and soil water content (SWC) might be positively related. Several soil physicochemical parameters (pH, SOC, HMC, HAC, available potassium (APO), available phosphorus (APH), microbial biomass carbon (MBC), and the ratio of NH4+ to NO3− (NH4+/NO3−)) and microbial properties interact and mix together, which might affect the occurrence of Chinese Cordyceps. Soil microbial community structure was also a possible factor, and a low level of bacterial and fungal diversity was suitable for the occurrence of Chinese Cordyceps. The intra-kingdom network revealed that a closer correlation of the bacterial community might help the occurrence of Chinese Cordyceps, while a closer correlation of the fungal community might suppress it. The inter-kingdom network revealed that the occurrence rate of Chinese Cordyceps might be negatively correlated with the stability of the correlation state of the soil habitat. In conclusion, this study shows that soil physicochemical properties and microbial communities could be greatly related with the occurrence of Chinese Cordyceps. In addition, soil physicochemical properties, the level of bacterial and fungal diversity, and correlations of bacterial and fungal communities should be controlled to a certain level to increase the production of Chinese Cordyceps in artificial cultivation.
Collapse
Affiliation(s)
- Jun-Li Shao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bei Lai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Wei Jiang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Ting Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yue-Hui Hong
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medical College, Jiangmen 529000, China
| | - Fu-Bin Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shao-Qing Tan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
39
|
Qiu G, Rui Y, Yi B, Liu T, Hao Z, Li X, Zhang L, Huang S, Li K, Han Z. Identification and Genomic Analysis of a Pathogenic Strain of Mycoplasma hyopneumoniae (TB1) Isolated from Tibetan Pigs. DNA Cell Biol 2019; 38:922-932. [PMID: 31329463 DOI: 10.1089/dna.2018.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study aims to identify the species and strains of Mycoplasma hyopneumoniae isolated from Tibetan pigs (Mh TB1) at the genetic level for understanding the basis of its pathogenicity. Mh TB1 was isolated from the consolidated lungs of Tibetan pigs by liquid culture and agar plate colony method. Polymerase chain reaction (PCR) amplification of the 16S recombinant DNA (rDNA) conservative sequence and a species-specific gene (P36) of Mh provided species confirmation. PCR products were imaged on gels and shotgun sequencing was performed. DNA sequences were compared for assessing genetic similarity between Mh TB1 and Mh reference strains in the GenBank database. The isolated strains were >98% similar to the Mh reference strains. Genomic analysis revealed significant sequence conservation between Mh TB1 and the reference strains; however, differential genes were more prevalent in Mh TB1 than in other reported strains. Therefore, we concluded that Mh is a major pathogen of Tibetan pigs that cause enzootic pneumonia. The Mh TB1 strain harbors more genes and specific virulence factors, consistent with its plateau-related adaptability to hypoxia and virulence. Differential gene analysis revealed gene variations in the inclement plateau environment, enriched gene pool, and plateau adaptability of the Mh TB1 strain, which will be important for vaccine development.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Yapei Rui
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Benchi Yi
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Tao Liu
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Zhaojing Hao
- Department of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, People's Republic of China
| | - Xiang Li
- Department of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, People's Republic of China
| | - Lihong Zhang
- Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shucheng Huang
- Department of Animal Science and Veterinary Medicine, Henan Agriculture University, Zhengzhou, People's Republic of China
| | - Kun Li
- Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Zhaoqing Han
- Department of Agriculture and Forestry Science, Linyi University, Linyi, People's Republic of China
| |
Collapse
|
40
|
Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019; 24:molecules24122231. [PMID: 31207985 PMCID: PMC6632035 DOI: 10.3390/molecules24122231] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin. Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers, stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic mechanisms of cordycepin in Cordyceps militaris.
