1
|
Chen Y, Barylko B, Eichorst J, Mueller J, Albanesi J. Identification of the GABARAP binding determinant in PI4K2A. Biosci Rep 2024; 44:BSR20240200. [PMID: 39344512 PMCID: PMC11499380 DOI: 10.1042/bsr20240200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion. Here, we identify a 7-amino acid segment within the PI4K2A catalytic domain that contains the GABARAP interaction motif (GIM). This segment resides in an exposed loop that is not conserved in the other mammalian Type II PI 4-kinase, PI4K2B, explaining the specificity of GABARAP binding to the PI4K2A isoform. Mutation of the PI4K2A GIM inhibits GABARAP binding and PI4K2A-mediated recruitment of cytosolic GABARAP to subcellular organelles. We further show that GABARAP binds to mono-phosphorylated phosphoinositides, PI3P, PI4P, and PI5P, raising the possibility that these lipids contribute to the binding energies that drive GABARAP-protein interactions on membranes.
Collapse
Affiliation(s)
- Yan Chen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - John P. Eichorst
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
2
|
Chen J, Zhao H, Liu M, Chen L. A new perspective on the autophagic and non-autophagic functions of the GABARAP protein family: a potential therapeutic target for human diseases. Mol Cell Biochem 2024; 479:1415-1441. [PMID: 37440122 DOI: 10.1007/s11010-023-04800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Mammalian autophagy-related protein Atg8, including the LC3 subfamily and GABARAP subfamily. Atg8 proteins play a vital role in autophagy initiation, autophagosome formation and transport, and autophagy-lysosome fusion. GABARAP subfamily proteins (GABARAPs) share a high degree of homology with LC3 family proteins, and their unique roles are often overlooked. GABARAPs are as indispensable as LC3 in autophagy. Deletion of GABARAPs fails autophagy flux induction and autophagy lysosomal fusion, which leads to the failure of autophagy. GABARAPs are also involved in the transport of selective autophagy receptors. They are engaged in various particular autophagy processes, including mitochondrial autophagy, endoplasmic reticulum autophagy, Golgi autophagy, centrosome autophagy, and dorphagy. Furthermore, GABARAPs are closely related to the transport and delivery of the inhibitory neurotransmitter γ-GABAA and the angiotensin II AT1 receptor (AT1R), tumor growth, metastasis, and prognosis. GABARAPs also have been confirmed to be involved in various diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In order to better understand the role and therapeutic potential of GABARAPs, this article comprehensively reviews the autophagic and non-autophagic functions of GABARAPs, as well as the research progress of the role and mechanism of GABARAPs in cancer, cardiovascular diseases and neurodegenerative diseases. It emphasizes the significance of GABARAPs in the clinical prevention and treatment of diseases, and may provide new therapeutic ideas and targets for human diseases. GABARAP and GABARAPL1 in the serum of cancer patients are positively correlated with the prognosis of patients, which can be used as a clinical biomarker, predictor and potential therapeutic target.
Collapse
Affiliation(s)
- Jiawei Chen
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong Zhao
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meiqing Liu
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Sawaged S, Mota T, Piplani H, Thakur R, Lall D, McCabe E, Seo S, Sutterwala FS, Feuer R, Gottlieb RA, Sin J. TBK1 and GABARAP family members suppress Coxsackievirus B infection by limiting viral production and promoting autophagic degradation of viral extracellular vesicles. PLoS Pathog 2022; 18:e1010350. [PMID: 36044516 PMCID: PMC9469980 DOI: 10.1371/journal.ppat.1010350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy. Coxsackievirus B (CVB) is a significant human enterovirus that can cause myocarditis, meningitis, and pancreatitis. The subversion of host immunity and mechanisms of viral dissemination are critical factors which promote pathogenesis. We had previously reported that following infection, CVB becomes engulfed by autophagosomes which evade lysosomal degradation and instead get released as infectious extracellular vesicles (EVs). In this current study, we report that in addition to its traditional role in interferon-mediated antiviral signaling, TANK-binding kinase (TBK1) is crucial in limiting viral production and EV-based viral egress through the autophagy pathway. Indeed, in the absence of TBK1, we observe (i) a disruption in autophagic flux, (ii) significant increases in intracellular viral burden and viral EV release, and (iii) elevated viral load in both in vitro and in vivo models of infection. EVs isolated from TBK1-deficient cells or mice treated with the TBK1-inhibitor Amlexanox were more infectious compared to controls. In all, the dual role TBK1 plays in suppressing viral escape in addition to mediating antiviral immunity makes it a promising therapeutic target for the treatment of CVB infection.
