1
|
Kersbergen CJ, Babola TA, Kanold PO, Bergles DE. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice. PLoS Biol 2023; 21:e3002160. [PMID: 37368868 PMCID: PMC10298803 DOI: 10.1371/journal.pbio.3002160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Intrinsically generated neural activity propagates through the developing auditory system to promote maturation and refinement of sound processing circuits prior to hearing onset. This early patterned activity is induced by non-sensory supporting cells in the organ of Corti, which are highly interconnected through gap junctions containing connexin 26 (Gjb2). Although loss of function mutations in Gjb2 impair cochlear development and are the most common cause of congenital deafness, it is not known if these variants disrupt spontaneous activity and the developmental trajectory of sound processing circuits in the brain. Here, we show in a new mouse model of Gjb2-mediated congenital deafness that cochlear supporting cells adjacent to inner hair cells (IHCs) unexpectedly retain intercellular coupling and the capacity to generate spontaneous activity, exhibiting only modest deficits prior to hearing onset. Supporting cells lacking Gjb2 elicited coordinated activation of IHCs, leading to coincident bursts of activity in central auditory neurons that will later process similar frequencies of sound. Despite alterations in the structure of the sensory epithelium, hair cells within the cochlea of Gjb2-deficient mice were intact and central auditory neurons could be activated within appropriate tonotopic domains by loud sounds at hearing onset, indicating that early maturation and refinement of auditory circuits was preserved. Only after cessation of spontaneous activity following hearing onset did progressive hair cell degeneration and enhanced auditory neuron excitability manifest. This preservation of cochlear spontaneous neural activity in the absence of connexin 26 may increase the effectiveness of early therapeutic interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J. Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Travis A. Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Levic S, Lukashkina VA, Simões P, Lukashkin AN, Russell IJ. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification. J Neurosci 2022; 42:7875-7884. [PMID: 36261265 PMCID: PMC9617611 DOI: 10.1523/jneurosci.2241-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes. At low frequencies, these voltage changes are dominated by intracellular receptor potentials (RPs). However, OHC membranes have electrical low-pass filter properties that attenuate high-frequency RPs, which should potentially attenuate amplification of high-frequency cochlear responses and impede high-frequency hearing. We made in vivo intracellular and extracellular electrophysiological measurements from the organ of Corti of male and female mice of the CBA/J strain, with excellent high-frequency hearing, and from the CD-1 mouse strain, which has sensitive hearing below 12 kHz but loses high-frequency hearing within a few weeks postpartum. The CD-1 mouse strain was transfected with an A88V mutation of the connexin 30 gap-junction protein. By blocking the action of the GJ protein to reduce input resistance, the mutation increased the OHC extracellular RP (ERP) magnitude and rescued high-frequency hearing. However, by increasing the organ of Corti resistance, the mutation rescued high-frequency hearing through preserving the OHC extracellular RP (ERP) magnitude. We measured the voltage developed across the basolateral membranes of OHCs, which controls their electromotility, for low- to high-frequency sounds in male and female mice of the CD-1 strain that expressed the A88V mutation. We demonstrate that ERPs, not RPs, drive OHC motility and cochlear amplification at high frequencies because at high frequencies, ERPs are not frequency attenuated, exceed RPs in magnitude, and are appropriately timed to provide cochlear amplification.SIGNIFICANCE STATEMENT Cochlear amplification, which enables the enormous dynamic range of hearing, is attributed to voltage-dependent electromotility of the mechanosensory outer hair cells (OHCs) driven by sound-induced voltage changes across their membranes. OHC intracellular receptor potentials are electrically low-pass filtered, which should hinder high-frequency hearing. We measured the intracellular and extracellular voltages that control OHC electromotility in vivo in a mouse strain with impaired high-frequency hearing. A gap-junction mutation of the strain rescued high-frequency hearing, increased organ of Corti resistance, and preserved large OHC extracellular receptor potentials but reduced OHC intracellular receptor potentials and impaired low-frequency hearing. We concluded intracellular potentials drive OHC motility at low frequencies and extracellular receptor potentials drive OHC motility and cochlear amplification at high frequencies.