Collapse
|
41
|
Genome Analysis of Hypomyces perniciosus, the Causal Agent of Wet Bubble Disease of Button Mushroom ( Agaricus bisporus). Genes (Basel) 2019; 10:genes10060417. [PMID: 31146507 PMCID: PMC6627653 DOI: 10.3390/genes10060417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
The mycoparasitic fungus Hypomyces perniciosus causes wet bubble disease of mushrooms, particularly Agaricus bisporus. The genome of a highly virulent strain of H. perniciosus HP10 was sequenced and compared to three other fungi from the order Hypocreales that cause disease on A. bisporus. H. perniciosus genome is ~44 Mb, encodes 10,077 genes and enriched with transposable elements up to 25.3%. Phylogenetic analysis revealed that H. perniciosus is closely related to Cladobotryum protrusum and diverged from their common ancestor ~156.7 million years ago. H. perniciosus has few secreted proteins compared to C. protrusum and Trichoderma virens, but significantly expanded protein families of transporters, protein kinases, CAZymes (GH 18), peptidases, cytochrome P450, and SMs that are essential for mycoparasitism and adaptation to harsh environments. This study provides insights into H. perniciosus evolution and pathogenesis and will contribute to the development of effective disease management strategies to control wet bubble disease.
Collapse
|
42
|
Li X, Wang F, Liu Q, Li Q, Qian Z, Zhang X, Li K, Li W, Dong C. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes. BMC Genomics 2019; 20:337. [PMID: 31054562 PMCID: PMC6500587 DOI: 10.1186/s12864-019-5708-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese cordyceps, also known as Chinese caterpillar fungus (Ophiocordyceps sinensis, syn. Cordyceps sinensis), is of particular interest for its cryptic life cycle and economic and ecological importance. The large-scale artificial cultivation was succeeded recently after several decades of efforts and attempts. However, the induction of primordium, sexual development of O. sinensis and the molecular basis of its lifestyle still remain cryptic. RESULTS The developmental transcriptomes were analyzed for six stages covering the whole developmental process, including hyphae (HY), sclerotium (ST), primordium (PR), young fruiting body (YF), developed fruiting body (DF) and mature fruiting body (MF), with a focus on the expression of sexual development-related genes. Principal component analysis revealed that the gene expression profiles at the stages of primordium formation and fruiting body development are more similar than those of the undifferentiated HY stage. The PR and MF stages grouped together, suggesting that primordium differentiation and sexual maturation have similar expression patterns. Many more DEGs were identified between the ST and HY stages, covering 47.5% of the O. sinensis genome, followed by the comparisons between the ST and PR stages. Using pairwise comparisons and weighted gene coexpression network analysis, modules of coexpressed genes and candidate hub genes for each developmental stage were identified. The four mating type loci genes expressed during primordium differentiation and sexual maturation; however, spatiotemporal specificity of gene expression indicated that they also expressed during the anamorphic HY stage. The four mating type genes were not coordinately expressed, suggesting they may have divergent roles. The expression of the four mating type genes was highest in the fertile part and lowest in the sclerotium of the MF stage, indicating that there is tissue specificity. Half of genes related to mating signaling showed as the highest expression in the ST stage, indicating fruiting was initiated in the ST stage. CONCLUSIONS These results provide a new perspective to understanding of the key pathways and hub genes, and sexual development-related gene profile in the development of Chinese cordyceps. It will be helpful for underlying sexual reproduction, and add new information to existing models of fruiting body development in edible fungi.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Quanping Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., LTD, Dongguan, 523850 Guangdong China
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., LTD, Dongguan, 523850 Guangdong China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Wenjia Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., LTD, Dongguan, 523850 Guangdong China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
43
|
Hopping KA, Chignell SM, Lambin EF. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proc Natl Acad Sci U S A 2018; 115:11489-11494. [PMID: 30348756 PMCID: PMC6233077 DOI: 10.1073/pnas.1811591115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Demand for traditional medicine ingredients is causing species declines globally. Due to this trade, Himalayan caterpillar fungus (Ophiocordyceps sinensis) has become one of the world's most valuable biological commodities, providing a crucial source of income for hundreds of thousands of collectors. However, the resulting harvesting boom has generated widespread concern over the sustainability of its collection. We investigate whether caterpillar fungus production is decreasing-and if so, why-across its entire range. To overcome the limitations of sparse quantitative data, we use a multiple evidence base approach that makes use of complementarities between local knowledge and ecological modeling. We find that, according to collectors across four countries, caterpillar fungus production has decreased due to habitat degradation, climate change, and especially overexploitation. Our statistical models corroborate that climate change is contributing to this decline. They indicate that caterpillar fungus is more productive under colder conditions, growing in close proximity to areas likely to have permafrost. With significant warming already underway throughout much of its range, we conclude that caterpillar fungus populations have been negatively affected by a combination of overexploitation and climate change. Our results underscore that harvesting is not the sole threat to economically valuable species, and that a collapse of the caterpillar fungus system under ongoing warming and high collection pressure would have serious implications throughout the Himalayan region.
