1
|
Theunis K, Vanuytven S, Claes I, Geurts J, Rambow F, Brown D, Van Der Haegen M, Marin-Bejar O, Rogiers A, Van Raemdonck N, Leucci E, Demeulemeester J, Sifrim A, Marine JC, Voet T. Single-cell genome and transcriptome sequencing without upfront whole-genome amplification reveals cell state plasticity of melanoma subclones. Nucleic Acids Res 2025; 53:gkaf173. [PMID: 40138718 PMCID: PMC11941470 DOI: 10.1093/nar/gkaf173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Single-cell multi-omics methods enable the study of cell state diversity, which is largely determined by the interplay of the genome, epigenome, and transcriptome. Here, we describe Gtag&T-seq, a genome-and-transcriptome sequencing (G&T-seq) protocol of the same single cells that omits whole-genome amplification (WGA) by using direct genomic tagmentation (Gtag). Gtag drastically decreases the cost and improves coverage uniformity at single-cell and pseudo-bulk levels compared to WGA-based G&T-seq. We also show that transcriptome-based DNA copy number inference has limited resolution and accuracy, underlining the importance of affordable multi-omic approaches. Applying Gtag&T-seq to a melanoma xenograft model before treatment and at minimal residual disease revealed differential cell state plasticity and treatment response between cancer subclones. In summary, Gtag&T-seq is a low-cost and accurate single-cell multi-omics method that explores genetic alterations and their functional consequences in single cells at scale.
Collapse
Affiliation(s)
- Koen Theunis
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sebastiaan Vanuytven
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Irene Claes
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Jarne Geurts
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Daniel Brown
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Australia
| | - Michiel Van Der Haegen
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Nina Van Raemdonck
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Trace, Leuven Cancer Institute, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Alejandro Sifrim
- Laboratory of Multi-omic Integrative Bioinformatics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Jansen G, Gebert D, Kumar TR, Simmons E, Murphy S, Teixeira FK. Tolerance thresholds underlie responses to DNA damage during germline development. Genes Dev 2024; 38:631-654. [PMID: 39054057 PMCID: PMC11368186 DOI: 10.1101/gad.351701.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
Collapse
Affiliation(s)
- Gloria Jansen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | - Emily Simmons
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sarah Murphy
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom;
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
3
|
Korenková V, Weisz F, Perglerová A, Cacciò SM, Nohýnková E, Tůmová P. Comprehensive analysis of flavohemoprotein copy number variation in Giardia intestinalis: exploring links to metronidazole resistance. Parasit Vectors 2024; 17:336. [PMID: 39127700 DOI: 10.1186/s13071-024-06392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Giardiasis, caused by the protozoan parasite Giardia intestinalis, often presents a treatment challenge, particularly in terms of resistance to metronidazole. Despite extensive research, markers for metronidazole resistance have not yet been identified. METHODS This study analysed 28 clinical samples of G. intestinalis from sub-assemblage AII, characterised by varying responses to metronidazole treatment. We focussed on copy number variation (CNV) of the multi-copy flavohemoprotein gene, analysed using digital polymerase chain reaction (dPCR) and next generation sequencing (NGS). Additionally, chromosomal ploidy was tested in 18 of these samples. Flavohemoprotein CNV was also assessed in 17 samples from other sub-assemblages. RESULTS Analyses revealed variable CNVs of the flavohemoprotein gene among the isolates, with no correlation to clinical metronidazole resistance. Discrepancies in CNVs detected from NGS data were attributed to biases linked to the whole genome amplification. However, dPCR helped to clarify these discrepancies by providing more consistent CNV data. Significant differences in flavohemoprotein CNVs were observed across different G. intestinalis sub-assemblages. Notably, Giardia exhibits a propensity for aneuploidy, contributing to genomic variability within and between sub-assemblages. CONCLUSIONS The complexity of the clinical metronidazole resistance in Giardia is influenced by multiple genetic factors, including CNVs and aneuploidy. No significant differences in the CNV of the flavohemoprotein gene between isolates from metronidazole-resistant and metronidazole-sensitive cases of giardiasis were found, underscoring the need for further research to identify reliable genetic markers for resistance. We demonstrate that dPCR and NGS are robust methods for analysing CNVs and provide cross-validating results, highlighting their utility in the genetic analyses of this parasite.
Collapse
Affiliation(s)
- Vlasta Korenková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Filip Weisz
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aneta Perglerová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore Di Sanita, Rome, Italy
| | - Eva Nohýnková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Long Q, Zhang P, Ou Y, Li W, Yan Q, Yuan X. Single-cell sequencing advances in research on mesenchymal stem/stromal cells. Hum Cell 2024; 37:904-916. [PMID: 38743204 DOI: 10.1007/s13577-024-01076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application. Single-cell sequencing technology emerges as a powerful tool to address these challenges, offering precise dissection of complex cellular samples. It uncovers the genetic structure and gene expression status of individual contained cells on a massive scale and reveals the heterogeneity among these cells. It links the molecular characteristics of MSCs with their clinical applications, contributing to the advancement of regenerative medicine. With the development and cost reduction of single-cell analysis techniques, sequencing technology is now widely applied in fundamental research and clinical trials. This study aimed to review the application of single-cell sequencing in MSC research and assess its prospects.
Collapse
Affiliation(s)
- Qingxi Long
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China.
| |
Collapse
|
5
|
Albert O, Sun S, Huttner A, Zhang Z, Suh Y, Campisi J, Vijg J, Montagna C. Chromosome instability and aneuploidy in the mammalian brain. Chromosome Res 2023; 31:32. [PMID: 37910282 PMCID: PMC10833588 DOI: 10.1007/s10577-023-09740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
This review investigates the role of aneuploidy and chromosome instability (CIN) in the aging brain. Aneuploidy refers to an abnormal chromosomal count, deviating from the normal diploid set. It can manifest as either a deficiency or excess of chromosomes. CIN encompasses a broader range of chromosomal alterations, including aneuploidy as well as structural modifications in DNA. We provide an overview of the state-of-the-art methodologies utilized for studying aneuploidy and CIN in non-tumor somatic tissues devoid of clonally expanded populations of aneuploid cells.CIN and aneuploidy, well-established hallmarks of cancer cells, are also associated with the aging process. In non-transformed cells, aneuploidy can contribute to functional impairment and developmental disorders. Despite the importance of understanding the prevalence and specific consequences of aneuploidy and CIN in the aging brain, these aspects remain incompletely understood, emphasizing the need for further scientific investigations.This comprehensive review consolidates the present understanding, addresses discrepancies in the literature, and provides valuable insights for future research efforts.