Collapse
Affiliation(s)
- Snezana Levic
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, United Kingdom
| | - Victoria A Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Patricio Simões
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
3
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
4
|
Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019; 13:529. [PMID: 31827424 PMCID: PMC6892400 DOI: 10.3389/fncel.2019.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate organs, acting as building blocks of the gap junctions (GJs) known to play vital roles in the normal function of many organs. Mutations in Cx genes (particularly GJB2, which encodes Cx26) cause approximately half of all cases of congenital hearing loss in newborns. Great progress has been made in understanding GJ function and the molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types of Cxs work together to ensure normal development and function of the cochlea. These findings include many aspects not proposed in the classic K+ recycling theory, such as the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti), the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data, especially those collected from targeted modification of major Cx genes in the mouse cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in the EP generation, given that only Cx26 is required for normal hearing. This article will review our current understanding of the molecular structure, cellular distribution, and major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs on the design and implementation of translational studies of cochlear gene therapies for Cx mutations are also discussed.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Otolaryngology, Head-Neck and Surgery, Xiangya Hospital of Central South University, Changsha, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenjuan Zhang
- Department of Otolaryngology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Li
- Department of Pharmacy, Changsha Hospital of Traditional Medicine, Changsha, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Bai JP, Navaratnam D, Santos-Sacchi J. Prestin kinetics and corresponding frequency dependence augment during early development of the outer hair cell within the mouse organ of Corti. Sci Rep 2019; 9:16460. [PMID: 31712635 PMCID: PMC6848539 DOI: 10.1038/s41598-019-52965-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Several studies have documented the early development of OHC electromechanical behavior. The mechanical response (electromotility, eM) and its electrical correlate (nonlinear capacitance, NLC), resulting from prestin's voltage-sensor charge movement, increase over the course of several postnatal days in altricial animals. They increase until about p18, near the time of peripheral auditory maturity. The correspondence of auditory capabilities and prestin function indicates that mature activity of prestin occurs at this time. One of the major requirements of eM is its responsiveness across auditory frequencies. Here we evaluate the frequency response of prestin charge movement in mice over the course of development up to 8 months. We find that in apical turn OHCs prestin's frequency response increases during postnatal development and stabilizes when mature hearing is established. The low frequency component of NLC, within in situ explants, agrees with previously reported results on isolated cells. If prestin activity is independent of cochlear place, as might be expected, then these observations suggest that prestin activity somehow influences cochlear amplification at high frequencies in spite of its low pass behavior.
Collapse
Affiliation(s)
- Jun-Ping Bai
- Department of Neurology, Yale University School of Medicine, 333 Cedar St, New Haven CT, USA
| | - Dhasakumar Navaratnam
- Department of Surgery (Otolaryngology), Yale University School of Medicine, 333 Cedar St, New Haven CT, USA.,Department of Neuroscience, Yale University School of Medicine, 333 Cedar St, New Haven CT, USA.,Department of Neurology, Yale University School of Medicine, 333 Cedar St, New Haven CT, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, 333 Cedar St, New Haven CT, USA. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar St, New Haven CT, USA. .,Department of Neuroscience, Yale University School of Medicine, 333 Cedar St, New Haven CT, USA.
| |
Collapse
|
6
|
Advances in cochlear implantation for hereditary deafness caused by common mutations in deafness genes. JOURNAL OF BIO-X RESEARCH 2019. [DOI: 10.1097/jbr.0000000000000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
7
|
Burwood GWS, Fridberger A, Wang RK, Nuttall AL. Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quant Imaging Med Surg 2019; 9:858-881. [PMID: 31281781 PMCID: PMC6571188 DOI: 10.21037/qims.2019.05.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized physiological studies of the hearing organ, the vibration and morphology of which can now be measured without opening the surrounding bone. In this review, we provide an overview of OCT as used in the otological research, describing advances and different techniques in vibrometry, angiography, and structural imaging.
