1
|
Xue Y, Loranger MEW, Jia Y, Andoy NMO, Moeder W, Yoshioka K, Sullan RMA. Single-Cell Force Spectroscopy Uncovers Root Zone- and Bacteria-Specific Interactions. Angew Chem Int Ed Engl 2025; 64:e202419510. [PMID: 40014612 PMCID: PMC12051759 DOI: 10.1002/anie.202419510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Understanding root-bacteria interactions with plant growth-promoting rhizobacteria (PGPR) is key to developing effective biofertilizers for sustainable agriculture. We performed single-cell force spectroscopy using the atomic force microscope (AFM) to study the primary attachment of two PGPR, Bacillus velezensis and Pseudomonas defensor, to different regions of Arabidopsis thaliana roots. Force measurements with individual cells uncovered distinct attachment strategies by each strain, involving binding via micrometer-long polymers from both bacteria and root surfaces. Flagella differentially affected the binding interactions of each PGPR; their removal altered binding characteristics differently for each strain, highlighting the importance of flagella in early root colonization. Using silica beads to mimic the negatively charged bacteria, we demonstrated the influence of electrostatic forces on root-bacteria interactions. We also examined interactions with abiotic surfaces of varying surface energies, revealing the roles of hydrophilic and hydrophobic forces in initial binding. Our measurements show that differences in the physicochemical properties of bacteria and roots are responsible for variations in primary attachment strategies between PGPR strains and root regions. Parallel fluorescence measurements corroborated our AFM single-cell analysis. Overall, our results provide a nanoscale view of bacterial attachment to roots, offering key insights into how beneficial bacteria colonize roots, crucial for enhancing biofertilizer effectiveness.
Collapse
Affiliation(s)
- Yilei Xue
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| | - Mackenzie Eli W. Loranger
- Department of Cell and Systems BiologyUniversity of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
| | - Yifan Jia
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
- Present address:
Department of Biological EngineeringUniversity of Côte d'Azur930 Route des CollesBiot06410France
| | - Nesha May O. Andoy
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
| | - Wolfgang Moeder
- Department of Cell and Systems BiologyUniversity of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
| | - Keiko Yoshioka
- Department of Cell and Systems BiologyUniversity of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF)University of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
| | - Ruby May A. Sullan
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| |
Collapse
|
2
|
Bell J, Johnson S, Pugnet B, Tang JX. Bacteria can rotate while body tethered to a solid surface. Biophys J 2025:S0006-3495(25)00239-5. [PMID: 40253587 DOI: 10.1016/j.bpj.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/14/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025] Open
Abstract
The attachment of bacteria to solid surfaces has been studied primarily through the modes of pili or flagella tethering. We report on a common feature of tethering in pililess strains of three species of monotrichous bacteria-Vibrio alginolyticus, Pseudomonas aeruginosa, and Caulobacter crescentus-namely, that they may become tethered to the surface by their cell body rather than by a flagellum. These tethered bacteria rotate in alternating directions about a pivot point located under the cell body. Using high-intensity dark-field microscopy, we observed that, in most cases, the flagellum of a tethered Vibrio alginolyticus rotates together with the cell body. We name this distinct mode of attachment body tethering. Observing hundreds of rotating bacteria tethered to the surface, we find that body tethering is a more common mode of attachment than flagellum tethering for these three strains of bacteria. Our results confirm that body tethering is a key mechanism for the surface attachment of bacteria without pili. Recognizing body tethering as a robust mode of bacterial attachment to surfaces may have broad implications in the study of bacterial adhesion and biofilm formation.
Collapse
Affiliation(s)
- Jordan Bell
- Department of Physics, Brown University, Providence, Rhode Island; PhAST Corp., Boston, Massachusetts
| | - Silverio Johnson
- Department of Physics, Brown University, Providence, Rhode Island
| | - Brandon Pugnet
- Department of Physics, Brown University, Providence, Rhode Island
| | - Jay X Tang
- Department of Physics, Brown University, Providence, Rhode Island.
| |
Collapse
|
3
|
Liu YN, Liu XW. Nanoscale Spatiotemporal Dynamics of Microbial Adhesion: Unveiling Stepwise Transitions with Plasmonic Imaging. ACS NANO 2024; 18:16002-16010. [PMID: 38837910 DOI: 10.1021/acsnano.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Understanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique. This method reveals the discontinuous nature of adhesion, emphasizing the complex interplay between bacterial extracellular polymeric substances (EPS) and substrates. Our findings not only deepen our understanding of bacterial adhesion but also have significant implications for the development of theoretical models for biofilm management. By elucidating these nanoscale step-like adhesion processes, our work provides avenues for the application of nanotechnology in biosensing, biofilm control, and the creation of biomimetic materials.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Yang X, Xia S, Hao L, Tian D, Wang L, Chen R. Deciphering the behavior and potential mechanism of biochar at different pyrolysis temperatures to alleviate membrane biofouling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171638. [PMID: 38485027 DOI: 10.1016/j.scitotenv.2024.171638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Biofouling limits applications of membrane technology in wastewater treatment, but dosing additives to membrane tanks is an effective method to alleviate biofouling. In this study, biochar derived from corncob and pyrolyzed at 300, 500, and 700°C was dosed to determine the underlying anti-biofouling mechanism. The effects of the biochar on the membrane properties and foulant behavior were systematically investigated. The results showed that biochar delayed the occurrence of the fouling transition (0.5-3.0 h), and decreased the flux decline rate, thus achieving a higher water flux (3.1-3.7 times of the control group). Biochar altered membrane surface properties, and increased the membrane surface charge, roughness, and hydrophilicity, which all contributed to higher membrane permeability. Moreover, adding biochar reduced the number of foulants in the fouling layer, particularly protein substances. The flux model fit and the XDLVO theory further revealed the mitigating effect of biochar on membrane biofouling. At the initial intermediate-blocking stage, the effect of biochar on membrane fouling was determined by its properties, and adsorption capacity to the foulants, BC500 presented the best mitigation performance. At the later cake-filtration stage, the role of biochar in membrane fouling was strongly associated with protein content in the fouling layer, and the minimum rate of flux decline occurred in BC300. This study promotes the understanding and development of biochar to alleviate membrane biofouling.