Collapse
Affiliation(s)
- Olivia Albert
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Huttner
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yousin Suh
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, New York, NY, USA
| | | | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Schirmer M, Dusny C. Microbial single-cell mass spectrometry: status, challenges, and prospects. Curr Opin Biotechnol 2023; 83:102977. [PMID: 37515936 DOI: 10.1016/j.copbio.2023.102977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Single-cell analysis uncovers phenotypic differences between cells in a population and dissects their individual physiological states and differences on all omics levels from genome to phenome. Spectrometric observation allows label-free analysis of the metabolome and proteome of individual cells, but is still mainly limited to the analysis of mammalian single cells. Recent progress in mass spectrometry approaches now enables the analysis of microbial single cells - mainly by miniaturizing cell handling, incubation, and improving chip-coupling concepts for analyte ionization by interfacing microfluidic chips and mass spectrometers. This review aims at distilling the enabling principles behind microbial single-cell mass spectrometry and puts them into perspective for the future of the field.
Collapse
Affiliation(s)
- Martin Schirmer
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany
| | - Christian Dusny
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany.
| |
Collapse
|
7
|
Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum Reprod Update 2023; 29:570-633. [PMID: 37192834 DOI: 10.1093/humupd/dmad010] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND A normal chromosomal constitution defined through PGT-A assessing all chromosomes on trophectoderm (TE) biopsies represents the strongest predictor of embryo implantation. Yet, its positive predictive value is not higher than 50-60%. This gap of knowledge on the causes of euploid blastocysts' reproductive failure is known as 'the black box of implantation'. OBJECTIVE AND RATIONALE Several embryonic, maternal, paternal, clinical, and IVF laboratory features were scrutinized for their putative association with reproductive success or implantation failure of euploid blastocysts. SEARCH METHODS A systematic bibliographical search was conducted without temporal limits up to August 2021. The keywords were '(blastocyst OR day5 embryo OR day6 embryo OR day7 embryo) AND (euploid OR chromosomally normal OR preimplantation genetic testing) AND (implantation OR implantation failure OR miscarriage OR abortion OR live birth OR biochemical pregnancy OR recurrent implantation failure)'. Overall, 1608 items were identified and screened. We included all prospective or retrospective clinical studies and randomized-controlled-trials (RCTs) that assessed any feature associated with live-birth rates (LBR) and/or miscarriage rates (MR) among non-mosaic euploid blastocyst transfer after TE biopsy and PGT-A. In total, 41 reviews and 372 papers were selected, clustered according to a common focus, and thoroughly reviewed. The PRISMA guideline was followed, the PICO model was adopted, and ROBINS-I and ROB 2.0 scoring were used to assess putative bias. Bias across studies regarding the LBR was also assessed using visual inspection of funnel plots and the trim and fill method. Categorical data were combined with a pooled-OR. The random-effect model was used to conduct the meta-analysis. Between-study heterogeneity was addressed using I2. Whenever not suitable for the meta-analysis, the included studies were simply described for their results. The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/ (registration number CRD42021275329). OUTCOMES We included 372 original papers (335 retrospective studies, 30 prospective studies and 7 RCTs) and 41 reviews. However, most of the studies were retrospective, or characterized by small sample sizes, thus prone to bias, which reduces the quality of the evidence to low or very low. Reduced inner cell mass (7 studies, OR: 0.37, 95% CI: 0.27-0.52, I2 = 53%), or TE quality (9 studies, OR: 0.53, 95% CI: 0.43-0.67, I2 = 70%), overall blastocyst quality worse than Gardner's BB-grade (8 studies, OR: 0.40, 95% CI: 0.24-0.67, I2 = 83%), developmental delay (18 studies, OR: 0.56, 95% CI: 0.49-0.63, I2 = 47%), and (by qualitative analysis) some morphodynamic abnormalities pinpointed through time-lapse microscopy (abnormal cleavage patterns, spontaneous blastocyst collapse, longer time of morula formation I, time of blastulation (tB), and duration of blastulation) were all associated with poorer reproductive outcomes. Slightly lower LBR, even in the context of PGT-A, was reported among women ≥38 years (7 studies, OR: 0.87, 95% CI: 0.75-1.00, I2 = 31%), while obesity was associated with both lower LBR (2 studies, OR: 0.66, 95% CI: 0.55-0.79, I2 = 0%) and higher MR (2 studies, OR: 1.8, 95% CI: 1.08-2.99, I2 = 52%). The experience of previous repeated implantation failures (RIF) was also associated with lower LBR (3 studies, OR: 0.72, 95% CI: 0.55-0.93, I2 = 0%). By qualitative analysis, among hormonal assessments, only abnormal progesterone levels prior to transfer were associated with LBR and MR after PGT-A. Among the clinical protocols used, vitrified-warmed embryo transfer was more effective than fresh transfer (2 studies, OR: 1.56, 95% CI: 1.05-2.33, I2 = 23%) after PGT-A. Lastly, multiple vitrification-warming cycles (2 studies, OR: 0.41, 95% CI: 0.22-0.77, I2 = 50%) or (by qualitative analysis) a high number of cells biopsied may slightly reduce the LBR, while simultaneous zona-pellucida opening and TE biopsy allowed better results than the Day 3 hatching-based protocol (3 studies, OR: 1.41, 95% CI: 1.18-1.69, I2 = 0%). WIDER IMPLICATIONS Embryo selection aims at shortening the time-to-pregnancy, while minimizing the reproductive risks. Knowing which features are associated with the reproductive competence of euploid blastocysts is therefore critical to define, implement, and validate safer and more efficient clinical workflows. Future research should be directed towards: (i) systematic investigations of the mechanisms involved in reproductive aging beyond de novo chromosomal abnormalities, and how lifestyle and nutrition may accelerate or exacerbate their consequences; (ii) improved evaluation of the uterine and blastocyst-endometrial dialogue, both of which represent black boxes themselves; (iii) standardization/automation of embryo assessment and IVF protocols; (iv) additional invasive or preferably non-invasive tools for embryo selection. Only by filling these gaps we may finally crack the riddle behind 'the black box of implantation'.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Eric Forman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | | | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Maurizio Poli
- Centrum voor Kinderwens, Dijklander Hospital, Purmerend, The Netherlands
- Juno Genetics, Rome, Italy
| | - Jenna Hynes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Laura Gemmell
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Naples, Italy
| | | | | |
Collapse
|
8
|
Lee YC, Ke HM, Liu YC, Lee HH, Wang MC, Tseng YC, Kikuchi T, Tsai IJ. Single-worm long-read sequencing reveals genome diversity in free-living nematodes. Nucleic Acids Res 2023; 51:8035-8047. [PMID: 37526286 PMCID: PMC10450198 DOI: 10.1093/nar/gkad647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Chen Wang
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
9
|
