1
|
Zhang C, Guo H, Li Z, Yue S. Evolution of phenylalanine ammonia-lyase protein family from algae to angiosperm. Funct Integr Genomics 2025; 25:40. [PMID: 39966266 DOI: 10.1007/s10142-025-01548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Phenylpropanes, the precursors of various phenolic compounds in plants, are widely distributed. Phenylalanine ammonia-lyase (PAL) is the main enzyme that catalyzes the early step of the phenylpropanoid pathway to generate trans-cinnamic acid, which is the common precursor for the lignin and flavonoid biosynthetic pathways. Therefore, in this study, we focused on PAL evolution. A total of 584 PAL-like protein sequences were obtained, and only two PAL-like genes were found in algae, primary. Three main groups are separated by their different evolutionary stages. Group I mainly cluster ancient plants, and groups II and III are formed by angiosperms, which separate monocots (group II) and eudicots (group III). According to the sequence alignment, five main differences in amino acids may correlate with this separation, which involve the change of amino acid phosphorylation. The prediction analysis of GO and KEGG annotation information of each PAL protein showed that the proteins were clustered in cytoplasm and correlated with phenylalanine ammonia-lyase activity. Our results suggested that the PAL enzyme family expanded alongside the development of vascular tissues and underwent duplication events that facilitated gene cluster expansion and phenotypic diversity. Analysis of a reassembled and publicly available gene database confirmed that only two PAL genes were present in algae, whereas land plants possess a significantly greater number of PAL-like genes. This expansion is closely of PAL genes in land plants is closely associated with gene duplication events occurring at various evolutionary stages after algae plants. Futhermore, investigation into miRNAs revealed limited specificity across the plant evolution spectrum, with their primary role being the regulation and modulation of gene function. Additionally, analysis of PAL proteins across the plant kingdom ultimately elucidates that the evolution of their functions is intricately linked to the widespread distribution of cis-acting elements. This evolutionary trajectory reflected the natural selection processes that plants had undergone over time to enhance their eadaptability to diverse environments. These findings provide a valuable reference for future research into the functional evolution of PAL genes and their role in .plant adaptation and phenotypic diversity.
Collapse
Affiliation(s)
- Chao Zhang
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043.
| | - Huan Guo
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043
| | - Zhongling Li
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043
| | - Shuning Yue
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043
| |
Collapse
|
2
|
Dutilloy E, Arias AA, Richet N, Guise JF, Duban M, Leclere V, Selim S, Jacques P, Jacquard C, Clément C, Ait Barka E, Esmaeel Q. Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance. Appl Microbiol Biotechnol 2024; 108:64. [PMID: 38189957 DOI: 10.1007/s00253-023-12864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 01/09/2024]
Abstract
Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.
Collapse
Affiliation(s)
- Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Anthony Arguëlles Arias
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nicolas Richet
- Université de Reims Champagne Ardenne, Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, URCA/INERIS, UFR Sciences Exactes Et Naturelles, Reims, France
| | - Jean-François Guise
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Matthieu Duban
- Université de Lille, Université de Liège, UMRT, 1158 BioEcoAgro, Institut Charles Viollette, 59000, Lille, France
| | - Valérie Leclere
- Université de Lille, Université de Liège, UMRT, 1158 BioEcoAgro, Institut Charles Viollette, 59000, Lille, France
| | - Sameh Selim
- AGHYLE UP 2018.C101, SFR Condorcet FR CNRS 3417, Institut Polytechnique UniLaSalle, 19 Rue Pierre Waguet, BP 30313, F-60026, Beauvais Cedex, France
| | - Philippe Jacques
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Christophe Clément
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Essaïd Ait Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
3
|
He B, Zhou Y, Peng Y, Xu D, Tong J, Dong Y, Fang L, Mao J. Comparative Metabolomic Responses of Three Rhododendron Cultivars to the Azalea Lace Bug ( Stephanitis pyrioides). PLANTS (BASEL, SWITZERLAND) 2024; 13:2569. [PMID: 39339545 PMCID: PMC11434956 DOI: 10.3390/plants13182569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Rhododendron, with its high ornamental value and ecological benefits, is severely impacted by the azalea lace bug (Stephanitis pyrioides), one of its primary pests. This study utilized three Rhododendron cultivars, 'Zihe', 'Yanzhimi', and 'Taile', to conduct a non-targeted metabolomic analysis of leaf samples before and after azalea lace bug stress using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GCMS) and liquid chromatography-mass spectrometry (LCMS). A total of 81 volatile metabolites across 11 categories and 448 nonvolatile metabolites across 55 categories were detected. Significant differences in metabolic profiles were observed among the different cultivars after pest stress. A total of 47 volatile compounds and 49 nonvolatile metabolites were upregulated in the most susceptible cultivar 'Zihe', including terpenes, alcohols, nucleotides, amino acids, and carbohydrates, which are involved in energy production and secondary metabolism. Conversely, 'Yanzhimi' showed a downtrend in both the differential volatiles and metabolites related to purine metabolism and zeatin biosynthesis under pest stress. The resistant cultivar 'Taile' exhibited moderate changes, with 17 volatile compounds and 17 nonvolatile compounds being upregulated and enriched in the biosynthesis of amino acids, pentose, glucuronate interconversions, carbon metabolism, etc. The phenylalanine metabolic pathway played an important role in the pest resistance of different susceptible cultivars, and relevant metabolites such as phenylethyl alcohol, methyl salicylate, and apigenin may be involved in the plant's resistance response. The results of this study provide a new perspective on the metabolomics of Rhododendron-insect interactions and offer references for the development of pest control strategies.