Collapse
Affiliation(s)
- Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Silian Xia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Litu Hao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Duanyun Tian
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
5
|
Disturbing the Spatial Organization of Biofilm Communities Affects Expression of agr-Regulated Virulence Factors in Staphylococcus aureus. Appl Environ Microbiol 2023; 89:e0193222. [PMID: 36700647 PMCID: PMC9973005 DOI: 10.1128/aem.01932-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus uses quorum sensing and nutrient availability to control the expression of agr-regulated virulence factors. Quorum sensing is mediated by autoinducing peptide (AIP), which at a high concentration reduces expression of surface attachment proteins (coa, fnbpA) and increases expression of exotoxins (lukS) and proteases (splA). Nutrient availability can be sensed through the saeS/saeR system. Low nutrients increase expression of saeR, which augments expression of coa and fnbpA, distinct from the activity of AIP. The formation of spatial structure, such as biofilms, can alter quorum sensing and nutrient acquisition. In natural environments, biofilms encounter forces that may alter their spatial structure. These forces may impact quorum sensing and/or nutrient acquisition and thus affect the expression of agr-regulated virulence factors. However, this has not been studied. We show that periodically disturbing biofilms composed of S. aureus using a physical force affected the expression of agr-regulated virulence factors. In nutrient-poor environments, disturbance increased the expression of coa, fnbpA, lukS, and splA. Disturbance in a nutrient-rich environment at low or high disturbance amplitudes moderately reduced expression of coa and fnbpA but increased expression of lukS and splA. Interestingly, at an intermediate amplitude, the overall expression of agr-regulated virulence factors was the lowest; expression of lukS and splA remained unchanged relative to an undisturbed biofilm, while expression of coa and fnbpA significantly decreased. We hypothesize that these changes are a result of disturbance-driven changes in access to AIP and nutrients. Our results may allow the identification of environments where virulence is enhanced, or reduced, owing to a disturbance. IMPORTANCE Bacteria, such as Staphylococcus aureus, integrate signals from the environment to regulate genes encoding virulence factors. These signals include those produced by quorum-sensing systems and nutrient availability. We show that disturbing the spatial organization of S. aureus populations can lead to changes in the expression of virulence factors, likely by altering the ways in which S. aureus detects these signals. Our work may allow us to identify environments that increase or reduce the expression of virulence factors in S. aureus.
Collapse
|
6
|
Vigué A, Vautier D, Kaytoue A, Senger B, Arntz Y, Ball V, Ben Mlouka A, Gribova V, Hajjar-Garreau S, Hardouin J, Jouenne T, Lavalle P, Ploux L. Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness. J Funct Biomater 2022; 13:jfb13040237. [PMID: 36412878 PMCID: PMC9680287 DOI: 10.3390/jfb13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria's mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth.
Collapse
Affiliation(s)
- Annabelle Vigué
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Dominique Vautier
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amad Kaytoue
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Bernard Senger
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Youri Arntz
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Vincent Ball
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amine Ben Mlouka
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
| | - Varvara Gribova
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Samar Hajjar-Garreau
- Mulhouse Materials Science Institute, CNRS/Haute Alsace University, 68057 Mulhouse, France
| | - Julie Hardouin
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Thierry Jouenne
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Philippe Lavalle
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Lydie Ploux
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
- CNRS, 67037 Strasbourg, France
- Correspondence:
| |
Collapse
|
7
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
8
|
Senevirathne SWAI, Toh YC, Yarlagadda PKDV. Fluid Flow Induces Differential Detachment of Live and Dead Bacterial Cells from Nanostructured Surfaces. ACS OMEGA 2022; 7:23201-23212. [PMID: 35847259 PMCID: PMC9280952 DOI: 10.1021/acsomega.2c01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanotopographic surfaces are proven to be successful in killing bacterial cells upon contact. This non-chemical bactericidal property has paved an alternative way of fighting bacterial colonization and associated problems, especially the issue of bacteria evolving resistance against antibiotic and antiseptic agents. Recent advancements in nanotopographic bactericidal surfaces have made them suitable for many applications in medical and industrial sectors. The bactericidal effect of nanotopographic surfaces is classically studied under static conditions, but the actual potential applications do have fluid flow in them. In this study, we have studied how fluid flow can affect the adherence of bacterial cells on nanotopographic surfaces. Gram-positive and Gram-negative bacterial species were tested under varying fluid flow rates for their retention and viability after flow exposure. The total number of adherent cells for both species was reduced in the presence of flow, but there was no flowrate dependency. There was a significant reduction in the number of live cells remaining on nanotopographic surfaces with an increasing flowrate for both species. Conversely, we observed a flowrate-independent increase in the number of adherent dead cells. Our results indicated that the presence of flow differentially affected the adherent live and dead bacterial cells on nanotopographic surfaces. This could be because dead bacterial cells were physically pierced by the nano-features, whereas live cells adhered via physiochemical interactions with the surface. Therefore, fluid shear was insufficient to overcome adhesion forces between the surface and dead cells. Furthermore, hydrodynamic forces due to the flow can cause more planktonic and detached live cells to collide with nano-features on the surface, causing more cells to lyse. These results show that nanotopographic surfaces do not have self-cleaning ability as opposed to natural bactericidal nanotopographic surfaces, and nanotopographic surfaces tend to perform better under flow conditions. These findings are highly useful for developing and optimizing nanotopographic surfaces for medical and industrial applications.
