1
|
Schwarz EM, Noon JB, Chicca JD, Garceau C, Li H, Antoshechkin I, Ilík V, Pafčo B, Weeks AM, Homan EJ, Ostroff GR, Aroian RV. Hookworm genes encoding intestinal excreted-secreted proteins are transcriptionally upregulated in response to the host's immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636063. [PMID: 39975173 PMCID: PMC11838427 DOI: 10.1101/2025.02.01.636063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hookworms are intestinal parasitic nematodes that chronically infect ~500 million people, with reinfection common even after clearance by drugs. How infecting hookworms successfully overcome host protective mechanisms is unclear, but it may involve hookworm proteins that digest host tissues, or counteract the host's immune system, or both. To find such proteins in the zoonotic hookworm Ancylostoma ceylanicum, we identified hookworm genes encoding excreted-secreted (ES) proteins, hookworm genes preferentially expressed in the hookworm intestine, and hookworm genes whose transcription is stimulated by the host immune system. We collected ES proteins from adult hookworms harvested from hamsters; mass spectrometry identified 565 A. ceylanicum genes encoding ES proteins. We also used RNA-seq to identify A. ceylanicum genes expressed both in young adults (12 days post-infection) and in intestinal and non-intestinal tissues dissected from mature adults (19 days post-infection), with hamster hosts that either had normal immune systems or were immunosuppressed by dexamethasone. In adult A. ceylanicum, we observed 1,670 and 1,196 genes with intestine- and non-intestine-biased expression, respectively. Comparing hookworm gene activity in normal versus immunosuppressed hosts, we observed almost no changes of gene activity in 12-day young adults or non-intestinal 19-day adult tissues. However, in intestinal 19-day adult tissues, we observed 1,951 positively immunoregulated genes (upregulated at least two-fold in normal hosts versus immunosuppressed hosts), and 137 genes that were negatively immunoregulated. Thus, immunoregulation was observed primarily in mature adult hookworm intestine directly exposed to host blood; it may include hookworm genes activated in response to the host immune system in order to neutralize the host immune system. We observed 153 ES genes showing positive immunoregulation in 19-day adult intestine; of these genes, 69 had ES gene homologs in the closely related hookworm Ancylostoma caninum, 24 in the human hookworm Necator americanus, and 24 in the more distantly related strongylid parasite Haemonchus contortus. Such a mixture of rapidly evolving and conserved genes could comprise virulence factors enabling infection, provide new targets for drugs or vaccines against hookworm, and aid in developing therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey D. Chicca
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, 413 Bock Labs, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Carli Garceau
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Leveragen Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - E. Jane Homan
- ioGenetics LLC, 301 South Bedford Street, Ste.1, Madison, WI, 53703, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
2
|
Mendonça M, Vicente CSL, Espada M. Functional Characterization of ShK Domain-Containing Protein in the Plant-Parasitic Nematode Bursaphelenchus xylophilus. PLANTS (BASEL, SWITZERLAND) 2024; 13:404. [PMID: 38337937 PMCID: PMC10857297 DOI: 10.3390/plants13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
ShK domain-containing proteins are peptides found in different parasitic and venomous organisms. From a previous transcriptomic dataset from Bursaphelenchus xylophilus, a plant-parasitic nematode that infects forest tree species, we identified 96 transcripts potentially as ShK domain-containing proteins with unknown function in the nematode genome. This study aimed to characterize and explore the functional role of genes encoding ShK domain-containing proteins in B. xylophilus biology. We selected and functionally analyzed nine candidate genes that are putatively specific to B. xylophilus. In situ hybridization revealed expression of one B. xylophilus ShK in the pharyngeal gland cells, suggesting their delivery into host cells. Most of the transcripts are highly expressed during infection and showed a significant upregulation in response to peroxide products compared to the nematode catalase enzymes. We reported, for the first time, the potential involvement of ShK domain genes in oxidative stress, suggesting that these proteins may have an important role in protecting or modulating the reactive oxygen species (ROS) activity of the host plant during parasitism.
Collapse
Affiliation(s)
| | | | - Margarida Espada
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies, and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.M.); (C.S.L.V.)
| |
Collapse
|
3
|
Sounart H, Voronin D, Masarapu Y, Chung M, Saarenpää S, Ghedin E, Giacomello S. Miniature spatial transcriptomics for studying parasite-endosymbiont relationships at the micro scale. Nat Commun 2023; 14:6500. [PMID: 37838705 PMCID: PMC10576761 DOI: 10.1038/s41467-023-42237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.