Collapse
Affiliation(s)
- Bei He
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
- Horticulture and Forestry College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Zhou
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Yu Peng
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Dongyun Xu
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Jun Tong
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Yanfang Dong
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Linchuan Fang
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Jing Mao
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
4
|
Dong Q, Duan D, Wang F, Yang K, Song Y, Wang Y, Wang D, Ji Z, Xu C, Jia P, Luan H, Guo S, Qi G, Mao K, Zhang X, Tian Y, Ma Y, Ma F. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2364-2376. [PMID: 38683692 PMCID: PMC11258982 DOI: 10.1111/pbi.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is considered one of the most destructive diseases affecting apples. The VQ-WRKY complex plays a crucial role in the response of plants to biotic stresses. However, our understanding of the defensive role of the VQ-WRKY complex on woody plants, particularly apples, under biotic stress, remains limited. In this study, we elucidated the molecular mechanisms underlying the defensive role of the apple MdVQ37-MdWRKY100 module in response to GLS infection. The overexpression of MdWRKY100 enhanced resistance to C. fructicola, whereas MdWRKY100 RNA interference in apple plants reduced resistance to C. fructicola by affecting salicylic acid (SA) content and the expression level of the CC-NBS-LRR resistance gene MdRPM1. DAP-seq, Y1H, EMSA, and RT-qPCR assays indicated that MdWRKY100 inhibited the expression of MdWRKY17, a positive regulatory factor gene of SA degradation, upregulated the expression of MdPAL1, a key enzyme gene of SA biosynthesis, and promoted MdRPM1 expression by directly binding to their promotors. Transient overexpression and silencing experiments showed that MdPAL1 and MdRPM1 positively regulated GLS resistance in apples. Furthermore, the overexpression of MdVQ37 increased the susceptibility to C. fructicola by reducing the SA content and expression level of MdRPM1. Additionally, MdVQ37 interacted with MdWRKY100, which repressed the transcriptional activity of MdWRKY100. In summary, these results revealed the molecular mechanism through which the apple MdVQ37-MdWRKY100 module responds to GLS infection by regulating SA content and MdRPM1 expression, providing novel insights into the involvement of the VQ-WRKY complex in plant pathogen defence responses.
Collapse
Affiliation(s)
- Qinglong Dong
- College of ForestryHebei Agricultural UniversityBaodingChina
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Feng Wang
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Kaiyu Yang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yang Song
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yongxu Wang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Dajiang Wang
- Research Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhirui Ji
- Research Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Chengnan Xu
- College of Life SciencesYan'an UniversityYan'anShaanxiChina
| | - Peng Jia
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Haoan Luan
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Suping Guo
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Guohui Qi
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Xuemei Zhang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yi Tian
- College of HorticultureHebei Agricultural UniversityBaodingChina
| | - Yue Ma
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| |
Collapse
|
5
|
Chen X, Sun Y, Yang Y, Zhao Y, Zhang C, Fang X, Gao H, Zhao M, He S, Song B, Liu S, Wu J, Xu P, Zhang S. The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13452. [PMID: 38619823 PMCID: PMC11018115 DOI: 10.1111/mpp.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Crop Stress Molecular Biology LaboratoryHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yan Sun
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yu Yang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yuxin Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Xin Fang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Hong Gao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shengfu He
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Bo Song
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of AgricultureSoybean Research Institute of Heilongjiang Academy of Agricultural SciencesHarbinChina
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Plant Science Department, School of Agriculture and BiologyShanghai JiaoTong UniversityShanghaiChina
| |
Collapse
|
6
|
Yang X, Liu T, Yang R, Fan H, Liu X, Xuan Y, Wang Y, Chen L, Duan Y, Zhu X. Overexpression of GmPAL Genes Enhances Soybean Resistance Against Heterodera glycines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:416-423. [PMID: 38171485 DOI: 10.1094/mpmi-09-23-0151-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-β-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaowen Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruowei Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Yang X, Yan S, Li G, Li Y, Li J, Cui Z, Sun S, Huo J, Sun Y. Rice-Magnaporthe oryzae interactions in resistant and susceptible rice cultivars under panicle blast infection based on defense-related enzyme activities and metabolomics. PLoS One 2024; 19:e0299999. [PMID: 38451992 PMCID: PMC10919634 DOI: 10.1371/journal.pone.0299999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Rice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.
Collapse
Affiliation(s)
- Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Junling Li
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Zhongqiu Cui
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| | - Yue Sun
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin, P.R.China
| |
Collapse
|
8
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Yue Z, He S, Wang J, Jiang Q, Wang H, Wu J, Li C, Wang Z, He X, Jia N. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Heliyon 2023; 9:e21874. [PMID: 38034638 PMCID: PMC10682181 DOI: 10.1016/j.heliyon.2023.e21874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Flavonoids are a highly abundant class of secondary metabolites present in plants. Isoflavonoids, in particular, are primarily synthesized in leguminous plants within the subfamily Papilionoideae. Numerous reports have established the favorable role of isoflavonoids in preventing a range of human diseases. Among the isoflavonoid components, glyceollins are synthesized specifically in soybean plants and have displayed promising effects in mitigating the occurrence and progression of breast and ovarian cancers as well as other diseases. Consequently, glyceollins have become a sought-after natural component for promoting women's health. In recent years, extensive research has focused on investigating the molecular mechanism underlying the preventative properties of glyceollins against various diseases. Substantial progress has also been made toward elucidating the biosynthetic pathway of glyceollins and exploring potential regulatory factors. Herein, we provide a review of the research conducted on glyceollins since their discovery five decades ago (1972-2023). We summarize their pharmacological effects, biosynthetic pathways, and advancements in chemical synthesis to enhance our understanding of the molecular mechanisms of their function and the genes involved in their biosynthetic pathway. Such knowledge may facilitate improved glyceollin synthesis and the creation of health products based on glyceollins.
Collapse
Affiliation(s)
- Zhiyong Yue
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Shanhong He
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jinpei Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Qi Jiang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Hanping Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jia Wu
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Chenxi Li
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Zixian Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Xuan He
- School of Engineering, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Nannan Jia
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| |
Collapse
|
10
|
Yuan S, Ke D, Liu B, Zhang M, Li X, Chen H, Zhang C, Huang Y, Sun S, Shen J, Yang S, Zhou S, Leng P, Guan Y, Zhou X. The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume-rhizobia symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5820-5839. [PMID: 37470327 DOI: 10.1093/jxb/erad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Bo Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Mengke Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xiangyong Li
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiafang Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuqi Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
11
|
La VH, Tran DH, Han VC, Nguyen TD, Duong VC, Nguyen VH, Tran AT, Nguyen THG, Ngo XB. Drought stress-responsive abscisic acid and salicylic acid crosstalk with the phenylpropanoid pathway in soybean seeds. PHYSIOLOGIA PLANTARUM 2023; 175:e14050. [PMID: 37882260 DOI: 10.1111/ppl.14050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Crosstalk between hormones and secondary metabolites regulates the interactions between plants and stress. However, little is known about the effects of hormone crosstalk on the concentration of flavonoids in seeds. In this study, we identified abscisic acid (ABA) as a negative regulator of flavonoid accumulation in soybean seeds under drought-stress conditions. Alterations in flavonoid accumulation at several intensities of water stress, followed by a recovery period, were measured during the soybean seed-filling stage. Low soil moisture (SM 10%) significantly decreased the total flavonoid content in seeds. The decline in flavonoid content was proportional to the severity of drought stress and was dependent on the activities of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), two key phenylpropanoid pathway enzymes. The expression of phenylalanine ammonia-lyase 1 (GmPAL1), chalcone isomerase 1A (GmCHI1A), and chalcone synthase 8 (GmCHS8) was associated with phenolic and flavonoid accumulation in soybean seeds of plants subjected to drought stress. Interestingly, the expression levels of GmCHS8 were highly correlated with flavonoid levels under drought stress and water recovery conditions. Cinnamic acid, which is a biosynthesis precursor shared by both phenylpropanoid metabolism and salicylic acid (SA) biosynthesis, decreased under drought stress conditions. Notably, exogenous ABA suppressed the expression of GmPAL1, which encodes the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and affects downstream products such as SA and flavonoids. In conclusion, drought stress altered the phenylpropanoid-derived compounds, at least with regard to flavonoid and SA accumulation in seeds, which was regulated by antagonistic interactions with ABA.