Collapse
Affiliation(s)
- S. W.
M. A. Ishantha Senevirathne
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| | - Yi-Chin Toh
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| | - Prasad K. D. V. Yarlagadda
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| |
Collapse
|
9
|
Husmark J, Morgner B, Susilo YB, Wiegand C. Antimicrobial effects of bacterial binding to a dialkylcarbamoyl chloride-coated wound dressing: an in vitro study. J Wound Care 2022; 31:560-570. [PMID: 35797260 DOI: 10.12968/jowc.2022.31.7.560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Wound dressings that inactivate or sequestrate microorganisms, such as those with a hydrophobic, bacteria-binding dialkylcarbamoyl chloride (DACC) surface, can reduce the risk of clinical infections. This 'passive' bioburden control, avoiding bacterial cell wall disruption with associated release of bacterial endotoxins aggravating inflammation, is advantageous in hard-to-heal wounds. Hence, the full scope of DACC dressings, including the potential impact of higher inoculum densities, increased protein load and different pH on antibacterial activity, needs to be evaluated. METHOD The Japanese Industrial Standard (JIS) L 1902 challenge test was used to evaluate the antimicrobial activity of the DACC-coated dressing against several World Health Organization (WHO)-prioritised wound pathogens (e.g., meticillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, microorganisms with extended-spectrum beta-lactamases and Acinetobacter baumannii), the effect of repeated bacterial challenge in an adverse wound environment, and antimicrobial performance at wound-related pH. RESULTS High antibacterial activity of the DACC-coated dressing against the WHO-prioritised bacteria strains by its irreversible binding and inhibition of growth of bound bacteria was confirmed using JIS L 1902. At increased inoculation densities, compared to standard conditions, the DACC-coated dressing still achieved strong-to-significant antibacterial effects. Augmenting the media protein content also affected antibacterial performance; a 0.5-1 log reduction in antibacterial activity was observed upon addition of 10% fetal calf serum. The pH did not influence antibacterial performance. The DACC-coated dressing also sustained antibacterial activity over subsequent reinfection steps. CONCLUSION It can be assumed that the DACC-coated dressing exerts beneficial effects in controlling the wound bioburden, reducing the overall demand placed on antibiotics, without using antimicrobial substances.
Collapse
Affiliation(s)
| | - Bianka Morgner
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | | | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| |
Collapse
|
10
|
Mischo J, Faidt T, McMillan RB, Dudek J, Gunaratnam G, Bayenat P, Holtsch A, Spengler C, Müller F, Hähl H, Bischoff M, Hannig M, Jacobs K. Hydroxyapatite Pellets as Versatile Model Surfaces for Systematic Adhesion Studies on Enamel: A Force Spectroscopy Case Study. ACS Biomater Sci Eng 2022; 8:1476-1485. [PMID: 35263544 PMCID: PMC9007113 DOI: 10.1021/acsbiomaterials.1c00925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
Research into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required. The results, however, may be highly case-dependent because natural surfaces have the disadvantage of being subject to wide variations, for instance in their chemical composition, structure, morphology, roughness, and porosity. A synthetic surface which mimics enamel in its performance with respect to bacterial adhesion and biocompatibility would, therefore, facilitate systematic studies much better. In this study, we discuss the possibility of using hydroxyapatite (HAp) pellets to simulate the surfaces of teeth and show the possibility and limitations of using a model surface. We performed single-cell force spectroscopy with single Staphylococcus aureus cells to measure adhesion-related parameters such as adhesion force and rupture length of cell wall proteins binding to HAp and enamel. We also examine the influence of blood plasma and saliva on the adhesion properties of S. aureus. The results of these measurements are matched to water wettability, elemental composition of the samples, and the change in the macromolecules adsorbed over time on the surface. We found that the adhesion properties of S. aureus were similar on HAp and enamel samples under all conditions: Significant decreases in adhesion strength were found equally in the presence of saliva or blood plasma on both surfaces. We therefore conclude that HAp pellets are a good alternative for natural dental material. This is especially true when slight variations in the physicochemical properties of the natural materials may affect the experimental series.