Srivastava P, Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023; 13:200. [PMID: 37215369 PMCID: PMC10193355 DOI: 10.1007/s13205-023-03628-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nucleic acids are prominent biomarkers for diagnosing infectious pathogens using nucleic acid amplification techniques (NAATs). PCR, a gold standard technique for amplifying nucleic acids, is widely used in scientific research and diagnosis. Efficient pathogen detection is a key to adequate food safety and hygiene. However, using bulky thermal cyclers and costly laboratory setup limits its uses in developing countries, including India. The isothermal amplification methods are exploited to develop miniaturized sensors against viruses, bacteria, fungi and other pathogenic organisms and have been applied for in situ diagnosis. Isothermal amplification techniques have been found suitable for POC techniques and follow WHO's ASSURED criteria. LAMP, NASBA, SDA, RCA and RPA are some of the isothermal amplification techniques which are preferable for POC diagnostics. Furthermore, methods such as WGA, CPA, HDA, EXPAR, SMART, SPIA and DAMP were introduced for even more accuracy and robustness. Using recombinant polymerases and other nucleic acid-modifying enzymes has dramatically broadened the detection range of target pathogens under the scanner. The coupling of isothermal amplification methods with advanced technologies such as CRISPR/Cas systems, fluorescence-based chemistries, microfluidics and paper-based sensors has significantly influenced the biosensing and diagnosis field. This review comprehensively analyzed isothermal nucleic acid amplification methods, emphasizing their advantages, disadvantages and limitations.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
10
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
11
|
Perez-Rodriguez D, Kalyva M, Santucci C, Proukakis C. Somatic CNV Detection by Single-Cell Whole-Genome Sequencing in Postmortem Human Brain. Methods Mol Biol 2023; 2561:205-230. [PMID: 36399272 DOI: 10.1007/978-1-0716-2655-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The evidence for a role of somatic mutations, including copy-number variants (CNVs), in neurodegeneration has increased in the last decade. However, the understanding of the types and origins of these mutations, and their exact contributions to disease onset and progression, is still in its infancy. The use of single-cell (or nuclear) whole-genome sequencing (scWGS) has emerged as a powerful tool to answer these questions. In the present chapter, we provide laboratory and bioinformatic protocols used successfully in our lab to detect megabase-scale CNVs in single cells from multiple system atrophy (MSA) human postmortem brains, using immunolabeling prior to selection of nuclei for whole-genome amplification (WGA). We also present an unpublished comparison of scWGS generated from the same control substantia nigra (SN) sample, using the latest versions of popular WGA chemistries, MDA and PicoPLEX. We have used this protocol to focus on brain cell types most relevant to synucleinopathies (dopaminergic [DA] neurons in Parkinson's disease [PD] and oligodendrocytes in MSA), but it can be applied to any tissue and/or cell type with appropriate markers.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Catherine Santucci
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
12
|
Rupp B, Owen S, Ball H, Smith KJ, Gunchick V, Keller ET, Sahai V, Nagrath S. Integrated Workflow for the Label-Free Isolation and Genomic Analysis of Single Circulating Tumor Cells in Pancreatic Cancer. Int J Mol Sci 2022; 23:7852. [PMID: 35887203 PMCID: PMC9316651 DOI: 10.3390/ijms23147852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
As pancreatic cancer is the third deadliest cancer in the U.S., the ability to study genetic alterations is necessary to provide further insight into potentially targetable regions for cancer treatment. Circulating tumor cells (CTCs) represent an especially aggressive subset of cancer cells, capable of causing metastasis and progressing the disease. Here, we present the Labyrinth-DEPArray pipeline for the isolation and analysis of single CTCs. Established cell lines, patient-derived CTC cell lines and freshly isolated CTCs were recovered and sequenced to reveal single-cell copy number variations (CNVs). The resulting CNV profiles of established cell lines showed concordance with previously reported data and highlight several gains and losses of cancer-related genes such as FGFR3 and GNAS. The novel sequencing of patient-derived CTC cell lines showed gains in chromosome 8q, 10q and 17q across both CTC cell lines. The pipeline was used to process and isolate single cells from a metastatic pancreatic cancer patient revealing a gain of chromosome 1q and a loss of chromosome 5q. Overall, the Labyrinth-DEPArray pipeline offers a validated workflow combining the benefits of antigen-free CTC isolation with single cell genomic analysis.
Collapse
Affiliation(s)
- Brittany Rupp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Sarah Owen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Harrison Ball
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kaylee Judith Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Valerie Gunchick
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (V.S.)
| | - Evan T. Keller
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (V.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.R.); (S.O.); (H.B.); (K.J.S.)
- BioInterface Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
14
|
Whole-Genome Amplification—Surveying Yield, Reproducibility, and Heterozygous Balance, Reported by STR-Targeting MIPs. Int J Mol Sci 2022; 23:ijms23116161. [PMID: 35682839 PMCID: PMC9181316 DOI: 10.3390/ijms23116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Whole-genome amplification is a crucial first step in nearly all single-cell genomic analyses, with the following steps focused on its products. Bias and variance caused by the whole-genome amplification process add numerous challenges to the world of single-cell genomics. Short tandem repeats are sensitive genomic markers used widely in population genetics, forensics, and retrospective lineage tracing. A previous evaluation of common whole-genome amplification targeting ~1000 non-autosomal short tandem repeat loci is extended here to ~12,000 loci across the entire genome via duplex molecular inversion probes. Other than its improved scale and reduced noise, this system detects an abundance of heterogeneous short tandem repeat loci, allowing the allelic balance to be reported. We show here that while the best overall yield is obtained using RepliG-SC, the maximum uniformity between alleles and reproducibility across cells are maximized by Ampli1, rendering it the best candidate for the comparative heterozygous analysis of single-cell genomes.
Collapse
|
15
|
Volozonoka L, Miskova A, Gailite L. Whole Genome Amplification in Preimplantation Genetic Testing in the Era of Massively Parallel Sequencing. Int J Mol Sci 2022; 23:4819. [PMID: 35563216 PMCID: PMC9102663 DOI: 10.3390/ijms23094819] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Successful whole genome amplification (WGA) is a cornerstone of contemporary preimplantation genetic testing (PGT). Choosing the most suitable WGA technique for PGT can be particularly challenging because each WGA technique performs differently in combination with different downstream processing and detection methods. The aim of this review is to provide insight into the performance and drawbacks of DOP-PCR, MDA and MALBAC, as well as the hybrid WGA techniques most widely used in PGT. As the field of PGT is moving towards a wide adaptation of comprehensive massively parallel sequencing (MPS)-based approaches, we especially focus our review on MPS parameters and detection opportunities of WGA-amplified material, i.e., mappability of reads, uniformity of coverage and its influence on copy number variation analysis, and genomic coverage and its influence on single nucleotide variation calling. The ability of MDA-based WGA solutions to better cover the targeted genome and the ability of PCR-based solutions to provide better uniformity of coverage are highlighted. While numerous comprehensive PGT solutions exploiting different WGA types and adjusted bioinformatic pipelines to detect copy number and single nucleotide changes are available, the ones exploiting MDA appear more advantageous. The opportunity to fully analyse the targeted genome is influenced by the MPS parameters themselves rather than the solely chosen WGA.
