1
|
Yu S, Ma Q, Huang J, Liu Y, Li J, Wang Y, Gong T, Zhang Q, Zou J, Li Y. SMU_1361c regulates the oxidative stress response of Streptococcus mutans. Appl Environ Microbiol 2024; 90:e0187123. [PMID: 38299814 PMCID: PMC10880606 DOI: 10.1128/aem.01871-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.
Collapse
Affiliation(s)
- Shuxing Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mazurkiewicz D, Pustułka M, Ambrozik-Haba J, Bienkiewicz M. Dietary Habits and Oral Hygiene as Determinants of the Incidence and Intensity of Dental Caries-A Pilot Study. Nutrients 2023; 15:4833. [PMID: 38004227 PMCID: PMC10674309 DOI: 10.3390/nu15224833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVES The aim of this study was to assess the influence of dietary and hygiene habits on the prevalence and intensity of dental caries. A group of 148 adults participated in the study. METHODS A self-administered nutrition and oral hygiene questionnaire was used to assess dietary habits and oral hygiene routine. A preventive diet index (PDI), a cariogenic diet index (CDI), and an oral health hygiene and prevention index (OHHPI) were created based on part of the questions. The intensity of dental caries among the respondents was investigated by the decayed, missing, and filled teeth index (DMFT), which was estimated on the basis of data obtained during the dental examination. RESULTS The study showed that 97% of the respondents had filled carious cavities, while untreated carious cavities were observed in up to 78% of the study participants. The respondents had an average consumption of preventive products and a low consumption of caries-stimulating foods. The preventive dietary index (PDI) value was higher in the female group than in the male group. A more frequent consumption of caries-inhibiting products was demonstrated by those declaring that they took various types of dietary supplements. The use of health-promoting sugar substitutes by the respondents was associated with a lower intensity of dental caries and a more frequent consumption of preventive products. CONCLUSIONS The analysis of the survey results indicates the need to implement educational activities aimed at increasing public awareness of the prevalence of dental caries among adults.
Collapse
Affiliation(s)
- Dominika Mazurkiewicz
- The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences 25 Norwida St., 50-375 Wrocław, Poland; (M.P.); (J.A.-H.); (M.B.)
| | | | | | | |
Collapse
|
3
|
Zeng L, Walker AR, Burne RA, Taylor ZA. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J Bacteriol 2023; 205:e0035222. [PMID: 36468868 PMCID: PMC9879115 DOI: 10.1128/jb.00352-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Zachary A. Taylor
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Arjunan P, Swaminathan R. Do Oral Pathogens Inhabit the Eye and Play a Role in Ocular Diseases? J Clin Med 2022; 11:2938. [PMID: 35629064 PMCID: PMC9146391 DOI: 10.3390/jcm11102938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Fascinatingly, the immune-privileged healthy eye has a small unique population of microbiota. The human microbiome project led to continuing interest in the ocular microbiome. Typically, ocular microflorae are commensals of low diversity that colonize the external and internal sites of the eye, without instigating any disorders. Ocular commensals modulate immunity and optimally regulate host defense against pathogenic invasion, both on the ocular surface and neuroretina. Yet, any alteration in this symbiotic relationship culminates in the perturbation of ocular homeostasis and shifts the equilibrium toward local or systemic inflammation and, in turn, impaired visual function. A compositional variation in the ocular microbiota is associated with surface disorders such as keratitis, blepharitis, and conjunctivitis. Nevertheless, innovative studies now implicate non-ocular microbial dysbiosis in glaucoma, age-related macular degeneration (AMD), uveitis, and diabetic retinopathy. Accordingly, prompt identification of the extra-ocular etiology and a methodical understanding of the mechanisms of invasion and host-microbial interaction is of paramount importance for preventative and therapeutic interventions for vision-threatening conditions. This review article aims to explore the current literature evidence to better comprehend the role of oral pathogens in the etiopathogenesis of ocular diseases, specifically AMD.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Radhika Swaminathan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
5
|
Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis. Microbiol Spectr 2021; 9:e0175221. [PMID: 34756087 PMCID: PMC8579931 DOI: 10.1128/spectrum.01752-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus sanguinis is a common cause of infective endocarditis (IE). Efforts by research groups are aimed at identifying and characterizing virulence factors that contribute to the ability of this organism to cause IE. This Gram-positive pathogen causes heart infection by gaining access to the bloodstream, adhering to host extracellular matrix protein and/or platelets, colonizing the aortic endothelium, and incorporating itself into the aortic vegetation. While many virulence factors have been reported to contribute to the ability of S. sanguinis to cause IE, it is noteworthy that type IV pili (T4P) have not been described to be a virulence factor in this organism, although S. sanguinis strains typically encode these pili. Type IV pili are molecular machines that are capable of mediating diverse virulence functions and surface motility. T4P have been shown to mediate twitching motility in some strains of S. sanguinis, although in most strains it has been difficult to detect twitching motility. While we found that T4P are dispensable for direct in vitro platelet binding and aggregation phenotypes, we show that they are critical to the development of platelet-dependent biofilms representative of the cardiac vegetation. We also observed that T4P are required for in vitro invasion of S. sanguinis into human aortic endothelial cells, which indicates that S. sanguinis may use T4P to take advantage of an intracellular niche during infection. Importantly, we show that T4P of S. sanguinis are critical to disease progression (vegetation development) in a native valve IE rabbit model. The results presented here expand our understanding of IE caused by S. sanguinis and identify T4P as an important virulence factor for this pathogen. IMPORTANCE This work provides evidence that type IV pili produced by Streptococcus sanguinis SK36 are critical to the ability of these bacteria to attach to and colonize the aortic heart valve (endocarditis). We found that an S. sanguinis type IV pili mutant strain was defective in causing platelet-dependent aggregation in a 24-h infection assay but not in a 1-h platelet aggregation assay, suggesting that the type IV pili act at later stages of vegetation development. In a rabbit model of disease, a T4P mutant strain does not develop mature vegetations that form on the heart, indicating that this virulence factor is critical to disease and could be a target for IE therapy.
Collapse
|
6
|
Trial Proteomic Qualitative and Quantitative Analysis of the Protein Matrix of Submandibular Sialoliths. Molecules 2021; 26:molecules26216725. [PMID: 34771131 PMCID: PMC8588320 DOI: 10.3390/molecules26216725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Our studies aimed to explore the protein components of the matrix of human submandibular gland sialoliths. A qualitative analysis was carried out based on the filter aided sample preparation (FASP) methodology. In the protein extraction process, we evaluated the applicability of the standard demineralization step and the use of a lysis buffer containing sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). The analysis of fragmentation spectra based on the human database allowed for the identification of 254 human proteins present in the deposits. In addition, the use of multi-round search in the PEAKS Studio program against the bacterial base allowed for the identification of 393 proteins of bacterial origin present in the extract obtained from sialolith, which so far has not been carried out for this biological material. Furthermore, we successfully applied the SWATH methodology, allowing for a relative quantitative analysis of human proteins present in deposits. The obtained results correlate with the classification of sialoliths proposed by Tretiakow. The performed functional analysis allowed for the first time the selection of proteins, the levels of which differ between the tested samples, which may suggest the role of these proteins in the calcification process in different types of sialoliths. These are preliminary studies, and drawing specific conclusions requires research on a larger group, but it provides us the basis for the continuation of the work that has already begun.
Collapse
|
7
|
Transcriptomic Responses to Coaggregation between Streptococcus gordonii and Streptococcus oralis. Appl Environ Microbiol 2021; 87:e0155821. [PMID: 34469191 PMCID: PMC8552878 DOI: 10.1128/aem.01558-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.