Collapse
Affiliation(s)
- Savannah Sawaged
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Thomas Mota
- The Center for Neural Science and Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Honit Piplani
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Reetu Thakur
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Deepti Lall
- The Center for Neural Science and Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth McCabe
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Soojung Seo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Fayyaz S. Sutterwala
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ralph Feuer
- The Integrated Regenerative Research Institute at San Diego State University, San Diego, California, United States of America
| | - Roberta A. Gottlieb
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jon Sin
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
- * E-mail:
| |
Collapse
|
4
|
Does GEC1 Enhance Expression and Forward Trafficking of the Kappa Opioid Receptor (KOR) via Its Ability to Interact with NSF Directly? Handb Exp Pharmacol 2022; 271:83-96. [PMID: 33404775 PMCID: PMC9126001 DOI: 10.1007/164_2020_398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We reported previously that GEC1 (glandular epithelial cell 1), a member of microtubule-associated proteins (MAPs), interacted directly with the C-tail of KOR (KCT) and tubulin and enhanced cell surface expression of KOR in CHO cells by facilitating its trafficking along the export pathway. Two GEC1 analogs (GABARAP and GATE16) were also shown to increase KOR expression. In addition, to understand the underlying mechanism, we demonstrated that N-ethylmaleimide-sensitive factor (NSF), an essential component for membrane fusion, co-immunoprecipitated with GEC1 from brain extracts. In this study, using pull-down techniques, we have found that (1) GEC1 interacts with NSF directly and prefers the ADP-bound NSF to the ATP-bound NSF; (2) D1 and/or D2 domain(s) of NSF interact with GEC1, but the N domain of NSF does not; (3) NSF does not interact with KCT directly, but forms a protein complex with KCT via GEC1; (4) NSF and/or α-SNAP do not affect KCT-GEC1 interaction. Thus, GEC1 (vs the α-SNAP/SNAREs complex) binds to NSF in distinctive ways in terms of the ADP- or ATP-bound form and domains of NSF involved. In conclusion, GEC1 may, via its direct interactions with KOR, NSF, and tubulin, enhance trafficking and fusion of KOR-containing vesicles selectively along the export pathway, which leads to increase in surface expression of KOR. GABARAP and GATE16 may enhance KOR expression in a similar way.
Collapse
|
5
|
Tóth D, Horváth GV, Juhász G. The interplay between pathogens and Atg8 family proteins: thousand-faced interactions. FEBS Open Bio 2021; 11:3237-3252. [PMID: 34670023 PMCID: PMC8634866 DOI: 10.1002/2211-5463.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular degradation and recycling process that can also remove pathogenic intracellular bacteria and viruses from within cells (referred to as xenophagy) and activate the adaptive immune responses. But autophagy-especially Atg proteins including Atg8 family members-can also have proviral and probacterial effects. In this review, we summarize known interactions of bacterial, parasitic, and viral proteins with Atg8 family proteins and the outcome of these interactions on pathogen replication, autophagy, or mitophagy. We discuss the value of prediction software and the research methodology in the study of pathogen protein-Atg8 family protein interactions, with selected examples of potential LC3-interacting region motif-containing SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Dávid Tóth
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gábor V Horváth
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Papoutsoglou G, Karaglani M, Lagani V, Thomson N, Røe OD, Tsamardinos I, Chatzaki E. Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets. Sci Rep 2021; 11:15107. [PMID: 34302024 PMCID: PMC8302755 DOI: 10.1038/s41598-021-94501-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 outbreak brings intense pressure on healthcare systems, with an urgent demand for effective diagnostic, prognostic and therapeutic procedures. Here, we employed Automated Machine Learning (AutoML) to analyze three publicly available high throughput COVID-19 datasets, including proteomic, metabolomic and transcriptomic measurements. Pathway analysis of the selected features was also performed. Analysis of a combined proteomic and metabolomic dataset led to 10 equivalent signatures of two features each, with AUC 0.840 (CI 0.723-0.941) in discriminating severe from non-severe COVID-19 patients. A transcriptomic dataset led to two equivalent signatures of eight features each, with AUC 0.914 (CI 0.865-0.955) in identifying COVID-19 patients from those with a different acute respiratory illness. Another transcriptomic dataset led to two equivalent signatures of nine features each, with AUC 0.967 (CI 0.899-0.996) in identifying COVID-19 patients from virus-free individuals. Signature predictive performance remained high upon validation. Multiple new features emerged and pathway analysis revealed biological relevance by implication in Viral mRNA Translation, Interferon gamma signaling and Innate Immune System pathways. In conclusion, AutoML analysis led to multiple biosignatures of high predictive performance, with reduced features and large choice of alternative predictors. These favorable characteristics are eminent for development of cost-effective assays to contribute to better disease management.