Collapse
Affiliation(s)
- Kelly A Hopping
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
| | - Stephen M Chignell
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523
| | - Eric F Lambin
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
44
|
Li X, Liu Q, Li W, Li Q, Qian Z, Liu X, Dong C. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit Rev Biotechnol 2018; 39:181-191. [PMID: 30394122 DOI: 10.1080/07388551.2018.1531820] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chinese cordyceps, an entity of the Chinese caterpillar fungus (Ophiocordyceps sinensis, syn. Cordyceps sinensis) that parasitizes ghost moth larvae, is one of the best known traditional Chinese medicines and is found exclusively on the Tibetan Plateau with limited natural resources. Although the fungus O. sinensis can grow on artificial substrates and the ghost moth has been successfully reared, the large-scale artificial cultivation of Chinese cordyceps has only recently been accomplished after several decades of efforts and attempts. In this article, research progress related to this breakthrough from living habitats, the life history of the fungus, its host insect, fungal isolation and culture, host larvae rearing, infection cycle of the fungus to the host, primordium induction, and fruiting body development have been reviewed. An understanding of the basic biology of O. sinensis, its host insect and the simulation of the Tibetan alpine environment resulted in the success of artificial cultivation on a large scale. Practical workshop production has reached annual yields of 2.5, 5, and 10 tons in 2014, 2015, and 2016, respectively. There was no difference in the chemical components detected between the cultivated and natural Chinese cordyceps. However, the artificial cultivation system can be controlled to avoid heavy metal contamination and results in high-quality products. Although omics studies, including genomic, transcriptomic, proteomic, and metabolomic studies, have helped to understand the biology of the fungus, the success of the artificial cultivation of the Chinese cordyceps is clearly a milestone and provides the possibility for research on the in-depth mechanisms of the interaction between the fungus and host insects and their adaptation to the harsh habitats. This cultivation will not only result in a large industry to alleviate the pressure of human demand but also protect the limited natural resources for sustainable utilization.
Collapse
Affiliation(s)
- Xiao Li
- a State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Qing Liu
- a State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Wenjia Li
- c Key Laboratory of State Administration of Traditional Chinese Medicine , Sunshine Lake Pharma Co., LTD , Dongguan , China
| | - Quanping Li
- c Key Laboratory of State Administration of Traditional Chinese Medicine , Sunshine Lake Pharma Co., LTD , Dongguan , China
| | - Zhengming Qian
- c Key Laboratory of State Administration of Traditional Chinese Medicine , Sunshine Lake Pharma Co., LTD , Dongguan , China
| | - Xingzhong Liu
- a State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Caihong Dong
- a State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
45
|
Kobmoo N, Wichadakul D, Arnamnart N, Rodríguez De La Vega RC, Luangsa-ard JJ, Giraud T. A genome scan of diversifying selection inOphiocordycepszombie-ant fungi suggests a role for enterotoxins in co-evolution and host specificity. Mol Ecol 2018; 27:3582-3598. [DOI: 10.1111/mec.14813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Noppol Kobmoo
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay France
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | - Duangdao Wichadakul
- Chulalongkorn University Big Data Analytics and IoT Center (CUBIC); Department of Computer Engineering; Faculty of Engineering; Chulalongkorn University; Bangkok Thailand
- Center of Excellence in Systems Biology; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
| | - Nuntanat Arnamnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | | | - Janet J. Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | - Tatiana Giraud
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay France