Collapse
Affiliation(s)
- George W. S. Burwood
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| | - Anders Fridberger
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
- Department of Clinical and Experimental Medicine, Section for Neurobiology, Linköping University, Linköping, Sweden
| | - Ruikang K. Wang
- Department of Bioengineering and Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfred L. Nuttall
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Xie L, Chen S, Xu K, Cao HY, Du AN, Bai X, Sun Y, Kong WJ. Reduced postnatal expression of cochlear Connexin26 induces hearing loss and affects the developmental status of pillar cells in a dose-dependent manner. Neurochem Int 2019; 128:196-205. [PMID: 31034913 DOI: 10.1016/j.neuint.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
Mutations in the GJB2 gene (which encodes Connexin26 (Cx26)) are the most common cause of non-syndromic deafness. Previous studies showed that an extensive knockout of the Gjb2 gene in cochlear epithelium can cause severe deafness, significant hair cell (HC) loss and failure of pillar cells (a type of supporting cell, PCs) to differentiate in mice. This study aimed to establish different mouse models with gradient reductions of cochlear Cx26 expression and to investigate the effect of different reduced levels of cochlear Cx26 expression on hearing and development of PCs. According to the reduction in the levels of cochlear Cx26, these models were named high knockdown (KD), middle KD and low KD group. In the low KD group, the mice showed normal hearing and well-developed PCs. In the high KD group, up to 90 percent of supporting cells (SCs) lost Cx26 expression. These mice exhibited severe deafness, rapid hair cell degeneration and juvenile PCs. In the middle KD group, nearly half of SCs lost Cx26 expression. However, these mice showed a moderate deafness and a late-onset hair cell loss. Moreover, nearly all the PCs in mice of this group were in a partially differentiated state. These results indicated that reduction of postnatal expression of cochlear Cx26 induces hearing loss in a dose-dependent manner. Null Cx26 in a few SCs affects the developmental status of PCs and the hair cell degeneration pattern. The abnormal developmental status of PCs may be a potential cause of Gjb2-related hearing loss.
Collapse
Affiliation(s)
- Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hai-Yan Cao
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Na Du
- Centre of Instrumental Analysis and Metrology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor. PLoS Genet 2018; 14:e1007552. [PMID: 30063705 PMCID: PMC6086484 DOI: 10.1371/journal.pgen.1007552] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion. The ongoing ATOH1 gene therapy clinical trial offers promise for hearing restoration in humans. However, in animal models, Atoh1-mediated sensory regeneration is inefficient and incomplete. Here we performed high-resolution gene expression profiling of single cochlear cells at multiple time points in a mouse model whereby we discovered a continuous regeneration process that leads to the formation of immature sensory cells. We identified 51 key reprogramming transcription factors that may increase the efficiency and completion of the regeneration process and confirmed that Isl1 in transgenic mice promotes Atoh1-mediated sensory regeneration as a co-reprogramming factor. Our studies identify molecular mechanisms and novel co-reprogramming factors for sensory restoration in humans with irreversible hearing loss.
Collapse
|
10
|
Horton SM, Luna Lopez C, Blevins E, Howarth H, Weisberg J, Shestopalov VI, Makarenkova HP, Shah SB. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves. Front Cell Neurosci 2017; 11:365. [PMID: 29213230 PMCID: PMC5702652 DOI: 10.3389/fncel.2017.00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/06/2017] [Indexed: 01/29/2023] Open
Abstract
The pannexin family of channels consists of three members—pannexin-1 (Panx1), pannexin-2 (Panx2), and pannexin-3 (Panx3) that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system) and PNS (peripheral nervous system), coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain) pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG) neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.
Collapse
Affiliation(s)
- Steven M Horton
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Carlos Luna Lopez
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Elisabeth Blevins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, United States
| | - Holly Howarth
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jake Weisberg
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | | | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|