Collapse
Affiliation(s)
- Johannes Mischo
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Thomas Faidt
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Ryan B. McMillan
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Johanna Dudek
- Clinic
of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg/Saar, Germany
| | - Gubesh Gunaratnam
- Institute
of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Pardis Bayenat
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Anne Holtsch
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Christian Spengler
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Frank Müller
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Hendrik Hähl
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Markus Bischoff
- Institute
of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic
of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg/Saar, Germany
| | - Karin Jacobs
- Experimental
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Lohmann SC, Tripathy A, Milionis A, Keller A, Poulikakos D. Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces. ACS APPLIED BIO MATERIALS 2022; 5:1564-1575. [PMID: 35176858 DOI: 10.1021/acsabm.1c01318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young's moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.
Collapse
Affiliation(s)
- Sophie C Lohmann
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Abinash Tripathy
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Anja Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
12
|
Roveto PM, Benavidez A, Schuler AJ. Effects of Methyl, Ester, and Amine Surface Groups on Microbial Activity and Communities in Nitrifying Biofilms. ACS APPLIED BIO MATERIALS 2022; 5:504-516. [PMID: 35090108 DOI: 10.1021/acsabm.1c00955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine how different attachment surface chemistries affected the initial and long-term performance and microbial populations of nitrifying biofilms under well-controlled hydrodynamic mixing conditions. While much previous research has focused on the effects of surface properties such as hydrophobicity on bacterial attachment in pure cultures, this study evaluated the effects of specific functional groups on mixed culture composition and functional behavior. Three surfaces with varying hydrophobicity and charge were evaluated for biofilm community development and performance: unmodified poly(dimethylsiloxane) (PDMS), which included terminal methyl groups and was relatively hydrophobic (P-Methyl), PDMS silanized with ester groups (P-Ester), which was uncharged and relatively hydrophilic, and PDMS modified with amine groups (P-Amine), which possessed a positive charge and was the most hydrophilic. The surface chemistries of the three attachment surfaces were characterized by contact angle goniometry, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). These surfaces were inoculated with dilute activated sludge, and biofilms were grown in rotating annular bioreactors for 80 days, with experimental triplicates. Nitrification rates increased most rapidly in P-Amine biofilm reactors, and their biofilm communities contained significantly more Nitrosomonas (p < 0.05) than those on the other surfaces in early growth stages (days 40-50). From days 50-60, the P-Amine surface biofilm had significantly higher nitrate production rates than the P-Methyl and P-Ester biofilms. The biofilms grown on the P-Amine and P-Methyl surfaces were significantly (p < 0.05) more diverse than the P-Ester biofilms, containing higher relative abundances of the order Rhizobiales, including a significantly higher abundance of the nitrifying genus Nitrobacter (p < 0.05), which coincided with higher rates of nitrate generation. Conversely, biofilms grown on the uncharged hydrophilic P-Ester surface were consistently less productive and had lower diversity than biofilms on the other surfaces. These results indicate that surface chemistry may be a useful design parameter to improve the performance of nitrifying biofilm systems for wastewater treatment and that surface chemistry affects mixed biofilm community composition.
Collapse
Affiliation(s)
- Philip M Roveto
- Garver, 2049 East Joyce Boulevard, Fayetteville, Arkansas 72703, United States
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, 1 University Boulevard, Albuquerque, New Mexico 87131, United States
| | - Andrew J Schuler
- Department of Civil, Construction, and Environmental Engineering, University of New Mexico, 1 University Boulevard, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
Spengler C, Nolle F, Thewes N, Wieland B, Jung P, Bischoff M, Jacobs K. Using Knock-Out Mutants to Investigate the Adhesion of Staphylococcus aureus to Abiotic Surfaces. Int J Mol Sci 2021; 22:11952. [PMID: 34769382 PMCID: PMC8584566 DOI: 10.3390/ijms222111952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/19/2022] Open
Abstract
The adhesion of Staphylococcus aureus to abiotic surfaces is crucial for establishing device-related infections. With a high number of single-cell force spectroscopy measurements with genetically modified S. aureus cells, this study provides insights into the adhesion process of the pathogen to abiotic surfaces of different wettability. Our results show that S. aureus utilizes different cell wall molecules and interaction mechanisms when binding to hydrophobic and hydrophilic surfaces. We found that covalently bound cell wall proteins strongly interact with hydrophobic substrates, while their contribution to the overall adhesion force is smaller on hydrophilic substrates. Teichoic acids promote adhesion to hydrophobic surfaces as well as to hydrophilic surfaces. This, however, is to a lesser extent. An interplay of electrostatic effects of charges and protein composition on bacterial surfaces is predominant on hydrophilic surfaces, while it is overshadowed on hydrophobic surfaces by the influence of the high number of binding proteins. Our results can help to design new models of bacterial adhesion and may be used to interpret the adhesion of other microorganisms with similar surface properties.
Collapse
Affiliation(s)
- Christian Spengler
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
| | - Friederike Nolle
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
| | - Nicolas Thewes
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
| | - Ben Wieland
- Institute of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg, Germany; (B.W.); (P.J.); (M.B.)