Collapse
Affiliation(s)
- Hailey Sounart
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sami Saarenpää
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stefania Giacomello
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
4
|
Hassan SU, Chua EG, Paz EA, Tay CY, Greeff JC, Palmer DG, Dudchenko O, Aiden EL, Martin GB, Kaur P. Chromosome-length genome assembly of Teladorsagia circumcincta - a globally important helminth parasite in livestock. BMC Genomics 2023; 24:74. [PMID: 36792983 PMCID: PMC9933375 DOI: 10.1186/s12864-023-09172-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Gastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals. Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T. circumcincta has developed resistance, as have many helminths. Vaccination offers a sustainable and practical solution, but there is no commercially available vaccine to prevent Teladorsagiosis. The discovery of new strategies for controlling T. circumcincta, such as novel vaccine targets and drug candidates, would be greatly accelerated by the availability of better quality, chromosome-length, genome assembly because it would allow the identification of key genetic determinants of the pathophysiology of infection and host-parasite interaction. The available draft genome assembly of T. circumcincta (GCA_002352805.1) is highly fragmented and thus impedes large-scale investigations of population and functional genomics. RESULTS We have constructed a high-quality reference genome, with chromosome-length scaffolds, by purging alternative haplotypes from the existing draft genome assembly and scaffolding the result using chromosome conformation, capture-based, in situ Hi-C technique. The improved (Hi-C) assembly resulted in six chromosome-length scaffolds with length ranging from 66.6 Mbp to 49.6 Mbp, 35% fewer sequences and reduction in size. Substantial improvements were also achieved in both the values for N50 (57.1 Mbp) and L50 (5 Mbp). A higher and comparable level of genome and proteome completeness was achieved for Hi-C assembly on BUSCO parameters. The Hi-C assembly had a greater synteny and number of orthologs with a closely related nematode, Haemonchus contortus. CONCLUSION This improved genomic resource is suitable as a foundation for the identification of potential targets for vaccine and drug development.
Collapse
Affiliation(s)
- Shamshad Ul Hassan
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Crawley, WA, Australia
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Eng Guan Chua
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Erwin A Paz
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Crawley, WA, Australia
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chin Yen Tay
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Johan C Greeff
- Department of Primary Industries and Regional Development, Western Australia 3 Baron Hay Court, South Perth, 6151, WA, Australia
| | - Dieter G Palmer
- Department of Primary Industries and Regional Development, Western Australia 3 Baron Hay Court, South Perth, 6151, WA, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, 77030, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, 77005, Houston, TX, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, 77030, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, 77005, Houston, TX, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Graeme B Martin
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Crawley, WA, Australia.
| |
Collapse
|
5
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
6
|
ShK-Domain-Containing Protein from a Parasitic Nematode Modulates Drosophila melanogaster Immunity. Pathogens 2022; 11:pathogens11101094. [PMID: 36297151 PMCID: PMC9610955 DOI: 10.3390/pathogens11101094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
A key component to understanding host–parasite interactions is the molecular crosstalk between host and parasite. Excreted/secreted products (ESPs) released by parasitic nematodes play an important role in parasitism. They can directly damage host tissue and modulate host defense. Steinernema carpocapsae, a well-studied parasite of insects releases approximately 500 venom proteins as part of the infection process. Though the identity of these proteins is known, few have been studied in detail. One protein family present in the ESPs released by these nematodes is the ShK family. We studied the most abundant ShK-domain-containing protein in S. carpocapsae ESPs, Sc-ShK-1, to investigate its effects in a fruit fly model. We found that Sc-ShK-1 is toxic under high stress conditions and negatively affects the health of fruit flies. We have shown that Sc-ShK-1 contributes to host immunomodulation in bacterial co-infections resulting in increased mortality and microbial growth. This study provides an insight on ShK-domain-containing proteins from nematodes and suggests these proteins may play an important role in host–parasite interactions.