Collapse
Affiliation(s)
- Ludmila Volozonoka
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Anna Miskova
- Department of Obstetrics and Gynaecology, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia;
| |
Collapse
|
16
|
Bowes A, Tarabichi M, Pillay N, Van Loo P. Leveraging single cell sequencing to unravel intra-tumour heterogeneity and tumour evolution in human cancers. J Pathol 2022; 257:466-478. [PMID: 35438189 PMCID: PMC9322001 DOI: 10.1002/path.5914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Intra-tumour heterogeneity and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into intra-tumour heterogeneity and tumour evolution. Areas highlighted include the potential power of single cell genome sequencing studies to explore evolutionary dynamics contributing to tumourigenesis through to progression, metastasis and therapy resistance. We also explore the use of in-situ sequencing technologies to study intra-tumour heterogeneity in a spatial context, as well as examining the use of single cell genomics to perform lineage tracing in both normal and malignant tissues. Finally, we consider the use of multi-modal single cell sequencing technologies. Taken together, it is hoped that these many facets of single cell genome sequencing will improve our understanding of tumourigenesis, progression and lethality in cancer leading to the development of novel therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amy Bowes
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK
| | - Maxime Tarabichi
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nischalan Pillay
- Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK.,Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Peter Van Loo
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Department of Genetics, The University of Texas MD Anderson Cancer Centre, Houston, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, USA
| |
Collapse
|
17
|
Circulating tumour cells in the -omics era: how far are we from achieving the 'singularity'? Br J Cancer 2022; 127:173-184. [PMID: 35273384 PMCID: PMC9296521 DOI: 10.1038/s41416-022-01768-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, cancer diagnosis has expanded to include liquid biopsies in addition to tissue biopsies. Liquid biopsies can result in earlier and more accurate diagnosis and more effective monitoring of disease progression than tissue biopsies as samples can be collected frequently. Because of these advantages, liquid biopsies are now used extensively in clinical care. Liquid biopsy samples are analysed for circulating tumour cells (CTCs), cell-free DNA, RNA, proteins and exosomes. CTCs originate from the tumour, play crucial roles in metastasis and carry information on tumour heterogeneity. Multiple single-cell omics approaches allow the characterisation of the molecular makeup of CTCs. It has become evident that CTCs are robust biomarkers for predicting therapy response, clinical development of metastasis and disease progression. This review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics. In addition, we describe the single-cell multi-omics technologies that have provided insights into the molecular features within therapy-resistant and metastasis-prone CTC populations. Functional studies coupled with integrated multi-omics analyses have the potential to identify therapies that can intervene the functions of CTCs.
Collapse
|
18
|
|
19
|
New Approaches to Multi-Parametric HIV-1 Genetics Using Multiple Displacement Amplification: Determining the What, How, and Where of the HIV-1 Reservoir. Viruses 2021; 13:v13122475. [PMID: 34960744 PMCID: PMC8709494 DOI: 10.3390/v13122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Development of potential HIV-1 curative interventions requires accurate characterization of the proviral reservoir, defined as host-integrated viral DNA genomes that drive rebound of viremia upon halting ART (antiretroviral therapy). Evaluation of such interventions necessitates methods capable of pinpointing the rare, genetically intact, replication-competent proviruses within a background of defective proviruses. This evaluation can be achieved by identifying the distinct integration sites of intact proviruses within host genomes and monitoring the dynamics of these proviruses and host cell lineages over longitudinal sampling. Until recently, molecular genetic approaches at the single proviral level have been generally limited to one of a few metrics, such as proviral genome sequence/intactness, host-proviral integration site, or replication competency. New approaches, taking advantage of MDA (multiple displacement amplification) for WGA (whole genome amplification), have enabled multiparametric proviral characterization at the single-genome level, including proviral genome sequence, host-proviral integration site, and phenotypic characterization of the host cell lineage, such as CD4 memory subset and antigen specificity. In this review, we will examine the workflow of MDA-augmented molecular genetic approaches to study the HIV-1 reservoir, highlighting technical advantages and flexibility. We focus on a collection of recent studies in which investigators have used these approaches to comprehensively characterize intact and defective proviruses from donors on ART, investigate mechanisms of elite control, and define cell lineage identity and antigen specificity of infected CD4+ T cell clones. The highlighted studies exemplify how these approaches and their future iterations will be key in defining the targets and evaluating the impacts of HIV curative interventions.
Collapse
|
20
|
Li X, Zou Y, Li T, Wong TKF, Bushey RT, Campa MJ, Gottlin EB, Liu H, Wei Q, Rodrigo A, Patz EF. Genetic Variants of CLPP and M1AP Are Associated With Risk of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:709829. [PMID: 34604049 PMCID: PMC8479179 DOI: 10.3389/fonc.2021.709829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) are often associated with distinct phenotypes in cancer. The present study investigated associations of cancer risk and outcomes with SNPs discovered by whole exome sequencing of normal lung tissue DNA of 15 non-small cell lung cancer (NSCLC) patients, 10 early stage and 5 advanced stage. Methods DNA extracted from normal lung tissue of the 15 NSCLC patients was subjected to whole genome amplification and sequencing and analyzed for the occurrence of SNPs. The association of SNPs with the risk of lung cancer and survival was surveyed using the OncoArray study dataset of 85,716 patients (29,266 cases and 56,450 cancer-free controls) and the Prostate, Lung, Colorectal and Ovarian study subset of 1,175 lung cancer patients. Results We identified 4 SNPs exclusive to the 5 patients with advanced stage NSCLC: rs10420388 and rs10418574 in the CLPP gene, and rs11126435 and rs2021725 in the M1AP gene. The variant alleles G of SNP rs10420388 and A of SNP rs10418574 in the CLPP gene were associated with increased risk of squamous cell carcinoma (OR = 1.07 and 1.07; P = 0.013 and 0.016, respectively). The variant allele T of SNP rs11126435 in the M1AP gene was associated with decreased risk of adenocarcinoma (OR = 0.95; P = 0.027). There was no significant association of these SNPs with the overall survival of lung cancer patients (P > 0.05). Conclusions SNPs identified in the CLPP and M1AP genes may be useful in risk prediction models for lung cancer. The previously established association of the CLPP gene with cancer progression lends relevance to our findings.
Collapse
Affiliation(s)
- Xianghan Li
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yiran Zou
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Teng Li
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas K F Wong
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ryan T Bushey
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Michael J Campa
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States.,Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Allen Rodrigo
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Edward F Patz
- Department of Radiology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
21
|
Vitali V, Rothering R, Catania F. Fifty Generations of Amitosis: Tracing Asymmetric Allele Segregation in Polyploid Cells with Single-Cell DNA Sequencing. Microorganisms 2021; 9:1979. [PMID: 34576874 PMCID: PMC8467633 DOI: 10.3390/microorganisms9091979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis have been gleaned by assessing the rate of phenotypic assortment. Though powerful, this experimental approach relies on the availability of phenotypic markers. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dualism and a highly polyploid somatic nucleus, we probe the limits of single-cell whole-genome sequencing to study the consequences of amitosis. To this end, we first evaluate the suitability of single-cell sequencing to study the AT-rich genome of P. tetraurelia, focusing on common sources of genome representation bias. We then asked: can alternative rearrangements of a given locus eventually assort after a number of amitotic divisions? To address this question, we track somatic assortment of developmentally acquired Internal Eliminated Sequences (IESs) up to 50 amitotic divisions post self-fertilization. To further strengthen our observations, we contrast empirical estimates of IES retention levels with in silico predictions obtained through mathematical modeling. In agreement with theoretical expectations, our empirical findings are consistent with a mild increase in variation of IES retention levels across successive amitotic divisions of the macronucleus. The modest levels of somatic assortment in P. tetraurelia suggest that IESs retention levels are largely sculpted at the time of macronuclear development, and remain fairly stable during vegetative growth. In forgoing the requirement for phenotypic assortment, our approach can be applied to a wide variety of amitotic species and could facilitate the identification of environmental and genetic factors affecting amitosis.