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg, Germany; (B.W.); (P.J.); (M.B.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg, Germany; (B.W.); (P.J.); (M.B.)
| | - Karin Jacobs
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Periodically Disturbing the Spatial Structure of Biofilms Can Affect the Production of an Essential Virulence Factor in Pseudomonas aeruginosa. mSystems 2021; 6:e0096121. [PMID: 34581603 PMCID: PMC8547473 DOI: 10.1128/msystems.00961-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the environmental factors that affect the production of virulence factors has major implications in evolution and medicine. While spatial structure is important in virulence factor production, observations of this relationship have occurred in undisturbed or continuously disturbed environments. However, natural environments are subject to periodic fluctuations, including changes in physical forces, which could alter the spatial structure of bacterial populations and impact virulence factor production. Using Pseudomonas aeruginosa PA14, we periodically applied a physical force to biofilms and examined production of pyoverdine. Intermediate frequencies of disturbance reduced the amount of pyoverdine produced compared to undisturbed or frequently disturbed conditions. To explore the generality of this finding, we examined how an intermediate disturbance frequency affected pyoverdine production in 21 different strains of P. aeruginosa. Periodic disturbance increased, decreased, or did not change the amount of pyoverdine produced relative to undisturbed populations. Mathematical modeling predicts that interactions between pyoverdine synthesis rate and biofilm density determine the amount of pyoverdine synthesized. When the pyoverdine synthesis rates are high, depletion of the biofilm due to disturbance reduces the accumulation of pyoverdine. At intermediate synthesis rates, production of pyoverdine increases during disturbance as bacteria dispersed into the planktonic state enjoy increased growth and pyoverdine production rates. At low synthesis rates, disturbance does not alter the amount of pyoverdine produced since disturbance-driven access to nutrients does not augment pyoverdine synthesis. Our results suggest that environmental conditions shape robustness in the production of virulence factors and may lead to novel approaches to treat infections. IMPORTANCE Virulence factors are required to cause infections. Previous work has shown that the spatial organization of a population, such as a biofilm, can increase the production of some virulence factors, including pyoverdine, which is produced by Pseudomonas aeruginosa. Pyoverdine is essential for the infection process, and reducing its production can limit infections. We have discovered that periodically changing the spatial structure of a biofilm of P. aeruginosa strain PA14 using a physical force can reduce the production of pyoverdine. A mathematical model suggests that this is due to the disruption of spatial organization. Using additional strains of P. aeruginosa isolated from patients and the environment, we use experiments and modeling to show that this reduction in pyoverdine is due to interactions between biofilm density and the synthesis rate of pyoverdine. Our results identify conditions where pyoverdine production is reduced and may lead to novel ways to treat infections.
Collapse
|
15
|
Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial attachment to surfaces is ubiquitous in nature. Most species of bacteria attach and adhere to surfaces via special appendages such as pili and fimbriae, the roles of which have been extensively studied. Here, we report an experiment on pilus-less mutants of Caulobacter crescentus weakly attached to polyethylene surface. We find that some individual cells transiently but repeatedly adhere to the surface in a stick-slip fashion in the presence of an electric field parallel to the surface. These bacteria move significantly slower than the unattached ones in the same field of view undergoing electrophoretic motion. We refer this behavior of repeated and transient attachment as “quasi-attachment”. The speed of the quasi-attached bacteria exhibits large variation, frequently dropping close to zero for short intervals of time. We propose a polymeric tethering model to account for the experimental findings. This study sheds light on bacteria–surface interaction, which is significant in broader contexts such as infection and environmental control.
Collapse
|
16
|
Ishak MI, Jenkins J, Kulkarni S, Keller TF, Briscoe WH, Nobbs AH, Su B. Insights into complex nanopillar-bacteria interactions: Roles of nanotopography and bacterial surface proteins. J Colloid Interface Sci 2021; 604:91-103. [PMID: 34265695 DOI: 10.1016/j.jcis.2021.06.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - J Jenkins
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - S Kulkarni
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - T F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany; Physics Department, University of Hamburg, Hamburg, Germany
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
17
|
Lalitha Sridhar S, Dunagin J, Koo K, Hough L, Vernerey F. Enhanced Diffusion by Reversible Binding to Active Polymers. Macromolecules 2021; 54:1850-1858. [PMID: 35663922 PMCID: PMC9161825 DOI: 10.1021/acs.macromol.0c02306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells are known to use reversible binding to active biopolymer networks to allow diffusive transport of particles in an otherwise impenetrable mesh. We here determine the motion of a particle that experiences random forces during binding and unbinding events while being constrained by attached polymers. Using Monte-Carlo simulations and a statistical mechanics model, we find that enhanced diffusion is possible with active polymers. However, this is possible only under optimum conditions that has to do with the relative length of the chains to that of the plate. For example, in systems where the plate is shorter than the chains, diffusion is maximum when many chains have the potential to bind but few remain bound at any one time. Interestingly, if the chains are shorter than the plate, we find that diffusion is maximized when more active chains remain transiently bound. The model provides insight into these findings by elucidating the mechanisms for binding-mediated diffusion in biology and design rules for macromolecular transport in transient synthetic polymers.