Collapse
|
7
|
Kumar A, Joshi I, Changwal C, Sirohi A, Jain PK. Host-delivered RNAi-mediated silencing of the root-knot nematode (Meloidogyne incognita) effector genes, Mi-msp10 and Mi-msp23, confers resistance in Arabidopsis and impairs reproductive ability of the root-knot nematode. PLANTA 2022; 256:74. [PMID: 36083352 DOI: 10.1007/s00425-022-03977-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mi-msp10 and Mi-msp23 effector genes play a significant role during Meloidogyne incognita parasitism on Arabidopsis roots. The role of these genes was confirmed by demonstrating the decrease of the level of susceptibility of Arabidopsis by the silencing of Mi-msp10 and Mi-msp23 genes using HD-RNAi technology. Root-knot nematodes (RKNs) are the most damaging pathogens severely affecting global food production. The sustainable options to minimize menace of nematode populations through economically feasible measures are limited. Thus, the development of innovative and target-specific strategies that aid in their management is imperative. RNAi technology has emerged as a sustainable and target-specific alternative to control phytonematodes. Here, we characterized two novel subventral gland and dorsal gland-specific effectors, Mi-msp10 and Mi-msp23, to determine their potential effectiveness in controlling M. incognita. Comparative developmental profiling using qRT-PCR revealed higher expression of both effectors in the adult nematode female. Furthermore, functional evaluation of Mi-msp10 and Mi-msp23 dsRNA cassettes was performed using host-delivered RNAi (HD-RNAi) in Arabidopsis. The transgenic lines were examined against M. incognita, and the phenotypic effect of HD-RNAi was evident with a 61% and 51% reduction in gall formation in the Mi-msp10 and Mi-msp23 RNAi lines, respectively. A significant drop in the nematode adult females by 59% for Mi-msp10 and 49% for Mi-msp23-RNAi lines was observed. Similarly, production in egg masses decreased significantly by 76% (Mi-msp10) and 60% (Mi-msp23) for the RNAi lines, which eventually decreased the reproductive factor by 92% and 75%, respectively. The gene expression analysis showed a significant decrease in the transcript level by up to 72% (Mi-msp10) and 66% (Mi-msp23) in M. incognita females feeding on RNAi lines, providing further evidence of effective gene silencing. Overall, our findings provide useful information and support further development of RNAi-based strategies to control M. incognita.
Collapse
Affiliation(s)
- Anil Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Ila Joshi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Chunoti Changwal
- ICAR-IARI, Division of Plant Physiology, New Delhi, 110012, India
| | - Anil Sirohi
- ICAR-IARI, Division of Nematology, New Delhi, 110012, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
8
|
Moysidou CM, Withers AM, Nisbet AJ, Price DRG, Bryant CE, Cantacessi C, Owens RM. Investigation of Host-Microbe-Parasite Interactions in an In Vitro 3D Model of the Vertebrate Gut. Adv Biol (Weinh) 2022; 6:e2200015. [PMID: 35652159 DOI: 10.1002/adbi.202200015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Indexed: 01/28/2023]
Abstract
In vitro models of the gut-microbiome axis are in high demand. Conventionally, intestinal monolayers grown on Transwell setups are used to test the effects of commensals/pathogens on the barrier integrity, both under homeostatic and pathophysiological conditions. While such models remain valuable for deepening the understanding of host-microbe interactions, often, they lack key biological components that mediate this intricate crosstalk. Here, a 3D in vitro model of the vertebrate intestinal epithelium, interfaced with immune cells surviving in culture for over 3 weeks, is developed and applied to proof-of-concept studies of host-microbe interactions. More specifically, the establishment of stable host-microbe cocultures is described and functional and morphological changes in the intestinal barrier induced by the presence of commensal bacteria are shown. Finally, evidence is provided that the 3D vertebrate gut models can be used as platforms to test host-microbe-parasite interactions. Exposure of gut-immune-bacteria cocultures to helminth "excretory/secretory products" induces in vivo-like up-/down-regulation of certain cytokines. These findings support the robustness of the modular in vitro cell systems for investigating the dynamics of host-microbe crosstalk and pave the way toward new approaches for systems biology studies of pathogens that cannot be maintained in vitro, including parasitic helminths.
Collapse
Affiliation(s)
- Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| | - Aimee M Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| |
Collapse
|
9
|
Liu W, McNeilly TN, Mitchell M, Burgess STG, Nisbet AJ, Matthews JB, Babayan SA. Vaccine-induced time- and age-dependent mucosal immunity to gastrointestinal parasite infection. NPJ Vaccines 2022; 7:78. [PMID: 35798788 PMCID: PMC9262902 DOI: 10.1038/s41541-022-00501-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Individuals vary broadly in their response to vaccination and subsequent challenge infection, with poor vaccine responders causing persistence of both infection and transmission in populations. Yet despite having substantial economic and societal impact, the immune mechanisms that underlie such variability, especially in infected tissues, remain poorly understood. Here, to characterise how antihelminthic immunity at the mucosal site of infection developed in vaccinated lambs, we inserted gastric cannulae into the abomasa of three-month- and six-month-old lambs and longitudinally analysed their local immune response during subsequent challenge infection. The vaccine induced broad changes in pre-challenge abomasal immune profiles and reduced parasite burden and egg output post-challenge, regardless of age. However, age affected how vaccinated lambs responded to infection across multiple immune pathways: adaptive immune pathways were typically age-dependent. Identification of age-dependent and age-independent protective immune pathways may help refine the formulation of vaccines, and indicate specificities of pathogen-specific immunity more generally.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Tom N McNeilly
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.
| | - Mairi Mitchell
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Stewart T G Burgess
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Alasdair J Nisbet
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Jacqueline B Matthews
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.,Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Easter Bush, Scotland, EH25 9RG, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK. .,The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.
| |
Collapse
|
10
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
11
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
12
|
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics 2020; 21:404. [PMID: 32546190 PMCID: PMC7296530 DOI: 10.1186/s12864-020-6705-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. Results An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. Conclusions In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia.