Collapse
Affiliation(s)
- Van Hien La
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Dinh Ha Tran
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Viet-Cuong Han
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Tien Dung Nguyen
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Van Cuong Duong
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Viet Hung Nguyen
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Anh Tuan Tran
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | | | - Xuan Binh Ngo
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| |
Collapse
|
12
|
Chen Y, Wang Y, Guan F, Long L, Wang Y, Li H, Deng M, Zhang Y, Pu Z, Li W, Jiang Q, Wang J, Wei Y, Ma J, Xu Q, Kang H, Qi P, Yuan Z, Zhang L, Liu D, Zheng Y, Chen G, Jiang Y. Comparative analysis of Fusarium crown rot resistance in synthetic hexaploid wheats and their parental genotypes. BMC Genomics 2023; 24:178. [PMID: 37020178 PMCID: PMC10077658 DOI: 10.1186/s12864-023-09268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
- Dazhou Academy of Agricultural Sciences, Tongchuan, Dazhou, 635000, Sichuan, P. R. China
| | - Yunpeng Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, P. R. China.
| |
Collapse
|
13
|
Shumilak A, El-Shetehy M, Soliman A, Tambong JT, Daayf F. Goss's Wilt Resistance in Corn Is Mediated via Salicylic Acid and Programmed Cell Death but Not Jasmonic Acid Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:1475. [PMID: 37050101 PMCID: PMC10097360 DOI: 10.3390/plants12071475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A highly aggressive strain (CMN14-5-1) of Clavibacter nebraskensis bacteria, which causes Goss's wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same strain exhibited only mild symptoms such as chlorosis, freckling, and necrosis that did not progress after the first six days following infection. Both lesion length and disease severity were measured using the area under the disease progression curve (AUDPC), and significant differences were found between treatments. We analyzed the expression of key genes related to plant defense in both corn lines challenged with the CMN14-5-1 strain. Allene oxide synthase (ZmAOS), a gene responsible for the production of jasmonic acid (JA), was induced in the CO447 line in response to CMN14-5-1. Following inoculation with CMN14-5-1, the CO450 line demonstrated a higher expression of salicylic acid (SA)-related genes, ZmPAL and ZmPR-1, compared to the CO447 line. In the CO450 line, four genes related to programmed cell death (PCD) were upregulated: respiratory burst oxidase homolog protein D (ZmrbohD), polyphenol oxidase (ZmPPO1), ras-related protein 7 (ZmRab7), and peptidyl-prolyl cis-trans isomerase (ZmPPI). The differential gene expression in response to CMN14-5-1 between the two corn lines provided an indication that SA and PCD are involved in the regulation of corn defense responses against Goss's wilt disease, whereas JA may be contributing to disease susceptibility.
Collapse
Affiliation(s)
- Alexander Shumilak
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Genetics, Faculty of Agriculture, University of Tanta, Tanta 31527, Egypt
| | - James T Tambong
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
14
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
16
|
Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J Fungi (Basel) 2022; 9:52. [PMID: 36675873 PMCID: PMC9865837 DOI: 10.3390/jof9010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi infections cause approximately 60-70% yield loss through diseases such as rice blast, powdery mildew, Fusarium rot, downy mildew, etc. Plants naturally respond to these infections by eliciting an array of protective metabolites to confer physical or chemical protection. Among plant metabolites, lignin, a phenolic compound, thickens the middle lamella and the secondary cell walls of plants to curtail fungi infection. The biosynthesis of monolignols (lignin monomers) is regulated by genes whose transcript abundance significantly improves plant defense against fungi. The catalytic activities of lignin biosynthetic enzymes also contribute to the accumulation of other defense compounds. Recent advances focus on modifying the lignin pathway to enhance plant growth and defense against pathogens. This review presents an overview of monolignol regulatory genes and their contributions to fungi immunity, as reported over the last five years. This review expands the frontiers in lignin pathway engineering to enhance plant defense.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zenchao Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tengfeng Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - James Ziemah
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
17
|
Cai J, Yang S, Liu W, Yan J, Jiang B, Xie D. A transcriptome analysis of Benincasa hispida revealed the pathways and genes involved in response to Phytophthora melonis infection. FRONTIERS IN PLANT SCIENCE 2022; 13:1106123. [PMID: 36618646 PMCID: PMC9815465 DOI: 10.3389/fpls.2022.1106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Wilt disease caused by Phytophthora melonis infection is one of the most serious threats to Benincasa hispida production. However, the mechanism of the response of B. hispida to a P. melonis infection remains largely unknown. In the present study, two B. hispida cultivars with different degrees of resistance to P. melonis were identified: B488 (a moderately resistant cultivar) and B214 (a moderately susceptible cultivar). RNA-seq was performed on P. melonis-infected B488 and B214 12 hours post infection (hpi). Compared with the control, 680 and 988 DEGs were respectively detected in B488 and B214. A KEGG pathway analysis combined with a cluster analysis revealed that phenylpropanoid biosynthesis, plant-pathogen interaction, the MAPK signaling pathway-plant, and plant hormone signal transduction were the most relevant pathways during the response of both B488 and B214 to P. melonis infection, as well as the differentially expressed genes in the two cultivars. In addition, a cluster analysis of transcription factor genes in DEGs identified four genes upregulated in B488 but not in B214 at 6 hpi and 12 hpi, which was confirmed by qRT-PCR. These were candidate genes for elucidating the mechanism of the B. hispida response to P. melonis infection and laying the foundation for the improvement of B. hispida.