Collapse
Affiliation(s)
- Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeffrey Dunagin
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kanghyeon Koo
- Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Loren Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Franck Vernerey
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
19
|
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig 2020; 24:4237-4260. [PMID: 33111157 PMCID: PMC7666681 DOI: 10.1007/s00784-020-03646-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis. Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or propagation of microorganisms. OBJECTIVES AND FINDINGS The present paper depicts the current knowledge on the impact of different physicochemical surface characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or "easy-to-clean" surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacteriostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly in vivo or in situ studies were considered in the review. CONCLUSION Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenomenon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith hampers low-fouling strategies. CLINICAL RELEVANCE Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Ralf Helbig
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| |
Collapse
|
20
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
21
|
Streptococcus mutans adhesion force sensing in multi-species oral biofilms. NPJ Biofilms Microbiomes 2020; 6:25. [PMID: 32581220 PMCID: PMC7314845 DOI: 10.1038/s41522-020-0135-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria utilize chemical and mechanical mechanisms to sense their environment, to survive hostile conditions. In mechanical sensing, intra-bilayer pressure profiles change due to deformation induced by the adhesion forces bacteria experience on a surface. Emergent properties in mono-species Streptococcus mutans biofilms, such as extracellular matrix production, depend on the adhesion forces that streptococci sense. Here we determined whether and how salivary-conditioning film (SCF) adsorption and the multi-species nature of oral biofilm influence adhesion force sensing and associated gene expression by S. mutans. Hereto, Streptococcus oralis, Actinomyces naeslundii, and S. mutans were grown together on different surfaces in the absence and presence of an adsorbed SCF. Atomic force microscopy and RT-qPCR were used to measure S. mutans adhesion forces and gene expressions. Upon SCF adsorption, stationary adhesion forces decreased on a hydrophobic and increased on a hydrophilic surface to around 8 nN. Optical coherence tomography showed that triple-species biofilms on SCF-coated surfaces with dead S. oralis adhered weakly and often detached as a contiguous sheet. Concurrently, S. mutans displayed no differential adhesion force sensing on SCF-coated surfaces in the triple-species biofilms with dead S. oralis, but once live S. oralis were present S. mutans adhesion force sensing and gene expression ranked similar as on surfaces in the absence of an adsorbed SCF. Concluding, live S. oralis may enzymatically degrade SCF components to facilitate direct contact of biofilm inhabitants with surfaces and allow S. mutans adhesion force sensing of underlying surfaces to define its appropriate adaptive response. This represents a new function of initial colonizers in multi-species oral biofilms.
Collapse
|
22
|
Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers. mBio 2019; 10:mBio.01908-19. [PMID: 31506311 PMCID: PMC6737243 DOI: 10.1128/mbio.01908-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial adhesion is accompanied by altered gene expression, leading to "emergent" properties of biofilm bacteria that are alien to planktonic ones. With the aim of revealing the role of environmental adhesion forces in emergent biofilm properties, genes in Streptococcus mutans UA159 and a quorum-sensing-deficient mutant were identified that become expressed after adhesion to substratum surfaces. Using atomic force microscopy, adhesion forces of initial S. mutans colonizers on four different substrata were determined and related to gene expression. Adhesion forces upon initial contact were similarly low across different substrata, ranging between 0.2 and 1.2 nN regardless of the strain considered. Bond maturation required up to 21 s, depending on the strain and substratum surface involved, but stationary adhesion forces also were similar in the parent and in the mutant strain. However, stationary adhesion forces were largest on hydrophobic silicone rubber (19 to 20 nN), while being smallest on hydrophilic glass (3 to 4 nN). brpA gene expression in thin (34 to 48 μm) 5-h S. mutans UA159 biofilms was most sensitive to adhesion forces, while expression of gbpB and comDE expressions was weakly sensitive. ftf, gtfB, vicR, and relA expression was insensitive to adhesion forces. In thicker (98 to 151 μm) 24-h biofilms, adhesion-force-induced gene expression and emergent extracellular polymeric substance (EPS) production were limited to the first 20 to 30 μm above a substratum surface. In the quorum-sensing-deficient S. mutans, adhesion-force-controlled gene expression was absent in both 5- and 24-h biofilms. Thus, initial colonizers of substratum surfaces sense adhesion forces that externally trigger emergent biofilm properties over a limited distance above a substratum surface through quorum sensing.IMPORTANCE A new concept in biofilm science is introduced: "adhesion force sensitivity of genes," defining the degree up to which expression of different genes in adhering bacteria is controlled by the environmental adhesion forces they experience. Analysis of gene expression as a function of height in a biofilm showed that the information about the substratum surface to which initially adhering bacteria adhere is passed up to a biofilm height of 20 to 30 μm above a substratum surface, highlighting the importance and limitations of cell-to-cell communication in a biofilm. Bacteria in a biofilm mode of growth, as opposed to planktonic growth, are responsible for the great majority of human infections, predicted to become the number one cause of death in 2050. The concept of adhesion force sensitivity of genes provides better understanding of bacterial adaptation in biofilms, direly needed for the design of improved therapeutic measures that evade the recalcitrance of biofilm bacteria to antimicrobials.
Collapse
|
23
|
Hou J, Wang C, Rozenbaum RT, Gusnaniar N, de Jong ED, Woudstra W, Geertsema-Doornbusch GI, Atema-Smit J, Sjollema J, Ren Y, Busscher HJ, van der Mei HC. Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography. Sci Rep 2019; 9:9794. [PMID: 31278369 PMCID: PMC6611762 DOI: 10.1038/s41598-019-46196-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images. Auto- and re-scaled signal intensities could be qualitatively interpreted in line with biofilm characteristics for single and multi-species biofilms of different strains and species (cocci and rod-shaped organisms), demonstrating qualitative validity of auto- and re-scaling analyses. However, specific features of pseudomonas and oral multi-species biofilms were more prominently expressed after re-scaling. Quantitative validation was obtained by relating average auto- and re-scaled signal intensities across biofilm images with volumetric-bacterial-densities in biofilms, independently obtained using enumeration of bacterial numbers per unit biofilm volume. The signal intensities in auto-scaled biofilm images did not significantly relate with volumetric-bacterial-densities, whereas re-scaled intensities in images of biofilms of widely different strains and species increased linearly with independently determined volumetric-bacterial-densities in the biofilms. Herewith, the proposed re-scaling of signal intensity distributions in OCT-images significantly enhances the possibilities of biofilm imaging using OCT.