Collapse
Affiliation(s)
- Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany; (R.R.); (F.C.)
| | | | | |
Collapse
|
22
|
Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing. Sci Rep 2021; 11:17171. [PMID: 34433869 PMCID: PMC8387353 DOI: 10.1038/s41598-021-96045-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
Advances in whole genome amplification (WGA) techniques enable understanding of the genomic sequence at a single cell level. Demand for single cell dedicated WGA kits (scWGA) has led to the development of several commercial kit. To this point, no robust comparison of all available kits was performed. Here, we benchmark an economical assay, comparing all commercially available scWGA kits. Our comparison is based on targeted sequencing of thousands of genomic loci, including highly mutable regions, from a large cohort of human single cells. Using this approach we have demonstrated the superiority of Ampli1 in genome coverage and of RepliG in reduced error rate. In summary, we show that no single kit is optimal across all categories, highlighting the need for a dedicated kit selection in accordance with experimental requirements.
Collapse
|
23
|
Turati VA, Guerra-Assunção JA, Potter NE, Gupta R, Ecker S, Daneviciute A, Tarabichi M, Webster AP, Ding C, May G, James C, Brown J, Conde L, Russell LJ, Ancliff P, Inglott S, Cazzaniga G, Biondi A, Hall GW, Lynch M, Hubank M, Macaulay I, Beck S, Van Loo P, Jacobsen SE, Greaves M, Herrero J, Enver T. Chemotherapy induces canalization of cell state in childhood B-cell precursor acute lymphoblastic leukemia. NATURE CANCER 2021; 2:835-852. [PMID: 34734190 PMCID: PMC7611923 DOI: 10.1038/s43018-021-00219-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2021] [Indexed: 05/01/2023]
Abstract
Comparison of intratumor genetic heterogeneity in cancer at diagnosis and relapse suggests that chemotherapy induces bottleneck selection of subclonal genotypes. However, evolutionary events subsequent to chemotherapy could also explain changes in clonal dominance seen at relapse. We, therefore, investigated the mechanisms of selection in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) during induction chemotherapy where maximal cytoreduction occurs. To distinguish stochastic versus deterministic events, individual leukemias were transplanted into multiple xenografts and chemotherapy administered. Analyses of the immediate post-treatment leukemic residuum at single-cell resolution revealed that chemotherapy has little impact on genetic heterogeneity. Rather, it acts on extensive, previously unappreciated, transcriptional and epigenetic heterogeneity in BCP-ALL, dramatically reducing the spectrum of cell states represented, leaving a genetically polyclonal but phenotypically uniform population with hallmark signatures relating to developmental stage, cell cycle and metabolism. Hence, canalization of cell state accounts for a significant component of bottleneck selection during induction chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Rajeev Gupta
- UCL Cancer Institute, University College London, United Kingdom
| | - Simone Ecker
- UCL Cancer Institute, University College London, United Kingdom
| | | | | | - Amy P. Webster
- UCL Cancer Institute, University College London, United Kingdom
| | - Chuling Ding
- UCL Cancer Institute, University College London, United Kingdom
| | - Gillian May
- UCL Cancer Institute, University College London, United Kingdom
| | - Chela James
- UCL Cancer Institute, University College London, United Kingdom
| | - John Brown
- UCL Cancer Institute, University College London, United Kingdom
| | - Lucia Conde
- UCL Cancer Institute, University College London, United Kingdom
| | - Lisa J. Russell
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, UK
| | - Phil Ancliff
- Great Ormond Street Hospital, London, United Kingdom
| | - Sarah Inglott
- Great Ormond Street Hospital, London, United Kingdom
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, University of Milano Bicocca, Monza, Italy
| | - Andrea Biondi
- University of Milano-Bicocca, Department of Pediatrics, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | | | - Mark Lynch
- Fluidigm Corporation, San Francisco, CA, USA
| | - Mike Hubank
- Institute of Cancer Research, Sutton, United Kingdom
- Royal Marsden Hospital, Sutton, United Kingdom
| | | | - Stephan Beck
- UCL Cancer Institute, University College London, United Kingdom
| | | | - Sten E. Jacobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Center for Hematology and Regenerative Medicine, Department of Medicine and Department of Cell and Molecular Biology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mel Greaves
- Institute of Cancer Research, Sutton, United Kingdom
| | - Javier Herrero
- UCL Cancer Institute, University College London, United Kingdom
| | - Tariq Enver
- UCL Cancer Institute, University College London, United Kingdom
| |
Collapse
|
24
|
Schneider L, Tripathi A. Progress and Challenges in Laboratory-Based Diagnostic and Screening Approaches for Aneuploidy Detection during Pregnancy. SLAS Technol 2021; 26:425-440. [PMID: 34148381 DOI: 10.1177/24726303211021787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aneuploidy is caused by problems during cellular division and segregation errors during meiosis that lead to an abnormal number of chromosomes and initiate significant genetic abnormalities during pregnancy or the loss of a fetus due to miscarriage. Screening and diagnostic technologies have been developed to detect this genetic condition and provide parents with critical information about their unborn child. In this review, we highlight the complexities of aneuploidy as a disease as well as multiple technological advancements in testing that help to identify aneuploidy at various time points throughout pregnancy. We focus on aneuploidy diagnosis during preimplantation genetic testing that is performed during in vitro fertilization as well as prenatal screening and diagnosis during pregnancy. This review focuses on DNA-based analysis and laboratory techniques for aneuploidy detection through reviewing molecular- and engineering-based technical advancements. We also present key challenges in aneuploidy detection during pregnancy, including sample collection, mosaic embryos, economic factors, and the social implications of this testing. The goal of this review is to synthesize broad information about aneuploidy screening and diagnostic sample collection and analysis during pregnancy and discuss major challenges the field is still facing despite decades of advancements.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Vossaert L, Chakchouk I, Zemet R, Van den Veyver IB. Overview and recent developments in cell-based noninvasive prenatal testing. Prenat Diagn 2021; 41:1202-1214. [PMID: 33974713 DOI: 10.1002/pd.5957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Investigators have long been interested in the natural phenomenon of fetal and placental cell trafficking into the maternal circulation. The scarcity of these circulating cells makes their detection and isolation technically challenging. However, as a DNA source of fetal origin not mixed with maternal DNA, they have the potential of considerable benefit over circulating cell-free DNA-based noninvasive prenatal genetic testing (NIPT). Endocervical trophoblasts, which are less rare but more challenging to recover are also being investigated as an approach for cell-based NIPT. We review published studies from around the world describing both forms of cell-based NIPT and highlight the different approaches' advantages and drawbacks. We also offer guidance for developing a sound cell-based NIPT protocol.