Collapse
|
8
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wang Y, Xu R, Li M, Duan C, Wang L, Duan W. Streptococcus gordonii infectious endocarditis presenting as a neurocysticercosis mimic - A rare manifestation. J Infect Public Health 2020; 14:39-41. [PMID: 33341482 DOI: 10.1016/j.jiph.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/23/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022] Open
Abstract
Infective endocarditis (IE) usually presents with nonspecific signs and symptoms, which delay diagnosis and proper treatment. Here, we describe a patient with initial clinical and radiological features compatible with neurocysticercosis who was later found to have IE. Furthermore, the patient course was complicated by multiple neurological complications (brain abscess, meningitis, infected intracranial aneurysm, subarachnoid hemorrhage and hemorrhage), and patient ultimately deceased. To our knowledge, an IE case mimicking neurocysticercosis and progressing with prominent and complicated neurological manifestations has not been previously reported. We therefore describe the challenges of neurocysticercosis diagnosis based on serum ELISA and radiological findings. For patient diagnosed as neurocysticercosis, clinical follow-up is recommended and presence of systemic symptoms should be red flags for another underlying disease.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Rui Xu
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Maohua Li
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Chunmei Duan
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Li Wang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Wei Duan
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China.
| |
Collapse
|
12
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Stubbs HE, Bensing BA, Yamakawa I, Sharma P, Yu H, Chen X, Sullam PM, Iverson TM. Tandem sialoglycan-binding modules in a Streptococcus sanguinis serine-rich repeat adhesin create target dependent avidity effects. J Biol Chem 2020; 295:14737-14749. [PMID: 32820052 PMCID: PMC7586212 DOI: 10.1074/jbc.ra120.014177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglec)-like domains of streptococcal serine-rich repeat (SRR) adhesins recognize sialylated glycans on human salivary, platelet, and plasma glycoproteins via a YTRY sequence motif. The SRR adhesin from Streptococcus sanguinis strain SK1 has tandem sialoglycan-binding domains and has previously been shown to bind sialoglycans with high affinity. However, both domains contain substitutions within the canonical YTRY motif, making it unclear how they interact with host receptors. To identify how the S. sanguinis strain SK1 SRR adhesin affects interactions with sialylated glycans and glycoproteins, we determined high-resolution crystal structures of the binding domains alone and with purified trisaccharides. These structural studies determined that the ligands still bind at the noncanonical binding motif, but with fewer hydrogen-bonding interactions to the protein than is observed in structures of other Siglec-like adhesins. Complementary biochemical studies identified that each of the two binding domains has a different selectivity profile. Interestingly, the binding of SK1 to platelets and plasma glycoproteins identified that the interaction to some host targets is dominated by the contribution of one binding domain, whereas the binding to other host receptors is mediated by both binding domains. These results provide insight into outstanding questions concerning the roles of tandem domains in targeting host receptors and suggest mechanisms for how pathogens can adapt to the availability of a range of related but nonidentical host receptors. They further suggest that the definition of the YTRY motif should be changed to ϕTRX, a more rigorous description of this sialic acid-recognition motif given recent findings.