| |
Collapse
|
46
|
Whole Genome Sequence of an Edible and Potential Medicinal Fungus, Cordyceps guangdongensis. G3-GENES GENOMES GENETICS 2018; 8:1863-1870. [PMID: 29666196 PMCID: PMC5982816 DOI: 10.1534/g3.118.200287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cordyceps guangdongensis is an edible fungus which was approved as a novel food by the Chinese Ministry of Public Health in 2013. It also has a broad prospect of application in pharmaceutical industries, with many medicinal activities. In this study, the whole genome of C. guangdongensis GD15, a single spore isolate from a wild strain, was sequenced and assembled with Illumina and PacBio sequencing technology. The generated genome is 29.05 Mb in size, comprising nine scaffolds with an average GC content of 57.01%. It is predicted to contain a total of 9150 protein-coding genes. Sequence identification and comparative analysis indicated that the assembled scaffolds contained two complete chromosomes and four single-end chromosomes, showing a high level assembly. Gene annotation revealed a diversity of transposons that could contribute to the genome size and evolution. Besides, approximately 15.57% and 12.01% genes involved in metabolic processes were annotated by KEGG and COG respectively. Genes belonging to CAZymes accounted for 3.15% of the total genes. In addition, 435 transcription factors, involved in various biological processes, were identified. Among the identified transcription factors, the fungal transcription regulatory proteins (18.39%) and fungal-specific transcription factors (19.77%) represented the two largest classes of transcription factors. This genomic resource provided a new insight into better understanding the relevance of phenotypic characters and genetic mechanisms in C. guangdongensis.
Collapse
|
47
|
Proteomic identification of marker proteins and its application to authenticate Ophiocordyceps sinensis. 3 Biotech 2018; 8:246. [PMID: 29744278 DOI: 10.1007/s13205-018-1265-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022] Open
Abstract
Ophiocordyceps sinensis (O. sinensis) is a highly valuable fungus because of its nutritious and medicinal properties. The objective of this study was to identify protein markers using a proteomics approach followed by the development of an immunoassay to authenticate O. sinensis. Four authentic O. sinensis samples collected from four production regions and four counterfeit samples were examined individually. Overall 22 characteristic proteins of O. sinensis were identified by two-dimensional electrophoresis (2-DE) coupled with the matrix-assisted laser desorption/ionization-time-of-light mass spectrometry (MALDI-TOF/MS). Three authentic O. sinensis samples and three counterfeit samples were examined by the couple of alkaline native gradient PAGE (AN-PAGE) and electrospray ionization quadrupole-time-of-light mass spectrometry (ESI-Q-TOF/MS). One distinctive protein was identified to be cyanate hydratase, which was also one of the 22 distinctively characteristic proteins of O. sinensis and termed as IP4 in 2-D gel. Due to the abundance and high specificity of IP4, it was isolated and purified. Its purity was evaluated by high performance liquid chromatography (HPLC) and identified by ESI-Q-TOF/MS. Then the purified IP4 was used to produce polyclonal antibodies in BALB/c mice. The specificity of the anti-IP4 antibody was evaluated by an association of double immunodiffusion (DID) and indirect ELISA assay. Then an indirect enzyme linked immunosorbent assay (ELISA) was preliminarily developed to authenticate O. sinensis by detecting IP4. To evaluate the feasibility and accuracy of this method, three authentic O. sinensis samples and three counterfeits were analyzed. The P/N ratios (dividing the sample OD450nm by the OD450nm of negative controls) of three authentic O. sinensis samples were above 8, while, those of three counterfeits were lower than 1. These results indicated that the established ELISA assay based on proteomic protocols detection of protein markers might have a great potential in the authentication and also quality assessment of O.sinensis in those commercial products.