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Hana Pecková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| |
Collapse
|
13
|
Price DRG, Nisbet AJ, Frew D, Bartley Y, Oliver EM, McLean K, Inglis NF, Watson E, Corripio-Miyar Y, McNeilly TN. Characterisation of a niche-specific excretory-secretory peroxiredoxin from the parasitic nematode Teladorsagia circumcincta. Parasit Vectors 2019; 12:339. [PMID: 31292008 PMCID: PMC6617597 DOI: 10.1186/s13071-019-3593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background The primary cause of parasitic gastroenteritis in small ruminants in temperate regions is the brown stomach worm, Teladorsagia circumcincta. Host immunity to this parasite is slow to develop, consistent with the ability of T. circumcincta to suppress the host immune response. Previous studies have shown that infective fourth-stage T. circumcincta larvae produce excretory–secretory products that are able to modulate the host immune response. The objective of this study was to identify immune modulatory excretory–secretory proteins from populations of fourth-stage T. circumcincta larvae present in two different host-niches: those associated with the gastric glands (mucosal-dwelling larvae) and those either loosely associated with the mucosa or free-living in the lumen (lumen-dwelling larvae). Results In this study excretory–secretory proteins from mucosal-dwelling and lumen-dwelling T. circumcincta fourth stage larvae were analysed using comparative 2-dimensional gel electrophoresis. A total of 17 proteins were identified as differentially expressed, with 14 proteins unique to, or enriched in, the excretory–secretory proteins of mucosal-dwelling larvae. One of the identified proteins, unique to mucosal-dwelling larvae, was a putative peroxiredoxin (T. circumcincta peroxiredoxin 1, Tci-Prx1). Peroxiredoxin orthologs from the trematode parasites Schistosoma mansoni and Fasciola hepatica have previously been shown to alternatively activate macrophages and play a key role in promoting parasite induced Th2 type immunity. Here we demonstrate that Tci-Prx1 is expressed in all infective T. circumcincta life-stages and, when produced as a recombinant protein, has peroxidase activity, whereby hydrogen peroxide (H2O2) is reduced and detoxified. Furthermore, we use an in vitro macrophage stimulation assay to demonstrate that, unlike peroxiredoxins from trematode parasites Schistosoma mansoni and Fasciola hepatica, Tci-Prx1 is unable to alternatively activate murine macrophage cells. Conclusions In this study, we identified differences in the excretory–secretory proteome of mucosal-dwelling and lumen-dwelling infective fourth-stage T. circumcincta larvae, and demonstrated the utility of this comparative proteomic approach to identify excretory–secretory proteins of potential importance for parasite survival and/or host immune modulation. Electronic supplementary material The online version of this article (10.1186/s13071-019-3593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK.
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Yvonne Bartley
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - E Margaret Oliver
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Neil F Inglis
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | | | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
14
|
Tanaka SE, Dayi M, Maeda Y, Tsai IJ, Tanaka R, Bligh M, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N, Kikuchi T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep 2019; 9:6080. [PMID: 30988401 PMCID: PMC6465311 DOI: 10.1038/s41598-019-42570-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.
Collapse
Affiliation(s)
- Suguru E Tanaka
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Mehmet Dayi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Bligh
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuko Takeuchi-Kaneko
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, 612-0855, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
15
|
Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog 2018; 14:e1007300. [PMID: 30335852 PMCID: PMC6193718 DOI: 10.1371/journal.ppat.1007300] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite causing considerable damage to host tissue at the onset of parasitism, invasive helminths establish remarkably persistent infections in both animals and plants. Secretions released by these obligate parasites during host invasion are thought to be crucial for their persistence in infection. Helminth secretions are complex mixtures of molecules, most of which have unknown molecular targets and functions in host cells or tissues. Although the habitats of animal- and plant-parasitic helminths are very distinct, their secretions share the presence of a structurally conserved group of proteins called venom allergen-like proteins (VALs). Helminths abundantly secrete VALs during several stages of parasitism while inflicting extensive damage to host tissue. The tight association between the secretion of VALs and the onset of parasitism has triggered a particular interest in this group of proteins, as improved knowledge on their biological functions may assist in designing novel protection strategies against parasites in humans, livestock, and important food crops.
Collapse
|