Collapse
Affiliation(s)
- Haley E. Stubbs
- Graduate Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara A. Bensing
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA,Department of Medicine, University of California, San Francisco, California, USA
| | - Izumi Yamakawa
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Paul M. Sullam
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA,For correspondence: T. M. Iverson,
| |
Collapse
|
14
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Vickerman MM, Mansfield JM. Streptococcal peptides that signal Enterococcus faecalis cells carrying the pheromone-responsive conjugative plasmid pAM373. Mol Oral Microbiol 2019; 34:254-262. [PMID: 31610092 DOI: 10.1111/omi.12271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 01/30/2023]
Abstract
Pheromone-mediated conjugative transfer of enterococcal plasmids can contribute to the dissemination of genes involved in antibiotic resistance, fitness, and virulence among co-residents of mixed microbial communities. We have previously shown that intergeneric signaling by the Streptococcus gordonii strain Challis heptapeptide s.g.cAM373 (SVFILAA) induces an aggregation substance-mediated mating response and facilitates plasmid transfer from Enterococcus faecalis cells carrying the pheromone-responsive plasmid pAM373 to both pheromone-producing and non-pheromone-producing oral streptococcal recipients. To further investigate the streptococcal pheromone-like peptides, s.g.cAM373-like sequences were identified in the signal sequences of streptococcal CamG lipoproteins and their abilities to induce a mating response in E. faecalis/pAM373 cells were examined. Synthetic heptamers with the consensus sequence (A/S)-(I/V)-F-I-L-(A/V/T)-(S/A) induced AS-mediated clumping. The conserved pheromone ABC transporter encoded by S. gordonii genome loci SGO_RS02660 and SGO_RS02665 was identified and confirmed to be required for s.g.cAM373 activity. Functional assays of culture supernatants from representative oral and blood isolates of S. gordonii showed that in addition to strains encoding s.g.cAM373, strain SK120, encoding the newly identified pheromone s.g.cAM373-V (SVFILVA), was able to induce enterococcal clumping, whereas strains SK6, SK8, SK9, and SK86 which encoded s.g.cAM373-T (SVFILTA) did not elicit a detectable mating response. Absence of pheromone activity in supernatants of heterologous hosts encoding its CamG precursor suggested that s.g.cAM373-T was not effectively processed and/or transported. Overall, these studies demonstrated the distribution of active pheromone peptides among strains of S. gordonii, and support a potential role for enterococcal-streptococcal communication in contributing to genetic plasticity in the oral metagenome.
Collapse
Affiliation(s)
- M Margaret Vickerman
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jillian M Mansfield
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
16
|
Bensing BA, Li L, Yakovenko O, Wong M, Barnard KN, Iverson TM, Lebrilla CB, Parrish CR, Thomas WE, Xiong Y, Sullam PM. Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection. PLoS Pathog 2019; 15:e1007896. [PMID: 31233555 PMCID: PMC6611644 DOI: 10.1371/journal.ppat.1007896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/05/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth surface. Although generally non-pathogenic in the oral environment, they are a frequent cause of infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhesin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific sialoglycan structures recognized can vary from strain to strain. Previous studies have shown that sialoglycan binding is clearly important for aortic valve infections caused by some S. gordonii, but this process did not contribute to the virulence of a strain of S. sanguinis. However, these streptococci can bind to different subsets of sialoglycan structures. Here we generated isogenic strains of S. gordonii that differ only in the type and range of sialoglycan structures to which they adhere and examined whether this rendered them more or less virulent in a rat model of endocarditis. The findings indicate that the recognition of specific sialoglycans can either enhance or diminish pathogenicity. Binding to sialyllactosamine reduces the initial colonization of mechanically-damaged aortic valves, whereas binding to the closely-related trisaccharide sialyl T-antigen promotes higher bacterial densities in valve tissue 72 hours later. A surprising finding was that the initial attachment of streptococci to aortic valves was inversely proportional to the affinity of each strain for platelets, suggesting that binding to platelets circulating in the blood may divert bacteria away from the endocardial surface. Importantly, we found that human and rat platelet GPIbα (the major receptor for S. gordonii and S. sanguinis on platelets) display similar O-glycan structures, comprised mainly of a di-sialylated core 2 hexasaccharide, although the rat GPIbα has a more heterogenous composition of modified sialic acids. The combined results suggest that streptococcal interaction with a minor O-glycan on GPIbα may be more important than the over-all affinity for GPIbα for pathogenic effects. Infective endocarditis (IE) is a life-threatening infection of heart valves, and streptococci that normally reside in the mouth are a leading cause of this disease. Some oral streptococcal species express a protein on their surface that enables attachment to glycan (sugar) modifications on saliva proteins, an interaction that may be important for colonization of the tooth and other oral surfaces. These "Siglec-like adhesins" are hypervariable in the type and number of glycan structures they bind, ranging from just one to more than six of the structures displayed on the saliva proteins. If streptococci enter into the bloodstream, the Siglec-like adhesin can mediate attachment to similar glycans that decorate platelet or plasma proteins, which can impact the overall virulence of the organism. This study highlights how recognition of a specific type of glycan structure can cause a generally beneficial or neutral microbe to create damage to specific tissues—in this case the heart valves, illustrating one means by which commensal bacteria can become opportunistic or accidental pathogens. The findings further indicate that certain glycan-binding streptococci among the oral microbiota may be predisposed to produce infective endocarditis.