Collapse
Affiliation(s)
- Georgios Papoutsoglou
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
- Computer Science Department, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Makrina Karaglani
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Vincenzo Lagani
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
- Institute of Chemical Biology, Ilia State University, Kakutsa Cholokashvili Ave 3/5, 0162, Tbilisi, Georgia
| | - Naomi Thomson
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Oluf Dimitri Røe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Prinsesse Kristinsgt. 1, 7491, Trondheim, Norway
- Clinical Cancer Research Center, Department of Clinical Medicine, Aalborg University Hospital, Hobrovej 18-22, 9100, Aalborg, Denmark
| | - Ioannis Tsamardinos
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
- Computer Science Department, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
- Institute of Agri-Food and Life Sciences, Mediterranean University Research Centre, 71410, Heraklion, Crete, Greece.
| |
Collapse
|
7
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
8
|
Dobner J, Simons IM, Rufinatscha K, Hänsch S, Schwarten M, Weiergräber OH, Abdollahzadeh I, Gensch T, Bode JG, Hoffmann S, Willbold D. Deficiency of GABARAP but not its Paralogs Causes Enhanced EGF-induced EGFR Degradation. Cells 2020; 9:E1296. [PMID: 32456010 PMCID: PMC7291022 DOI: 10.3390/cells9051296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The γ-aminobutyric acid type A receptor-associated protein (GABARAP) and its close paralogs GABARAPL1 and GABARAPL2 constitute a subfamily of the autophagy-related 8 (Atg8) protein family. Being associated with a variety of dynamic membranous structures of autophagic and non-autophagic origin, Atg8 proteins functionalize membranes by either serving as docking sites for other proteins or by acting as membrane tethers or adhesion factors. In this study, we describe that deficiency for GABARAP alone, but not for its close paralogs, is sufficient for accelerated EGF receptor (EGFR) degradation in response to EGF, which is accompanied by the downregulation of EGFR-mediated MAPK signaling, altered target gene expression, EGF uptake, and EGF vesicle composition over time. We further show that GABARAP and EGFR converge in the same distinct compartments at endogenous GABARAP expression levels in response to EGF stimulation. Furthermore, GABARAP associates with EGFR in living cells and binds to synthetic peptides that are derived from the EGFR cytoplasmic tail in vitro. Thus, our data strongly indicate a unique and novel role for GABARAP during EGFR trafficking.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Thomas Gensch
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Silke Hoffmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| |
Collapse
|
9
|
Jatana N, Ascher DB, Pires DEV, Gokhale RS, Thukral L. Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modulations. Autophagy 2019; 16:239-255. [PMID: 30982432 DOI: 10.1080/15548627.2019.1606636] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a conserved adaptive cellular pathway essential to maintain a variety of physiological functions. Core components of this machinery are the six human Atg8 orthologs that initiate formation of appropriate protein complexes. While these proteins are routinely used as indicators of autophagic flux, it is presently not possible to discern their individual biological functions due to our inability to predict specific binding partners. In our attempts towards determining downstream effector functions, we developed a computational pipeline to define structural determinants of human Atg8 family members that dictate functional diversity. We found a clear evolutionary separation between human LC3 and GABARAP subfamilies and also defined a novel sequence motif responsible for their specificity. By analyzing known protein structures, we observed that functional modules or microclusters reveal a pattern of intramolecular network, including distinct hydrogen bonding of key residues (F52/Y49; a subset of HP2) that may directly modulate their interaction preferences. Multiple molecular dynamics simulations were performed to characterize how these proteins interact with a common protein binding partner, PLEKHM1. Our analysis showed remarkable differences in binding modes via intrinsic protein dynamics, with PLEKHM1-bound GABARAP complexes showing less fluctuations and higher number of contacts. We further mapped 373 genomic variations and demonstrated that distinct cancer-related mutations are likely to lead to significant structural changes. Our findings present a quantitative framework to establish factors underlying exquisite specificity of human Atg8 proteins, and thus facilitate the design of precise modulators.Abbreviations: Atg: autophagy-related; ECs: evolutionary constraints; GABARAP: GABA type A receptor-associated protein; HsAtg8: human Atg8; HP: hydrophobic pocket; KBTBD6: kelch repeat and BTB domain containing 6; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MD: molecular dynamics; HIV-1 Nef: human immunodeficiency virus type 1 negative regulatory factor; PLEKHM1: pleckstrin homology and RUN domain containing M1; RMSD: root mean square deviation; SQSTM1/p62: sequestosome 1; WDFY3/ALFY: WD repeat and FYVE domain containing 3.