Collapse
Affiliation(s)
- Jinsen Cai
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenrui Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jinqiang Yan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dasen Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Fan L, Shi G, Yang J, Liu G, Niu Z, Ye W, Wu S, Wang L, Guan Q. A Protective Role of Phenylalanine Ammonia-Lyase from Astragalus membranaceus against Saline-Alkali Stress. Int J Mol Sci 2022; 23:ijms232415686. [PMID: 36555329 PMCID: PMC9779599 DOI: 10.3390/ijms232415686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Phenylalanine ammonia-lyase (PAL, E.C.4.3.1.5) catalyzes the benzene propane metabolism and is the most extensively studied enzyme of the phenylpropanoid pathway. However, the role of PAL genes in Astragalus membranaceus, a non-model plant showing high capability toward abiotic stress, is less studied. Here, we cloned AmPAL and found that it encodes a protein that resides in the cytoplasmic membrane. The mRNA of AmPAL was strongly induced by NaCl or NaHCO3 treatment, especially in the root. Overexpressing AmPAL in Nicotiana tabacum resulted in higher PAL enzyme activities, lower levels of malondialdehyde (MDA), and better root elongation in the seedlings under stress treatment compared to the control plants. The protective role of AmPAL under saline-alkali stress was also observed in 30-day soil-grown plants, which showed higher levels of superoxide dismutase (SOD), proline, and chlorophyll compared to wild-type N. Tabacum. Collectively, we provide evidence that AmPAL is responsive to multiple abiotic stresses and that manipulating the expression of AmPAL can be used to increase the tolerance to adverse environmental factors in plants.
Collapse
Affiliation(s)
- Lijuan Fan
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Gongfa Shi
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Juan Yang
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guiling Liu
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhaoqian Niu
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wangbin Ye
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Songquan Wu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Ling Wang
- The College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: or (L.W.); (Q.G.)
| | - Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: or (L.W.); (Q.G.)
| |
Collapse
|
19
|
Huang Y, Liu J, Li J, Shan X, Duan Y. Endophytic bacterium Pseudomonas protegens suppresses mycelial growth of Botryosphaeria dothidea and decreases its pathogenicity to postharvest fruits. Front Microbiol 2022; 13:1069517. [PMID: 36569085 PMCID: PMC9771998 DOI: 10.3389/fmicb.2022.1069517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Apple (Malus domestica Borkh.), one of the most economically important fruits widely consumed worldwide, has been suffering from apple ring rot caused by Botryosphaeria dothidea, which dramatically affects its quality and yield. In the present study, we demonstrated that Pseudomonas protegens, isolated from Chinese leek (Allium tuberosum), significantly suppressed the mycelial growth and propagation of B. dothidea, respectively, further displayed a considerably inhibitory effect on the apple ring rot of postharvest fruits. In addition, P. protegens significantly improved the total soluble solid/titrable acidity (TSS/TA) ratio and soluble sugar/titrable acidity (SS/TA) ratio and drastically maintained the fruit firmness. Further analysis manifested that P. protegens substantially induced the defense-related genes such as MdGLU, MdPAL, MdPOD, MdCAL, and transcription factors related to the resistance to B. dothidea, including MdWRKY15, MdPUB29, MdMyb73, and MdERF11 in apple fruits. Meanwhile, P. protegens considerably restrained the expressions of the pathogenicity-related genes in B. dothidea, including the BdCYP450, BdADH, BdGHY, BdATS, Bdα/β-HY, and BdSTR. By inference, P. protegens inhibited the apple ring rot on postharvest fruits by activating the defense system of apple fruit and repressing the pathogenic factor of B. dothidea. The study provided a theoretical basis and a potential alternative to manage the apple ring rot on postharvest fruits.
Collapse
Affiliation(s)
- Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China,Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture and Rural Affairs, Qingdao, China,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products, Qingdao, China,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China,*Correspondence: Yonghong Huang,
| | - Junping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China,Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture and Rural Affairs, Qingdao, China,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products, Qingdao, China,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jinghui Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China,Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture and Rural Affairs, Qingdao, China,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products, Qingdao, China,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Xiaoying Shan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China,Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture and Rural Affairs, Qingdao, China,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products, Qingdao, China,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China,Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture and Rural Affairs, Qingdao, China,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products, Qingdao, China,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China,Yanxin Duan,
| |
Collapse
|
20
|
Zhang X, Shen Y, Mu K, Cai W, Zhao Y, Shen H, Wang X, Ma H. Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233239. [PMID: 36501278 PMCID: PMC9736545 DOI: 10.3390/plants11233239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and a key enzyme involved in plant growth and development and environmental adaptation. However, the biological function of PAL in seed vigor remains unknown. Here, GmPAL1.1 was cloned from soybean, and its protein was located in the cytoplasm and cell membrane. GmPAL1.1 was significantly induced by HTH stress in developing seeds. The overexpression of GmPAL1.1 in Arabidopsis (OE) accumulated lower level of ROS in the developing seeds and in the leaves than the WT at the physiological maturity stage under HTH stress, and the activities of SOD, POD, and CAT and flavonoid contents were significantly increased, while MDA production was markedly reduced in the leaves of the OE lines than in those of the WT. The germination rate and viability of mature seeds of the OE lines harvested after HTH stress were higher than those of the WT. Compared to the control, the overexpression of GmPAL1.1 in Arabidopsis enhanced the tolerance to salt and drought stresses during germination. Our results suggested the overexpression of GmPAL1.1 in Arabidopsis promoted seed vigor at the physiological maturation period under HTH stress and increased the seeds' tolerance to salt and drought during germination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Ma
- Correspondence: ; Tel./Fax: +86-25-8439-5324
| |
Collapse
|
21
|
Chandra S, Choudhary M, Bagaria PK, Nataraj V, Kumawat G, Choudhary JR, Sonah H, Gupta S, Wani SH, Ratnaparkhe MB. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean ( Glycine max L.). Front Genet 2022; 13:939182. [PMID: 36452161 PMCID: PMC9702362 DOI: 10.3389/fgene.2022.939182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/21/2022] [Indexed: 09/16/2023] Open
Abstract
Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.
Collapse
Affiliation(s)
| | | | - Pravin K. Bagaria
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | | | | | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
22
|
Elicitation of Roots and AC-DC with PEP-13 Peptide Shows Differential Defense Responses in Multi-Omics. Cells 2022; 11:cells11162605. [PMID: 36010682 PMCID: PMC9406913 DOI: 10.3390/cells11162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
The root extracellular trap (RET) has emerged as a specialized compartment consisting of root AC-DC and mucilage. However, the RET’s contribution to plant defense is still poorly understood. While the roles of polysaccharides and glycoproteins secreted by root AC-DC have started to be elucidated, how the low-molecular-weight exudates of the RET contribute to root defense is poorly known. In order to better understand the RET and its defense response, the transcriptomes, proteomes and metabolomes of roots, root AC-DC and mucilage of soybean (Glycine max (L.) Merr, var. Castetis) upon elicitation with the peptide PEP-13 were investigated. This peptide is derived from the pathogenic oomycete Phytophthora sojae. In this study, the root and the RET responses to elicitation were dissected and sequenced using transcriptional, proteomic and metabolomic approaches. The major finding is increased synthesis and secretion of specialized metabolites upon induced defense activation following PEP-13 peptide elicitation. This study provides novel findings related to the pivotal role of the root extracellular trap in root defense.