Collapse
Affiliation(s)
- Barbara A. Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California, United States of America
- * E-mail:
| | - Liang Li
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Olga Yakovenko
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Karen N. Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - T. M. Iverson
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Wendy E. Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yan Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Paul M. Sullam
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California, United States of America
| |
Collapse
|
17
|
Nobbs A, Kreth J. Genetics of sanguinis-Group Streptococci in Health and Disease. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0052-2018. [PMID: 30681069 PMCID: PMC11590441 DOI: 10.1128/microbiolspec.gpp3-0052-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
With the application of increasingly advanced "omics" technologies to the study of our resident oral microbiota, the presence of a defined, health-associated microbial community has been recognized. Within this community, sanguinis-group streptococci, comprising the closely related Streptococcus sanguinis and Streptococcus gordonii, together with Streptococcus parasanguinis, often predominate. Their ubiquitous and abundant nature reflects the evolution of these bacteria as highly effective colonizers of the oral cavity. Through interactions with host tissues and other microbes, and the capacity to readily adapt to prevailing environmental conditions, sanguinis-group streptococci are able to shape accretion of the oral plaque biofilm and promote development of a microbial community that exists in harmony with its host. Nonetheless, upon gaining access to the blood stream, those very same colonization capabilities can confer upon sanguinis-group streptococci the ability to promote systemic disease. This article focuses on the role of sanguinis-group streptococci as the commensurate commensals, highlighting those aspects of their biology that enable the coordination of health-associated biofilm development. This includes the molecular mechanisms, both synergistic and antagonistic, that underpin adhesion to substrata, intercellular communication, and polymicrobial community formation. As our knowledge of these processes advances, so will the opportunities to exploit this understanding for future development of novel strategies to control oral and extraoral disease.
Collapse
Affiliation(s)
- Angela Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
18
|
Genomic, Phenotypic, and Virulence Analysis of Streptococcus sanguinis Oral and Infective-Endocarditis Isolates. Infect Immun 2018; 87:IAI.00703-18. [PMID: 30396893 DOI: 10.1128/iai.00703-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus sanguinis, an abundant and benign inhabitant of the oral cavity, is an important etiologic agent of infective endocarditis (IE), particularly in people with predisposing cardiac valvular damage. Although commonly isolated from patients with IE, little is known about the factors that make any particular S. sanguinis isolate more virulent than another or, indeed, whether significant differences in virulence exist among isolates. In this study, we compared the genomes of a collection of S. sanguinis strains comprised of both oral isolates and bloodstream isolates from patients diagnosed with IE. Oral and IE isolates could not be distinguished by phylogenetic analyses, and we did not succeed in identifying virulence genes unique to the IE strains. We then investigated the virulence of these strains in a rabbit model of IE using a variation of the Bar-seq (barcode sequencing) method wherein we pooled the strains and used Illumina sequencing to count unique barcodes that had been inserted into each isolate at a conserved intergenic region. After we determined that several of the genome sequences were misidentified in GenBank, our virulence results were used to inform our bioinformatic analyses, identifying genes that may explain the heterogeneity in virulence. We further characterized these strains by assaying for phenotypes potentially contributing to virulence. Neither strain competition via bacteriocin production nor biofilm formation showed any apparent relationship with virulence. Increased cell-associated manganese was, however, correlated with blood isolates. These results, combined with additional phenotypic assays, suggest that S. sanguinis virulence is highly variable and results from multiple genetic factors.