Collapse
Affiliation(s)
- Liesbeth Vossaert
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Roni Zemet
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.,Pavillion for Women, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
26
|
Liu S, Huckaby AC, Brown AC, Moore CC, Burbulis I, McConnell MJ, Güler JL. Single-cell sequencing of the small and AT-skewed genome of malaria parasites. Genome Med 2021; 13:75. [PMID: 33947449 PMCID: PMC8094492 DOI: 10.1186/s13073-021-00889-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome of extreme base content. Through optimization of a quasi-linear amplification method, we target the parasite genome over contaminants and generate coverage levels allowing detection of minor genetic variants. This work, as well as efforts that build on these findings, will enable detection of parasite heterogeneity contributing to P. falciparum adaptation. Furthermore, this study provides a framework for optimizing single-cell amplification and variant analysis in challenging genomes.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Ian Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Current address: Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Jennifer L Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
27
|
Ellis P, Moore L, Sanders MA, Butler TM, Brunner SF, Lee-Six H, Osborne R, Farr B, Coorens THH, Lawson ARJ, Cagan A, Stratton MR, Martincorena I, Campbell PJ. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat Protoc 2021; 16:841-871. [PMID: 33318691 DOI: 10.1038/s41596-020-00437-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/08/2020] [Indexed: 01/01/2023]
Abstract
Somatic mutations accumulate in healthy tissues as we age, giving rise to cancer and potentially contributing to ageing. To study somatic mutations in non-neoplastic tissues, we developed a series of protocols to sequence the genomes of small populations of cells isolated from histological sections. Here, we describe a complete workflow that combines laser-capture microdissection (LCM) with low-input genome sequencing, while circumventing the use of whole-genome amplification (WGA). The protocol is subdivided broadly into four steps: tissue processing, LCM, low-input library generation and mutation calling and filtering. The tissue processing and LCM steps are provided as general guidelines that might require tailoring based on the specific requirements of the study at hand. Our protocol for low-input library generation uses enzymatic rather than acoustic fragmentation to generate WGA-free whole-genome libraries. Finally, the mutation calling and filtering strategy has been adapted from previously published protocols to account for artifacts introduced via library creation. To date, we have used this workflow to perform targeted and whole-genome sequencing of small populations of cells (typically 100-1,000 cells) in thousands of microbiopsies from a wide range of human tissues. The low-input DNA protocol is designed to be compatible with liquid handling platforms and make use of equipment and expertise standard to any core sequencing facility. However, obtaining low-input DNA material via LCM requires specialized equipment and expertise. The entire protocol from tissue reception through whole-genome library generation can be accomplished in as little as 1 week, although 2-3 weeks would be a more typical turnaround time.
Collapse
Affiliation(s)
- Peter Ellis
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Inivata Limited, The Glenn Berge Building, Babraham Research Campus, Babraham, UK
| | - Luiza Moore
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Simon F Brunner
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Robert Osborne
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Inivata Limited, The Glenn Berge Building, Babraham Research Campus, Babraham, UK
| | - Ben Farr
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mike R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
28
|
Hatt L, Singh R, Christensen R, Ravn K, Christensen IB, Jeppesen LD, Nicolaisen BH, Kølvraa M, Schelde P, Andreassen L, Farlie R, Uldbjerg N, Vogel I. Cell-based noninvasive prenatal testing (cbNIPT) detects pathogenic copy number variations. Clin Case Rep 2020; 8:2561-2567. [PMID: 33363780 PMCID: PMC7752386 DOI: 10.1002/ccr3.3211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022] Open
Abstract
In two cases, cell-based noninvasive prenatal testing (cbNIPT) detected pathogenic copy number variations (CNVs) in the fetal genome. cbNIPT may potentially be an improved noninvasive alternative for the detection of smaller CNVs.
Collapse
Affiliation(s)
| | | | - Rikke Christensen
- Center for Fetal DiagnosticsDepartment of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | | | | | | | | | | | | | - Lotte Andreassen
- Center for Fetal DiagnosticsDepartment of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Richard Farlie
- Department of Women's Disease and BirthViborg HospitalViborgDenmark
| | - Niels Uldbjerg
- Department of Women's Disease and BirthAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Ida Vogel
- Center for Fetal DiagnosticsDepartment of Clinical GeneticsAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
29
|
Imamura H, Monsieurs P, Jara M, Sanders M, Maes I, Vanaerschot M, Berriman M, Cotton JA, Dujardin JC, Domagalska MA. Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Sci Rep 2020; 10:15043. [PMID: 32929126 PMCID: PMC7490275 DOI: 10.1038/s41598-020-71882-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.
Collapse
Affiliation(s)
- Hideo Imamura
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Marlene Jara
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | | | - Ilse Maes
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Manu Vanaerschot
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | | | | | - Jean-Claude Dujardin
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
30
|
Weymaere J, Vander Plaetsen AS, Tilleman L, Tytgat O, Rubben K, Geeraert S, Deforce D, Van Nieuwerburgh F. Kinship analysis on single cells after whole genome amplification. Sci Rep 2020; 10:14647. [PMID: 32887915 PMCID: PMC7474072 DOI: 10.1038/s41598-020-71562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
Short Tandem Repeat (STR-) and Single Nucleotide Polymorphism (SNP-) genotyping have been extensively studied within forensic kinship analysis. Nevertheless, no results have been reported on kinship analysis after whole genome amplification (WGA) of single cells. This WGA step is a necessary procedure in several applications, such as cell-based non-invasive prenatal testing (cbNIPT) and pre-implantation genetic diagnosis (PGD). In cbNIPT, all putative fetal cells must be discriminated from maternal cells after enrichment from whole blood. This study investigates the efficacy and evidential value of STR- and SNP-genotyping methods for the discrimination of 24 single cells after WGA, within three families. Formaldehyde-fixed and unfixed cells are assessed in offspring-parent duos and offspring-mother-father trios. Results demonstrate that both genotyping methods can be used in all tested conditions and scenarios with 100% sensitivity and 100% specificity, with a similar evidential value for fixed and unfixed cells. Moreover, sequence-based SNP-genotyping results in a higher evidential value than length-based STR-genotyping after WGA, which is not observed using high-quality offspring bulk DNA samples. Finally, it is also demonstrated that the availability of the DNA genotypes of both parents strongly increases the evidential value of the results.