Collapse
|
23
|
Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants (Basel) 2022; 11:antiox11020404. [PMID: 35204287 PMCID: PMC8869530 DOI: 10.3390/antiox11020404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial volatiles benefit the agricultural ecological system by promoting plant growth and systemic resistance against diseases without harming the environment. To explore the plant growth-promoting efficiency of VOCs produced by Pseudomonas fluorescens PDS1 and Bacillus subtilis KA9 in terms of chili plant growth and its biocontrol efficiency against Ralstonia solanacearum, experiments were conducted both in vitro and in vivo. A closure assembly was designed using a half-inverted plastic bottle to demonstrate plant–microbial interactions via volatile compounds. The most common volatile organic compounds were identified and reported; they promoted plant development and induced systemic resistance (ISR) against wilt pathogen R. solanacearum. The PDS1 and KA9 VOCs significantly increased defensive enzyme activity and overexpressed the antioxidant genes PAL, POD, SOD, WRKYa, PAL1, DEF-1, CAT-2, WRKY40, HSFC1, LOX2, and NPR1 related to plant defense. The overall gene expression was greater in root tissue as compared to leaf tissue in chili plant. Our findings shed light on the relationship among rhizobacteria, pathogen, and host plants, resulting in plant growth promotion, disease suppression, systemic resistance-inducing potential, and antioxidant response with related gene expression in the leaf and root tissue of chili.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| | - Nazia Manzar
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | | | - Mahendra Vikram Singh Rajawat
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | - Man Mohan Deo
- Farm Machinery and Power, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India;
| | - Jyoti Prakash Singh
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar Kesharwani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - Ravinder Pal Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - S. C. Dubey
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi 110012, India;
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| |
Collapse
|
24
|
Biopolymer in Wastewater Treatment. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Shiragaki K, Furukawa H, Yokoi S, Tezuka T. Temperature-dependent sugar accumulation in interspecific Capsicum F 1 plants showing hybrid weakness. JOURNAL OF PLANT RESEARCH 2021; 134:1199-1211. [PMID: 34468920 DOI: 10.1007/s10265-021-01340-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
In plants, F1 hybrids showing hybrid weakness exhibit weaker growth than their parents. The phenotypes of hybrid weakness are often suppressed at certain temperatures. However, it is unclear whether hybrid weakness in Capsicum annuum × C. chinense is temperature-dependent or not. Our study showed that Capsicum hybrid weakness was suppressed at 30 and 35 °C and was induced at 15, 20, and 25 °C. Moreover, we investigated the time course of hybrid weakness in cell death, metabolite content, and gene expression in leaves of plants transferred to 20 °C after growing at 30 °C for 21 days. The expression of pathogen defense-related genes was upregulated at 1 day after transfer to 20 °C (DAT). Cell death was detected at 7 DAT, plant growth had almost stopped since 14 DAT, and sugars were accumulated at 42 DAT in hybrid plants. The study revealed that some sugar transporter genes, which had been upregulated since 7 DAT, were involved in sugar accumulation in Capsicum hybrid weakness. Thus, our results demonstrated that gene expression changes occur first, followed by physiological and morphological changes after induction of hybrid weakness. These responses observed in this study in Capsicum hybrid weakness are likely to be owed to plant defense responses-like reactions.
Collapse
Affiliation(s)
- Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hajime Furukawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
26
|
Zheng H, Jin R, Liu Z, Sun C, Shi Y, Grierson D, Zhu C, Li S, Ferguson I, Chen K. Role of the tomato fruit ripening regulator MADS-RIN in resistance to Botrytis cinerea infection. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Tomato MADS-RIN (RIN) transcription factor has been shown to be a master activator regulating fruit ripening. Recent studies have revealed that in addition to activating many other cell wall genes, it also represses expression of XTH5, XTH8, and MAN4a, which are positively related to excess flesh softening and cell wall degradation, which might indicate it has a potential role in pathogen resistance of ripening fruit. In this study, both wild-type (WT) and RIN-knockout (RIN-KO) mutant tomato fruit were infected with Botrytis cinerea to investigate the function of RIN in defense against pathogen infection during ripening. The results showed that RIN-KO fruit were much more sensitive to B. cinerea infection with larger lesion sizes. Transcriptome data and qRT-PCR assay indicate genes of phenylalanine ammonialyase (PAL) and chitinase (CHI) in RIN-KO fruit were reduced and their corresponding enzyme activities were decreased. Transcripts of genes encoding pathogenesis-related proteins (PRs), including PR1a, PRSTH2, and APETALA2/Ethylene Response Factor (AP2/ERF) including ERF.A1, Pti5, Pti6, ERF.A4, were reduced in RIN-KO fruit compared to WT fruit. Moreover, in the absence of RIN the expression of genes encoding cell wall-modifying enzymes XTH5, XTH8, MAN4a has been reported to be elevated, which is potentially correlated with cell wall properties. When present, RIN represses transcription of XTH5 by activating ERF.F4, a class II (repressor class) ERF gene family member, and ERF.F5. These results support the conclusion that RIN enhances ripening-related resistance to gray mold infection by upregulating pathogen-resistance genes and defense enzyme activities as well as reducing accumulation of transcripts encoding some cell wall enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou,China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough,UK
| | | | | | - Ian Ferguson
- Zhejiang University (Visiting Scientist), Hangzhou, China
| | | |
Collapse
|
27
|
Zhang H, Huang Q, Yi L, Song X, Li L, Deng G, Liang J, Chen F, Yu M, Long H. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:698-712. [PMID: 33974322 DOI: 10.1111/tpj.15316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
The pathogen cereal cyst nematode (CCN) is deleterious to Triticeae crops and is a threat to the global crop yield. Accession no. 1 of Aegilops variabilis, a relative of Triticum aestivum (bread wheat), is highly resistant to CCN. Our previous study demonstrated that the expression of the phenylalanine ammonia lyase (PAL) gene AevPAL1 in Ae. variabilis is strongly induced by CCN. PAL, the first enzyme of phenylpropanoid metabolism, is involved in abiotic and biotic stress responses. However, its role in plant-CCN interaction remains unknown. In the present study, we proved that AevPAL1 helps to confer CCN resistance through affecting the synthesis of salicylic acid (SA) and downstream secondary metabolites. The silencing of AevPAL1 increased the incidence of CCN infection in roots and decreased the accumulation of SA and phenylalanine (Phe)-derived specialized metabolites. The exogenous pre-application of SA also improved CCN resistance. Additionally, the functions of PAL in phenylpropanoid metabolism correlated with tryptophan decarboxylase (TDC) functioning in tryptophan metabolism pathways. The silencing of either AevPAL1 or AevTDC1 exhibited a concomitant reduction in the expression of both genes and the contents of metabolites downstream of PAL and TDC. These results suggested that AevPAL1, possibly in coordination with AevTDC1, positively contributes to CCN resistance by altering the downstream secondary metabolites and SA content in Ae. variabilis. Moreover, AevPAL1 overexpression significantly enhanced CCN resistance in bread wheat and did not exhibit significant negative effects on yield-related traits, suggesting that AevPAL1 is valuable for the genetic improvement of CCN resistance in bread wheat.