Collapse
|
19
|
Cano Sierra JD, Mestra CF, Nieto JCG, Ronderos Dumit M, García-Torres A. Teeth infection may "shunt" through Fontan in high-altitude conditions. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:118. [PMID: 29955578 DOI: 10.21037/atm.2018.02.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Fontan surgery involves the creation a conduit between the inferior vena cava and the right pulmonary artery. This conduit has a small fenestration that shunts the blood from right to left in case the pulmonary blood flow is limited; namely, if the pulmonary vascular resistance (PVR) is increased then the shunt is increased. Bacteria may bypass the pulmonary circulation and easily get access to the systemic circulation (bacteremia). We report the case of a patient that underwent Fontan surgery in 2010 and remained in a high-altitude city for 7 years, during this time he was asymptomatic until 2017 when he developed a brain abscess due to Streptococcus gordonii, a pathogen of dental plaque. Since high-altitude may raise PVR in response to reduction in the partial pressure of oxygen, we conclude that the long-term outcome of increased altitude on Fontan hemodynamics can lead to the shunt of teeth flora and consequently leading to severe infections.
Collapse
Affiliation(s)
- Juan D Cano Sierra
- Pediatric Cardiology Hospitalist, Fundación Cardioinfantil, Bogotá, Colombia
| | - Camilo F Mestra
- Pediatric Cardiology Department, Universidad del Rosario, Bogotá, Colombia
| | | | - Miguel Ronderos Dumit
- Pediatric Interventional Cardiology Department, Fundación Cardioinfantil, Bogotá, Colombia
| | - Alberto García-Torres
- Pediatric Interventional Cardiology Department, Fundación Cardioinfantil, Bogotá, Colombia
| |
Collapse
|
20
|
Nedumgottil BM. Relative presence of Streptococcus mutans, Veillonella atypica, and Granulicatella adiacens in biofilm of complete dentures. J Indian Prosthodont Soc 2017; 18:24-28. [PMID: 29430138 PMCID: PMC5799964 DOI: 10.4103/jips.jips_183_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/05/2017] [Indexed: 01/11/2023] Open
Abstract
Aims and Objective: Oral biofilms in denture wearers are populated with a large number of bacteria, a few of which have been associated with medical conditions such as sepsis and infective endocarditis (IE). The present study was designed to investigate the relative presence of pathogenic bacteria in biofilms of denture wearers specifically those that are associated with IE. Methods: Biofilm samples from 88 denture wearers were collected and processed to extract total genomic DNA. Eight of these samples were subjected to 16S rRNA gene sequencing analysis to first identify the general bacterial occurrence pattern. This was followed by species-specific quantitative polymerase chain reaction (qPCR) on entire batch of 88 samples to quantify the relative copy numbers of IE-associated pathogens. Results: 16S rRNA gene analysis of eight biofilm samples identified bacteria from Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria species. Interestingly, Streptococcus mutans, Veillonella atypica, and Granulicatella adiacens from Firmicutes, all known to be associated with early-onset sepsis and IE was present in five of eight biofilm samples. The other three samples carried bacteria from genus Proteobacteria with Neisseria flava and Neisseria mucosa, which are known to be commensals, as dominant species. Species-specific qPCR of S. mutans V. atypica, and G. adiacens on 88 biofilm DNA samples identified the presence of S. mutans in 83%, V. atypica in 79%, and G. adiacens in 76% of samples. Conclusion: The findings from the present study demonstrate co-occurrence of S. mutans, V. atypica, and G. adiacens in a majority of denture wearers, which is clinically significant as elderly patients with compromised immune system are more prone to develop IE. To the best of our knowledge, the co-occurrence of S. mutans, V. atypica, and G. adiacens is being reported for the first time in biofilms of denture wearers.
Collapse
Affiliation(s)
- Binoy Mathews Nedumgottil
- Department of Prosthodontics and Implantology, Mahe Institute of Dental Sciences and Hospital, Puducherry, India
| |
Collapse
|