Collapse
Affiliation(s)
- Jana Weymaere
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Olivier Tytgat
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium.,Department of Life Science Technologies, Imec, 3001, Leuven, Belgium
| | - Kaat Rubben
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Sofie Geeraert
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium.
| |
Collapse
|
31
|
Lu S, Chang CJ, Guan Y, Szafer-Glusman E, Punnoose E, Do A, Suttmann B, Gagnon R, Rodriguez A, Landers M, Spoerke J, Lackner MR, Xiao W, Wang Y. Genomic Analysis of Circulating Tumor Cells at the Single-Cell Level. J Mol Diagn 2020; 22:770-781. [PMID: 32247862 PMCID: PMC8351127 DOI: 10.1016/j.jmoldx.2020.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/20/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
Circulating tumor cells (CTCs) have a great potential for noninvasive diagnosis and real-time monitoring of cancer. A comprehensive evaluation of four whole genome amplification (WGA)/next-generation sequencing workflows for genomic analysis of single CTCs, including PCR-based (GenomePlex and Ampli1), multiple displacement amplification (Repli-g), and hybrid PCR- and multiple displacement amplification–based [multiple annealing and loop-based amplification cycling (MALBAC)] is reported herein. To demonstrate clinical utilities, copy number variations (CNVs) in single CTCs isolated from four patients with squamous non–small-cell lung cancer were profiled. Results indicate that MALBAC and Repli-g WGA have significantly broader genomic coverage compared with GenomePlex and Ampli1. Furthermore, MALBAC coupled with low-pass whole genome sequencing has better coverage breadth, uniformity, and reproducibility and is superior to Repli-g for genome-wide CNV profiling and detecting focal oncogenic amplifications. For mutation analysis, none of the WGA methods were found to achieve sufficient sensitivity and specificity by whole exome sequencing. Finally, profiling of single CTCs from patients with non–small-cell lung cancer revealed potentially clinically relevant CNVs. In conclusion, MALBAC WGA coupled with low-pass whole genome sequencing is a robust workflow for genome-wide CNV profiling at single-cell level and has great potential to be applied in clinical investigations. Nevertheless, data suggest that none of the evaluated single-cell sequencing workflows can reach sufficient sensitivity or specificity for mutation detection required for clinical applications.
Collapse
Affiliation(s)
- Shan Lu
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California; Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California
| | - Chia-Jung Chang
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California
| | - Yinghui Guan
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Edith Szafer-Glusman
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Elizabeth Punnoose
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - An Do
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Becky Suttmann
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Ross Gagnon
- Division of Expression Analysis Genomics, Q2 Solutions, Morrisville, North Carolina
| | - Angel Rodriguez
- Department of Translational Research, Epic Sciences Inc., San Diego, California
| | - Mark Landers
- Department of Translational Research, Epic Sciences Inc., San Diego, California
| | - Jill Spoerke
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Mark R Lackner
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California
| | - Wenzhong Xiao
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California.
| | - Yulei Wang
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, California.
| |
Collapse
|
32
|
Perez-Rodriguez D, Kalyva M, Leija-Salazar M, Lashley T, Tarabichi M, Chelban V, Gentleman S, Schottlaender L, Franklin H, Vasmatzis G, Houlden H, Schapira AHV, Warner TT, Holton JL, Jaunmuktane Z, Proukakis C. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol Commun 2019; 7:219. [PMID: 31870437 PMCID: PMC6929293 DOI: 10.1186/s40478-019-0873-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, Midland Road 1, London, NW1 1AT, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | | | - Lucia Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Hannah Franklin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - George Vasmatzis
- Center for Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
33
|
Viswanathan R, Cheruba E, Cheow LF. DNA Analysis by Restriction Enzyme (DARE) enables concurrent genomic and epigenomic characterization of single cells. Nucleic Acids Res 2019; 47:e122. [PMID: 31418018 PMCID: PMC6821369 DOI: 10.1093/nar/gkz717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Genome-wide profiling of copy number alterations and DNA methylation in single cells could enable detailed investigation into the genomic and epigenomic heterogeneity of complex cell populations. However, current methods to do this require complex sample processing and cleanup steps, lack consistency, or are biased in their genomic representation. Here, we describe a novel single-tube enzymatic method, DNA Analysis by Restriction Enzyme (DARE), to perform deterministic whole genome amplification while preserving DNA methylation information. This method was evaluated on low amounts of DNA and single cells, and provides accurate copy number aberration calling and representative DNA methylation measurement across the whole genome. Single-cell DARE is an attractive and scalable approach for concurrent genomic and epigenomic characterization of cells in a heterogeneous population.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117583, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117583, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
34
|
Uncovering low-level mosaicism in human embryonic stem cells using high throughput single cell shallow sequencing. Sci Rep 2019; 9:14844. [PMID: 31619727 PMCID: PMC6796059 DOI: 10.1038/s41598-019-51314-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have significant levels of low-grade genetic mosaicism, which commonly used techniques fail to detect in bulk DNA. These copy number variations remain a hurdle for the clinical translation of hPSC, as their effect in vivo ranges from unknown to dangerous, and the ability to detect them will be necessary as the field advances. As such there is need for techniques which can efficiently analyse genetic content in single cells with higher throughput and lower costs. We report here on the use of the Fluidigm C1 single cell WGA platform in combination with shallow whole genome sequencing to analyse the genetic content of single hPSCs. From a hPSC line carrying an isochromosome 20, 56 single cells were analysed and found to carry a total of 50 aberrations, across 23% of cells, which could not be detected by bulk analysis. Aberrations were predominantly segmental gains, with a fewer number of segmental losses and aneuploidies. Interestingly, 40% of the breakpoints seen here correspond to known DNA fragile sites. Our results therefore demonstrate the feasibility of single cell shallow sequencing of hPSC and further expand upon the biological importance and frequency of single cell mosaicism in hPSC.
Collapse
|
35
|
Tellez-Gabriel M, Heymann MF, Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Am J Cancer Res 2019; 9:4580-4594. [PMID: 31367241 PMCID: PMC6643448 DOI: 10.7150/thno.34337] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor heterogeneity is the major cause of failure in cancer prognosis and prediction. Accurately detecting heterogeneity for the development of biomarkers and the detection of the clones resistant to therapy is one of the main goals of contemporary medicine. Metastases belong to the natural history of cancer. The present review gives an overview on the origin of tumor heterogeneity. Recent progress has made it possible to isolate and characterize circulating tumor cells (CTCs), which are the drivers of the disease between the primary sites and metastatic foci. The most recent methods for characterizing CTCs are summarized and we discuss the power of CTC profiling for analyzing tumor heterogeneity in early and advanced diseases.
Collapse
|
36
|
Paolillo C, Londin E, Fortina P. Single-Cell Genomics. Clin Chem 2019; 65:972-985. [PMID: 30872376 DOI: 10.1373/clinchem.2017.283895] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Single-cell genomics is an approach to investigate cell heterogeneity and to identify new molecular features correlated with clinical outcomes. This approach allows identification of the complexity of cell diversity in a sample without the loss of information that occurs when multicellular or bulk tissue samples are analyzed. CONTENT The first single-cell RNA-sequencing study was published in 2009, and since then many more studies and single-cell sequencing methods have been published. These studies have had a major impact on several fields, including microbiology, neurobiology, cancer, and developmental biology. Recently, improvements in reliability and the development of commercial single-cell isolation platforms are opening the potential of this technology to the clinical laboratory. SUMMARY In this review we provide an overview of the current state of single-cell genomics. We describe opportunities in clinical research and medical applications.