Collapse
Affiliation(s)
- Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiulan Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Sichuan Tea, Yibin University, Yibin, Sichuan, 644000, China
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling Yi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaona Song
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Lin Li
- Zunyi Medical University, Zunyi, 563000, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Fang Chen
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
28
|
Zhu G, Gao C, Wu C, Li M, Xu JR, Liu H, Wang Q. Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens. BMC PLANT BIOLOGY 2021; 21:304. [PMID: 34193039 PMCID: PMC8243454 DOI: 10.1186/s12870-021-03019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/06/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND The production of cereal crops is frequently affected by diseases caused by Fusarium graminearum and Magnaporthe oryzae, two devastating fungal pathogens. To improve crop resistance, many studies have focused on understanding the mechanisms of host defense against these two fungi individually. However, our knowledge of the common and different host defenses against these pathogens is very limited. RESULTS In this study, we employed Brachypodium distachyon as a model for cereal crops and performed comparative transcriptomics to study the dynamics of host gene expression at different infection stages. We found that infection with either F. graminearum or M. oryzae triggered massive transcriptomic reprogramming in the diseased tissues. Numerous defense-related genes were induced with dynamic changes during the time course of infection, including genes that function in pattern detection, MAPK cascade, phytohormone signaling, transcription, protein degradation, and secondary metabolism. In particular, the expression of jasmonic acid signaling genes and proteasome component genes were likely specifically inhibited or manipulated upon infection by F. graminearum. CONCLUSIONS Our analysis showed that, although the affected host pathways are similar, their expression programs and regulations are distinct during infection by F. graminearum and M. oryzae. The results provide valuable insight into the interactions between B. distachyon and two important cereal pathogens.
Collapse
Affiliation(s)
- Gengrui Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengyu Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Pérez-Torres CA, Ibarra-Laclette E, Hernández-Domínguez EE, Rodríguez-Haas B, Pérez-Lira AJ, Villafán E, Alonso-Sánchez A, García-Ávila CDJ, Ramírez-Pool JA, Sánchez-Rangel D. Molecular evidence of the avocado defense response to Fusarium kuroshium infection: a deep transcriptome analysis using RNA-Seq. PeerJ 2021; 9:e11215. [PMID: 33954045 PMCID: PMC8052963 DOI: 10.7717/peerj.11215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/15/2021] [Indexed: 01/13/2023] Open
Abstract
Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.
Collapse
Affiliation(s)
- Claudia-Anahí Pérez-Torres
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | | | | | - Alan-Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | - Clemente de Jesús García-Ávila
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México
| | - José-Abrahán Ramírez-Pool
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México.,Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana Sánchez-Rangel
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| |
Collapse
|
30
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
31
|
Liu T, Wang H, Liu Z, Pang Z, Zhang C, Zhao M, Ning B, Song B, Liu S, He Z, Wei W, Wu J, Liu Y, Xu P, Zhang S. The 26S Proteasome Regulatory Subunit GmPSMD Promotes Resistance to Phytophthora sojae in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:513388. [PMID: 33584766 PMCID: PMC7876454 DOI: 10.3389/fpls.2021.513388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/04/2021] [Indexed: 05/19/2023]
Abstract
Phytophthora root rot, caused by Phytophthora sojae is a destructive disease of soybean (Glycine max) worldwide. We previously confirmed that the bHLH transcription factor GmPIB1 (P. sojae-inducible bHLH transcription factor) reduces accumulation of reactive oxygen species (ROS) in cells by inhibiting expression of the peroxidase-related gene GmSPOD thus improving the resistance of hairy roots to P. sojae. To identify proteins interacting with GmPIB1 and assess their participation in the defense response to P. sojae, we obtained transgenic soybean hairy roots overexpressing GmPIB1 by Agrobacterium rhizogenes mediated transformation and examined GmPIB1 protein-protein interactions using immunoprecipitation combined with mass spectrometry. We identified 392 proteins likely interacting with GmPIB1 and selected 20 candidate genes, and only 26S proteasome regulatory subunit GmPSMD (Genbank accession no. XP_014631720) interacted with GmPIB1 in luciferase complementation and pull-down experiments and yeast two-hybrid assays. Overexpression of GmPSMD (GmPSMD-OE) in soybean hairy roots remarkably improved resistance to P. sojae and RNA interference of GmPSMD (GmPSMD -RNAi) increased susceptibility. In addition, accumulation of total ROS and hydrogen peroxide (H2O2) in GmPSMD-OE transgenic soybean hairy roots were remarkably lower than those of the control after P. sojae infection. Moreover, in GmPSMD-RNAi transgenic soybean hairy roots, H2O2 and the accumulation of total ROS exceeded those of the control. There was no obvious difference in superoxide anion (O2 -) content between control and transgenic hairy roots. Antioxidant enzymes include peroxidase (POD), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) are responsible for ROS scavenging in soybean. The activities of these antioxidant enzymes were remarkably higher in GmPSMD-OE transgenic soybean hairy roots than those in control, but were reduced in GmPSMD-RNAi transgenic soybean hairy roots. Moreover, the activity of 26S proteasome in GmPSMD-OE and GmPIB1-OE transgenic soybean hairy roots was significantly higher than that in control and was significantly lower in PSMD-RNAi soybean hairy roots after P. sojae infection. These data suggest that GmPSMD might reduce the production of ROS by improving the activity of antioxidant enzymes such as POD, SOD, GPX, CAT, and GmPSMD plays a significant role in the response of soybean to P. sojae. Our study reveals a valuable mechanism for regulation of the pathogen response by the 26S proteasome in soybean.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Huiyu Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Zhanyu Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Ze Pang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Bin Ning
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Bo Song
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
- *Correspondence: Shanshan Liu,
| | - Zili He
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Wanling Wei
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yaguang Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
- Pengfei Xu,
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural University, Harbin, China
- Shuzhen Zhang,
| |
Collapse
|
32
|
Shiragaki K, Nakamura R, Nomura S, He H, Yamada T, Marubashi W, Oda M, Tezuka T. Phenylalanine ammonia-lyase and phenolic compounds are related to hybrid lethality in the cross Nicotiana suaveolens× N. tabacum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:327-333. [PMID: 33088196 PMCID: PMC7557668 DOI: 10.5511/plantbiotechnology.20.0606a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Hybrid lethality observed in hybrid seedlings between Nicotiana suaveolens and N. tabacum is characterized by browning, initially of the hypocotyls and eventually of entire seedlings. We investigated the mechanism underlying this browning of tissues. A phenylalanine ammonia-lyase (PAL) gene codes an enzyme involved in a pathway producing phenolic compounds related to the browning of plant tissues. The expression of PAL rapidly increased with the induction of hybrid lethality. Phenolic compounds were observed to be accumulated in whole parts of hybrid seedlings. Treatment of hybrid seedlings with L-2-aminooxy-3-phenylpropionic acid (AOPP), an inhibitor for PAL, suppressed browning and decreased the phenolic content of hybrid seedlings. Although programmed cell death (PCD) was involved in hybrid lethality, AOPP treatment also suppressed cell death and enhanced the growth of hybrid seedlings. These results indicated that PAL is involved in hybrid lethality, and phenolic compounds could be the cause of hybrid lethality-associated tissue browning.