Collapse
Affiliation(s)
- Jiapeng Hou
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Can Wang
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - René T Rozenbaum
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Niar Gusnaniar
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Ed D de Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Willem Woudstra
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Gésinda I Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Jelly Atema-Smit
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, P.O. Box 196, 9700, AD, Groningen, The Netherlands.
| |
Collapse
|
24
|
Kolewe KW, Kalasin S, Shave M, Schiffman JD, Santore MM. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2019; 11:320-330. [PMID: 30595023 PMCID: PMC6771038 DOI: 10.1021/acsami.8b18302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface-associated transport of flowing bacteria, including cell rolling, is a mechanism for otherwise immobile bacteria to migrate on surfaces and could be associated with biofilm formation or the spread of infection. This work demonstrates how the moduli and/or local polymer concentration play critical roles in sustaining contact, dynamic adhesion, and transport of bacterial cells along a hydrogel or hydrated brush surface. In particular, stiffer more concentrated hydrogels and brushes maintained the greatest dynamic contact, still allowing cells to travel along the surface in flow. This study addressed how the mechanical properties, molecular architectures, and thicknesses of minimally adhesive poly(ethylene glycol) (PEG)-based coatings influence the flow-driven surface motion of Staphylococcus aureus MS2 cells. Three protein-repellant PEG-dimethylacrylate hydrogel films (∼100 μm thick) and two protein-repellant PEG brushes (8-16 nm thick) were sufficiently fouling-resistant to prevent the accumulation of flowing bacteria. However, the rolling or hopping-like motions of gently flowing S. aureus cells along the surfaces were specific to the particular hydrogel or brush, distinguishing these coatings in terms of their mechanical properties (with moduli from 2 to 1300 kPa) or local PEG concentrations (in the range 10-50% PEG). On the stiffer hydrogel coatings having higher PEG concentrations, S. aureus exhibited long runs of surface rolling, 20-50 μm in length, an increased tendency of cells to repeatedly return to some surfaces after rolling and escaping, and relatively long integrated contact times. By contrast, on the softer more dilute hydrogels, bacteria tended to encounter the surface for brief periods before escaping without return. The dynamic adhesion and motion signatures of the cells on the two brushes were bracketed by those on the soft and stiff hydrogels, demonstrating that PEG coating thickness was not important in these studies where the vertically oriented surfaces minimized the impact of gravitational forces. Control studies with similarly sized poly(ethylene oxide)-coated rigid spherical microparticles, that also did not arrest on the PEG coatings, established that the bacterial skipping and rolling signatures were specific to the S. aureus cells and not simply diffusive. Dynamic adhesion of the S. aureus cells on the PEG hydrogel surfaces correlated well with quiescent 24 h adhesion studies in the literature, despite the orientation of the flow studies that eliminated the influence of gravity on bacteria-coating normal forces.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Molly Shave
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
25
|
Carniello V, Peterson BW, van der Mei HC, Busscher HJ. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interface Sci 2018; 261:1-14. [PMID: 30376953 DOI: 10.1016/j.cis.2018.10.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Biofilm formation is initiated by adhesion of individual bacteria to a surface. However, surface adhesion alone is not sufficient to form the complex community architecture of a biofilm. Surface-sensing creates bacterial awareness of their adhering state on the surface and is essential to initiate the phenotypic and genotypic changes that characterize the transition from initial bacterial adhesion to a biofilm. Physico-chemistry has been frequently applied to explain initial bacterial adhesion phenomena, including bacterial mass transport, role of substratum surface properties in initial adhesion and the transition from reversible to irreversible adhesion. However, also emergent biofilm properties, such as production of extracellular-polymeric-substances (EPS), can be surface-programmed. This review presents a four-step, comprehensive description of the role of physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth: (1) bacterial mass transport towards a surface, (2) reversible bacterial adhesion and (3) transition to irreversible adhesion and (4) cell wall deformation and associated emergent properties. Bacterial transport mostly occurs from sedimentation or convective-diffusion, while initial bacterial adhesion can be described by surface thermodynamic and Derjaguin-Landau-Verwey-Overbeek (DLVO)-analyses, considering bacteria as smooth, inert colloidal particles. DLVO-analyses however, require precise indication of the bacterial cell surface, which is impossible due to the presence of bacterial surface tethers, creating a multi-scale roughness that impedes proper definition of the interaction distance in DLVO-analyses. Application of surface thermodynamics is also difficult, because initial bacterial adhesion is only an equilibrium phenomenon for a short period of time, when bacteria are attached to a substratum surface through few surface tethers. Physico-chemical bond-strengthening occurs in several minutes leading to irreversible adhesion due to progressive removal of interfacial water, conformational changes in cell surface proteins, re-orientation of bacteria on a surface and the progressive involvement of more tethers in adhesion. After initial bond-strengthening, adhesion forces arising from a substratum surface cause nanoscopic deformation of the bacterial cell wall against the elasticity of the rigid peptidoglycan layer positioned in the cell wall and the intracellular pressure of the cytoplasm. Cell wall deformation not only increases the contact area with a substratum surface, presenting another physico-chemical bond-strengthening mechanism, but is also accompanied by membrane surface tension changes. Membrane-located sensor molecules subsequently react to control emergent phenotypic and genotypic properties in biofilms, most notably adhesion-associated ones like EPS production. Moreover, also bacterial efflux pump systems may be activated or mechano-sensitive channels may be opened upon adhesion-induced cell wall deformation. The physico-chemical properties of the substratum surface thus control the response of initially adhering bacteria and through excretion of autoinducer molecules extend the awareness of their adhering state to other biofilm inhabitants who subsequently respond with similar emergent properties. Herewith, physico-chemistry is not only involved in initial bacterial adhesion to surfaces but also in what we here propose to call "surface-programmed" biofilm growth. This conclusion is pivotal for the development of new strategies to control biofilm formation on substratum surfaces, that have hitherto been largely confined to the initial bacterial adhesion phenomena.