Collapse
|
48
|
Zhang X, Liu Q, Zhou W, Li P, Alolga RN, Qi LW, Yin X. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis. J Proteomics 2018; 181:24-35. [PMID: 29609095 DOI: 10.1016/j.jprot.2018.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 01/24/2023]
Abstract
Cordyceps sinensis has gained increasing attention due to its nutritional and medicinal properties. Herein, we employed label-free quantitative mass spectrometry to explore the proteome differences between naturally- and artificially-cultivated C. sinensis. A total of 22,829 peptides with confidence ≥95%, corresponding to 2541 protein groups were identified from the caterpillar bodies/stromata of 12 naturally- and artificially-cultivated samples of C. sinensis. Among them, 165 proteins showed significant differences between the samples of natural and artificial cultivation. These proteins were mainly involved in energy production/conversion, amino acid transport/metabolism, and transcription regulation. The proteomic results were confirmed by the identification of 4 significantly changed metabolites, thus, lysine, threonine, serine, and arginine via untargeted metabolomics. The change tendencies of these metabolites were partly in accordance with changes in abundance of the proteins, which was upstream of their synthetic pathways. In addition, the nutritional value in terms of the levels of nucleosides, nucleotides, and adenosine between the artificially- and naturally-cultivated samples was virtually same. These proteomic data will be useful for understanding the medicinal value of C. sinensis and serve as reference for its artificial cultivation. SIGNIFICANCE C. sinensis is a precious and valued medicinal product, the current basic proteome dataset would provide useful information to understand its development/infection processes as well as help to artificially cultivate it. This work would also provide basic proteome profile for further study of C. sinensis.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
49
|
Kramer GJ, Nodwell JR. Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris. BMC Genomics 2017; 18:912. [PMID: 29178836 PMCID: PMC5702197 DOI: 10.1186/s12864-017-4307-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 01/30/2023] Open
Abstract
Background Cordyceps militaris is an insect pathogenic fungus that is prized for its use in traditional medicine. This and other entomopathogenic fungi are understudied sources for the discovery of new bioactive molecules. In this study, PacBio SMRT long read sequencing technology was used to sequence the genome of C. militaris with a focus on the genetic potential for secondary metabolite production in the genome assembly of this fungus. Results This is first chromosome level assembly of a species in the Cordyceps genera. In this seven chromosome assembly of 33.6 Mba there were 9371 genes identified. Cordyceps militaris was determined to have the MAT 1-1-1 and MAT 1-1-2 mating type genes. Secondary metabolite analysis revealed the potential for at least 36 distinct metabolites from a variety of classes. Three of these gene clusters had homology with clusters producing desmethylbassianin, equisetin and emericellamide that had been studied in other fungi. Conclusion Our assembly and analysis has revealed that C. militaris has a wealth of gene clusters for secondary metabolite production distributed among seven chromosomes. The identification of these gene clusters will facilitate the future study and identification of the secondary metabolites produced by this entomopathogenic fungus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4307-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Glenna J Kramer
- Department of Biochemistry, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
50
|
Wang M, Tian J, Xiang M, Liu X. Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 2017; 8:178-188. [PMID: 30123638 PMCID: PMC6059074 DOI: 10.1080/21501203.2017.1370429] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Our planet is dominant with cold environments that harbour enormously diverse cold-adapted fungi comprising representatives of all phyla. Investigation based on culture-dependent and independent methods has demonstrated that cold-adapted fungi are cosmopolitan and occur in diverse habitants and substrates. They live as saprobes, symbionts, plant and animal parasites and pathogens to perform crucial functions in different ecosystems. Pseudogymnoascus destructans caused bat white-nose syndrome and Ophiocordyceps sinensis as Chinese medicine are the representative species that have significantly ecological and economic significance. Adaptation to cold niches has made this group of fungi a fascinating resource for the discovery of novel enzymes and secondary metabolites for biotechnological and pharmaceutical uses. This review provides the current understanding of living strategy and ecological functions of cold-adapted fungi, with particular emphasis on how those fungi overcome the extreme low temperature and perform their ecological function.
Collapse
Affiliation(s)
- Manman Wang
- College of Life Science, Hebei University, Baoding, China
| | - Jianqing Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|