Collapse
Affiliation(s)
- Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Rie Nakamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Shigeki Nomura
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Wataru Marubashi
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
33
|
Nasr-Esfahani M, Hashemi L, Nasehi A, Nasr-Esfahani A, Nasr-Esfahani A. Novel Cucumis enzymes associated with host-specific disease resistance to Phytophthora melonis Katsura. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1810123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mehdi Nasr-Esfahani
- Plant Protection Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan, Iran
| | - Lida Hashemi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Abbas Nasehi
- Department of Plant Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ava Nasr-Esfahani
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Nasr-Esfahani
- Department of Pharmacy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Niu L, Zhong X, Zhang Y, Yang J, Xing G, Li H, Liu D, Ma R, Dong Y, Yang X. Enhanced tolerance to Phytophthora root and stem rot by over-expression of the plant antimicrobial peptide CaAMP1 gene in soybean. BMC Genet 2020; 21:68. [PMID: 32631255 PMCID: PMC7336493 DOI: 10.1186/s12863-020-00872-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Antimicrobial peptides play important roles in both plant and animal defense systems. Moreover, over-expression of CaAMP1 (Capsicum annuum antimicrobial protein 1), an antimicrobial protein gene isolated from C. annuum leaves infected with Xanthomonas campestris pv. vesicatoria, confers broad-spectrum resistance to hemibiotrophic bacterial and necrotrophic fungal pathogens in Arabidopsis. Phytophthora root and stem rot (PRR), caused by the fungus Phytophthora sojae, is one of the most devastating diseases affecting soybean (Glycine max) production worldwide. RESULTS In this study, CaAMP1 was transformed into soybean by Agrobacterium-mediated genetic transformation. Integration of the foreign gene in the genome of transgenic soybean plants and its expression at the translation level were verified by Southern and western blot analyses, respectively. CaAMP1 over-expression (CaAMP1-OX) lines inoculated with P. sojae race 1 exhibited enhanced and stable PRR tolerance through T2-T4 generations compared with the wild-type Williams 82 plants. Gene expression analyses in the transgenic plants revealed that the expression of salicylic acid-dependent, jasmonic acid-dependent, and plant disease resistance genes (R-genes) were significantly up-regulated after P. sojae inoculation. CONCLUSIONS These results indicate that CaAMP1 over-expression can significantly enhance PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways. This provides an alternative approach for developing soybean varieties with improved tolerance against soil-borne pathogenic PRR.
Collapse
Affiliation(s)
- Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongbo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
- Jilin Normal University, Siping, 136000, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
35
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
36
|
Diretto G, Frusciante S, Fabbri C, Schauer N, Busta L, Wang Z, Matas AJ, Fiore A, K.C. Rose J, Fernie AR, Jetter R, Mattei B, Giovannoni J, Giuliano G. Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf life. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1185-1199. [PMID: 31646753 PMCID: PMC7152610 DOI: 10.1111/pbi.13283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 05/18/2023]
Abstract
Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE β-CYCLASE (LCYb) resulted in increased β-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased β-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of β-carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.
Collapse
Affiliation(s)
- Gianfranco Diretto
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Sarah Frusciante
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Claudia Fabbri
- Department of Biology and BiotechnologySapienza University of RomeRomeItaly
| | - Nicolas Schauer
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Lucas Busta
- Department of ChemistryUniversity of British ColumbiaVancouverBCCanada
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska–LincolnLincolnNEUSA
| | - Zhonghua Wang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Antonio J. Matas
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Department of Plant BiologyInstitute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM‐UMA‐CSIC)University of MálagaMálagaSpain
| | - Alessia Fiore
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Jocelyn K.C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Reinhard Jetter
- Department of ChemistryUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Benedetta Mattei
- Department of Biology and BiotechnologySapienza University of RomeRomeItaly
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Jim Giovannoni
- U.S. Department of Agriculture–Agricultural Research ServiceRobert W. Holley Center for Agriculture and HealthIthacaNYUSA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Giovanni Giuliano
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| |
Collapse
|
37
|
Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X. Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense. Pathogens 2020; 9:pathogens9040312. [PMID: 32340374 PMCID: PMC7238016 DOI: 10.3390/pathogens9040312] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Aduragbemi Amo
- College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Bilal Ahmed
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; (V.Y.); (Z.W.); (C.W.); (B.A.); (X.Y.)