Collapse
|
26
|
Adhesion of liquid food to packaging surfaces: Mechanisms, test methods, influencing factors and anti-adhesion methods. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design. MATERIALS 2018; 11:ma11071086. [PMID: 29949876 PMCID: PMC6073711 DOI: 10.3390/ma11071086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Various bacterial species cycle between growth phases and biofilm formation, of which the latter facilitates persistence in inhospitable environments. These phases can be generally characterized by one or more cellular phenotype(s), each with distinct virulence factor functionality. In addition, a variety of phenotypes can often be observed within the phases themselves, which can be dependent on host conditions or the presence of nutrient and oxygen gradients within the biofilm itself (i.e., microenvironments). Currently, most anti-biofilm strategies have targeted a single phenotype; this approach has driven effective, yet incomplete, protection due to the lack of consideration of gene expression dynamics throughout the bacteria’s pathogenesis. As such, this article provides an overview of the distinct phenotypes found within each biofilm development phase and demonstrates the unique anti-biofilm solutions each phase offers. However, we conclude that a combinatorial approach must be taken to provide complete protection against biofilm forming bacterial and their resulting diseases.
Collapse
|
28
|
van der Westen R, Sjollema J, Molenaar R, Sharma PK, van der Mei HC, Busscher HJ. Floating and Tether-Coupled Adhesion of Bacteria to Hydrophobic and Hydrophilic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4937-4944. [PMID: 29649869 PMCID: PMC5942874 DOI: 10.1021/acs.langmuir.7b04331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Models for bacterial adhesion to substratum surfaces all include uncertainty with respect to the (ir)reversibility of adhesion. In a model, based on vibrations exhibited by adhering bacteria parallel to a surface, adhesion was described as a result of reversible binding of multiple bacterial tethers that detach from and successively reattach to a surface, eventually making bacterial adhesion irreversible. Here, we use total internal reflection microscopy to determine whether adhering bacteria also exhibit variations over time in their perpendicular distance above surfaces. Streptococci with fibrillar surface tethers showed perpendicular vibrations with amplitudes of around 5 nm, regardless of surface hydrophobicity. Adhering, nonfibrillated streptococci vibrated with amplitudes around 20 nm above a hydrophobic surface. Amplitudes did not depend on ionic strength for either strain. Calculations of bacterial energies from their distances above the surfaces using the Boltzman equation showed that bacteria with fibrillar tethers vibrated as a harmonic oscillator. The energy of bacteria without fibrillar tethers varied with distance in a comparable fashion as the DLVO (Derjaguin, Landau, Verwey, and Overbeek)-interaction energy. Distance variations above the surface over time of bacteria with fibrillar tethers are suggested to be governed by the harmonic oscillations, allowed by elasticity of the tethers, piercing through the potential energy barrier. Bacteria without fibrillar tethers "float" above a surface in the secondary energy minimum, with their perpendicular displacement restricted by their thermal energy and the width of the secondary minimum. The distinction between "tether-coupled" and "floating" adhesion is new, and may have implications for bacterial detachment strategies.
Collapse
Affiliation(s)
- Rebecca van der Westen
- University
of Groningen, University Medical Center
Groningen, Department of Biomedical Engineering, Antonius Deusinglaan-1, 9713AV Groningen, The Netherlands
| | - Jelmer Sjollema
- University
of Groningen, University Medical Center
Groningen, Department of Biomedical Engineering, Antonius Deusinglaan-1, 9713AV Groningen, The Netherlands
| | - Robert Molenaar
- Nanobiophysics
group, Department of Science and Technology, University of Twente, P.O box 217, 7500AE Enschede, The Netherlands
| | - Prashant K. Sharma
- University
of Groningen, University Medical Center
Groningen, Department of Biomedical Engineering, Antonius Deusinglaan-1, 9713AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University
of Groningen, University Medical Center
Groningen, Department of Biomedical Engineering, Antonius Deusinglaan-1, 9713AV Groningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen, University Medical Center
Groningen, Department of Biomedical Engineering, Antonius Deusinglaan-1, 9713AV Groningen, The Netherlands
| |
Collapse
|
29
|
Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses. J Colloid Interface Sci 2018; 512:14-20. [DOI: 10.1016/j.jcis.2017.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023]
|
30
|
Physico-chemistry of bacterial transmission versus adhesion. Adv Colloid Interface Sci 2017; 250:15-24. [PMID: 29129313 DOI: 10.1016/j.cis.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor and receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.
Collapse
|