Collapse
Affiliation(s)
- Nidhi Jatana
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry, University of Cambridge, Cambridgeshire, UK.,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Douglas E V Pires
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,National Institute of Immunology, New Delhi, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology, New Delhi, India.,Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Mohan J, Wollert T. Human ubiquitin-like proteins as central coordinators in autophagy. Interface Focus 2018; 8:20180025. [PMID: 30443326 DOI: 10.1098/rsfs.2018.0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
Autophagy is one of the most versatile recycling systems of eukaryotic cells. It degrades diverse cytoplasmic components such as organelles, protein aggregates, ribosomes and multi-enzyme complexes. Not surprisingly, any failure of autophagy or reduced activity of the pathway contributes to the onset of various pathologies, including neurodegeneration, cancer and metabolic disorders such as diabetes or immune diseases. Furthermore, autophagy contributes to the innate immune response and combats bacterial or viral pathogens. The hallmark of macroautophagy is the formation of a membrane sack that sequesters cytoplasmic cargo and delivers it to lysosomes for degradation. More than 40 autophagy-related (ATG) proteins have so far been identified. A unique protein-conjugation system represents one of the core components of this highly elaborate machinery. It conjugates six homologous ATG8 family proteins to the autophagic membrane. In this review, we summarize the current knowledge regarding the various functions of ATG8 proteins in autophagy and briefly discuss how physical approaches and in vitro reconstitution contributed in deciphering their function.
Collapse
Affiliation(s)
- Jagan Mohan
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
11
|
Chen Y, Sun HQ, Eichorst JP, Albanesi JP, Yin H, Mueller JD. Comobility of GABARAP and Phosphatidylinositol 4-Kinase 2A on Cytoplasmic Vesicles. Biochemistry 2018; 57:3556-3559. [PMID: 29792687 DOI: 10.1021/acs.biochem.8b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously reported that recruitment of the type IIA phosphatidylinositol 4-kinase (PI4K2A) to autophagosomes by GABARAP, a member of the Atg8 family of autophagy-related proteins, is important for autophagosome-lysosome fusion. Because both PI4K2A and GABARAP have also been implicated in the intracellular trafficking of plasma membrane receptors in the secretory/endocytic pathway, we characterized their interaction in cells under nonautophagic conditions. Fluorescence fluctuation spectroscopy measurements revealed that GABARAP exists predominantly as a cytosolic monomer in live cells, but is recruited to small cytoplasmic vesicles upon overexpression of PI4K2A. C-Terminal lipidation of GABARAP, which is essential for its autophagic activities, is not necessary for its recruitment to these PI4K2A-containing transport vesicles. However, a GABARAP truncation mutant lacking C-terminal residues 103-117 fails to bind to PI4K2A, is not recruited to cytoplasmic vesicles, and does not codistribute with PI4K2A on subcellular organelles. These observations suggest that the PI4K2A-GABARAP interaction plays a role in membrane trafficking both under autophagic and nonautophagic conditions.
Collapse
Affiliation(s)
- Yan Chen
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - John P Eichorst
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | | | - Joachim D Mueller
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
12
|
Abdollahzadeh I, Schwarten M, Gensch T, Willbold D, Weiergräber OH. The Atg8 Family of Proteins-Modulating Shape and Functionality of Autophagic Membranes. Front Genet 2017; 8:109. [PMID: 28894458 PMCID: PMC5581321 DOI: 10.3389/fgene.2017.00109] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process involving an accumulation of alterations on various organizational levels, which finally compromises viability and limits the lifespan of organisms. It is now well-established that many aspects of aging can be positively affected by (macro)autophagy, a mechanism of self-digestion found in virtually all eukaryotic cells. A comprehensive understanding of autophagy is thus expected to not only deepen our insight into the mechanisms of aging but to also open up new avenues toward increasing the healthy lifespan in humans. In this review, we focus on the Atg8 family of ubiquitin-like proteins, which play a crucial role in the autophagy process by virtue of their unique mode of reversible membrane association.
Collapse
Affiliation(s)
- Iman Abdollahzadeh
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany.,Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Melanie Schwarten
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany.,Institut für Physikalische Biologie und Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Oliver H Weiergräber
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany
| |
Collapse
|