Collapse
Affiliation(s)
- Carmela Paolillo
- Division of Precision and Computational Diagnostics, Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; .,Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
37
|
Couvillion SP, Zhu Y, Nagy G, Adkins JN, Ansong C, Renslow RS, Piehowski PD, Ibrahim YM, Kelly RT, Metz TO. New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst 2019; 144:794-807. [PMID: 30507980 PMCID: PMC6349538 DOI: 10.1039/c8an01574k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass-spectrometry based omics technologies - namely proteomics, metabolomics and lipidomics - have enabled the molecular level systems biology investigation of organisms in unprecedented detail. There has been increasing interest for gaining a thorough, functional understanding of the biological consequences associated with cellular heterogeneity in a wide variety of research areas such as developmental biology, precision medicine, cancer research and microbiome science. Recent advances in mass spectrometry (MS) instrumentation and sample handling strategies are quickly making comprehensive omics analyses of single cells feasible, but key breakthroughs are still required to push through remaining bottlenecks. In this review, we discuss the challenges faced by single cell MS-based omics analyses and highlight recent technological advances that collectively can contribute to comprehensive and high throughput omics analyses in single cells. We provide a vision of the potential of integrating pioneering technologies such as Structures for Lossless Ion Manipulations (SLIM) for improved sensitivity and resolution, novel peptide identification tactics and standards free metabolomics approaches for future applications in single cell analysis.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Negishi R, Iwata R, Tanaka T, Kisailus D, Maeda Y, Matsunaga T, Yoshino T. Gel-based cell manipulation method for isolation and genotyping of single-adherent cells. Analyst 2019; 144:990-996. [DOI: 10.1039/c8an01456f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The simple and rapid method for isolation of single-adherent cells from a culture dish was developed and applied to genetic analysis of single-cells.
Collapse
Affiliation(s)
- Ryo Negishi
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo
- Japan
| | - Reito Iwata
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo
- Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo
- Japan
| | - David Kisailus
- Department of Chemical and Environmental Engineering
- University of California
- Riverside
- Riverside
- USA
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo
- Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo
- Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo
- Japan
| |
Collapse
|
39
|
Deleye L, Gansemans Y, De Coninck D, Van Nieuwerburgh F, Deforce D. Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods. PLoS One 2018; 13:e0196334. [PMID: 29698522 PMCID: PMC5919401 DOI: 10.1371/journal.pone.0196334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
Single Gene Disorders (SGD) are still routinely diagnosed using PCR-based assays that need to be developed and validated for each individual disease-specific gene fragment. The TruSight One sequencing panel currently covers 12 Mb of genomic content, including 4813 genes associated with a clinical phenotype. When only a limited number of cells are available, whole genome amplification (WGA) is required prior to DNA target capture techniques such as the TruSight One panel. In this study, we compared 4 different WGA methods in combination with the TruSight One sequencing panel to perform single nucleotide polymorphism (SNP) genotyping starting from 3 micro-manipulated cells. This setting simulates clinical settings such as day-5 blastocyst biopsy for Preimplantation Genetic Testing (PGT), liquid biopsy of circulating tumor cells (CTCs) and cancer-cell profiling. Bulk cell samples were processed alongside these WGA samples to serve as a performance reference. Target coverage, coverage uniformity and SNP calling accuracy obtained using any of the WGA, is inferior to the results obtained on bulk cell samples. However, results after REPLI-g come close. Compared to the other WGA methods, the method using REPLI-g WGA results in a better coverage of the targeted genomic regions with a more uniform read depth. Consequently, this method also results in a more accurate SNP calling and could be considered for clinical genotyping of a limited number of cells.
Collapse
Affiliation(s)
- Lieselot Deleye
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter De Coninck
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Deleye L, Vander Plaetsen AS, Weymaere J, Deforce D, Van Nieuwerburgh F. Short Tandem Repeat analysis after Whole Genome Amplification of single B-lymphoblastoid cells. Sci Rep 2018; 8:1255. [PMID: 29352241 PMCID: PMC5775416 DOI: 10.1038/s41598-018-19509-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
To allow multiple genetic analyses on a single cell, whole genome amplification (WGA) is required. Unfortunately, studies comparing different WGA methods for downstream human identification Short Tandem Repeat (STR) analysis remain absent. Therefore, the aim of this work was to assess the performance of four commercially available WGA kits for downstream human identification STR profiling on a B-lymphoblastoid cell line. The performance was assessed using an input of one or three micromanipulated cells. REPLI-g showed a very low dropout rate, as it was the only WGA method in this study that could provide a complete STR profile in some of its samples. Although Ampli1, DOPlify and PicoPLEX did not detect all selected STR markers, they seem suitable for genetic identification in single-cell applications.
Collapse
Affiliation(s)
- Lieselot Deleye
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jana Weymaere
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
41
|
Vander Plaetsen AS, Deleye L, Cornelis S, Tilleman L, Van Nieuwerburgh F, Deforce D. STR profiling and Copy Number Variation analysis on single, preserved cells using current Whole Genome Amplification methods. Sci Rep 2017; 7:17189. [PMID: 29215049 PMCID: PMC5719346 DOI: 10.1038/s41598-017-17525-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
The growing interest in liquid biopsies for cancer research and cell-based non-invasive prenatal testing (NIPT) invigorates the need for improved single cell analysis. In these applications, target cells are extremely rare and fragile in peripheral circulation, which makes the genetic analysis very challenging. To overcome these challenges, cell stabilization and unbiased whole genome amplification are required. This study investigates the performance of four WGA methods on single or a limited number of cells after 24 hour of Streck Cell-Free DNA BCT preservation. The suitability of the DNA, amplified with Ampli1, DOPlify, PicoPLEX and REPLI-g, was assessed for both short tandem repeat (STR) profiling and copy number variant (CNV) analysis after shallow whole genome massively parallel sequencing (MPS). Results demonstrate that Ampli1, DOPlify and PicoPLEX perform well for both applications, with some differences between the methods. Samples amplified with REPLI-g did not result in suitable STR or CNV profiles, indicating that this WGA method is not able to generate high quality DNA after Streck Cell-Free DNA BCT stabilization of the cells.
Collapse
Affiliation(s)
- Ann-Sophie Vander Plaetsen
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Lieselot Deleye
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Senne Cornelis
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.,Department of Life Science Technologies, imec, 3001, Leuven, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
42
|
The time dimension and the future of infertility treatments. J Assist Reprod Genet 2017; 34:965-966. [PMID: 28735460 DOI: 10.1007/s10815-017-0999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|