- Correspondence: ; Tel.: +86-029-8708-2613
| |
Collapse
|
38
|
Mahatma MK, Thawait LK, Jadon KS, Rathod KJ, Sodha KH, Bishi SK, Thirumalaisamy PP, Golakiya BA. Distinguish metabolic profiles and defense enzymes in Alternaria leaf blight resistant and susceptible genotypes of groundnut. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1395-1405. [PMID: 31736543 PMCID: PMC6825051 DOI: 10.1007/s12298-019-00708-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 05/10/2023]
Abstract
Alternaria leaf blight is major fungal disease of summer groundnut, causes significant loss of haulm and pod yield. Aims of this study were to understand the role of metabolites and phenylpropanoid related enzymes in Alternaria leaf blight resistance and to find out metabolic marker for disease resistance. Alternaria leaf blight resistant (GPBD4 and CS186) and susceptible genotypes (GG2 and TPG41) of groundnut were grown in pots during rabi-summer 2015. Groundnut plants were infected with Alternaria alternata (Fr.) Keissler at 40 days after sowing. 5 days after infection, upper second leaves were collected from both control and infected plants for analysis. A total of 67 metabolites comprising sugars, sugar alcohols, amino acids, organic acids, fatty acids, sterols and phenolic were identified using gas chromatography-mass spectrometry (non-targeted metabolomics). Constitutive levels of alpha-d-galactoside, d-mannitol, d-erythropentitol, glycine, and hexadecanoic acid were observed higher in resistant genotypes compared to susceptible genotypes. Moreover, arabinofuranose, cinnamic acid, 2-butendioic acid, and linoleic acid were observed only in resistant genotypes at both control and infected stage. In susceptible genotypes myo-inositol, glucose and fructose content was increased after infection with pathogen while decreased in resistant genotypes. Resistant genotypes had higher constitutive level of cinnamic and salicylic acid compared to susceptible genotypes. Non-infected leaves of resistant genotypes also had higher activities of phenylalanine ammonia lyase and tyrosine ammonia lyase activities. Our results suggest that metabolites specifically present in resistant genotypes impart defense mechanism against Alternaria pathogen and can be used as bio-marker for screening of germplasm.
Collapse
Affiliation(s)
- M. K. Mahatma
- ICAR-Directorate of Groundnut Research, Post Box No. 5, Junagadh, 362 001 India
| | - L. K. Thawait
- ICAR-Directorate of Groundnut Research, Post Box No. 5, Junagadh, 362 001 India
| | - K. S. Jadon
- ICAR-Directorate of Groundnut Research, Post Box No. 5, Junagadh, 362 001 India
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - K. J. Rathod
- Food Testing Laboratory, Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362 001 India
| | - K. H. Sodha
- Food Testing Laboratory, Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362 001 India
| | - S. K. Bishi
- ICAR-Directorate of Groundnut Research, Post Box No. 5, Junagadh, 362 001 India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - B. A. Golakiya
- Food Testing Laboratory, Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362 001 India
| |
Collapse
|
39
|
Díaz-Valle A, López-Calleja AC, Alvarez-Venegas R. Enhancement of Pathogen Resistance in Common Bean Plants by Inoculation With Rhizobium etli. FRONTIERS IN PLANT SCIENCE 2019; 10:1317. [PMID: 31695715 PMCID: PMC6818378 DOI: 10.3389/fpls.2019.01317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Symbiotic Rhizobium-legume associations are mediated by exchange of chemical signals that eventually result in the development of a nitrogen-fixing nodule. Such signal interactions are thought to be at the center of the plants' capacity either to activate a defense response or to suppress the defense response to allow colonization by symbiotic bacteria. In addition, the colonization of plant roots by rhizobacteria activates an induced condition of improved defensive capacity in plants known as induced systemic resistance, based on "defense priming," which protects unexposed plant tissues from biotic stress.Here, we demonstrate that inoculation of common bean plants with Rhizobium etli resulted in a robust resistance against Pseudomonas syringae pv. phaseolicola. Indeed, inoculation with R. etli was associated with a reduction in the lesion size caused by the pathogen and lower colony forming units compared to mock-inoculated plants. Activation of the induced resistance was associated with an accumulation of the reactive oxygen species superoxide anion (O2 -) and a faster and stronger callose deposition. Transcription of defense related genes in plants treated with R. etli exhibit a pattern that is typical of the priming response. In addition, R. etli-primed plants developed a transgenerational defense memory and could produce offspring that were more resistant to halo blight disease. R. etli is a rhizobacteria that could reduce the proliferation of the virulent strain P. syringae pv. phaseolicola in common bean plants and should be considered as a potentially beneficial and eco-friendly tool in plant disease management.
Collapse
|
40
|
Yuan W, Jiang T, Du K, Chen H, Cao Y, Xie J, Li M, Carr JP, Wu B, Fan Z, Zhou T. Maize phenylalanine ammonia-lyases contribute to resistance to Sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. MOLECULAR PLANT PATHOLOGY 2019; 20:1365-1378. [PMID: 31487111 PMCID: PMC6792131 DOI: 10.1111/mpp.12817] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia-lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA-responsive pathogenesis-related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription-coupled quantitative PCR and RNA-Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up-regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV-infected ZmPAL-silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA-mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV-induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tong Jiang
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Kaitong Du
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Hui Chen
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yanyong Cao
- Cereal Crops InstituteHenan Academy of Agricultural ScienceZhengzhou450002China
| | - Jipeng Xie
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Mengfei Li
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Boming Wu
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zaifeng Fan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tao Zhou
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
41
|
Chen X, Fang X, Zhang Y, Wang X, Zhang C, Yan X, Zhao Y, Wu J, Xu P, Zhang S. Overexpression of a soybean 4-coumaric acid: coenzyme A ligase (GmPI4L) enhances resistance to Phytophthora sojae in soybean. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:304-313. [PMID: 32172740 DOI: 10.1071/fp18111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023]
Abstract
Phytophthora root and stem rot of soybean (Glycine max (L.) Merr.) caused by Phytophthora sojae is a destructive disease worldwide. The enzyme 4-coumarate: CoA ligase (4CL) has been extensively studied with regard to plant responses to pathogens. However, the molecular mechanism of the response of soybean 4CL to P. sojae remains unclear. In a previous study, a highly upregulated 4CL homologue was characterised through suppressive subtractive hybridisation library and cDNA microarrays, in the resistant soybean cultivar 'Suinong 10' after infection with P. sojae race 1. Here, we isolated the full-length EST, and designated as GmPI4L (P. sojae-inducible 4CL gene) in this study, which is a novel member of the soybean 4CL gene family. GmPI4L has 34-43% over all amino acid sequence identity with other plant 4CLs. Overexpression of GmPI4L enhances resistance to P. sojae in transgenic soybean plants. The GmPI4L is located in the cell membrane when transiently expressed in Arabidopsis protoplasts. Further analyses showed that the contents of daidzein, genistein, and the relative content of glyceollins are significantly increased in overexpression GmPI4L soybeans. Taken together, these results suggested that GmPI4L plays an important role in response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, and genistein in soybean.
Collapse
Affiliation(s)
- Xi Chen
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Fang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Youyi Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Wang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Yan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuanling Zhao
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture PR China, Harbin Heilongjiang, China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
42
|
Zhang J, Wang X, Suo X, Liu X, Liu B, Yuan M, Wang G, Liang C, Shi H. Cellular Response of Escherichia coli to Photocatalysis: Flagellar Assembly Variation and Beyond. ACS NANO 2019; 13:2004-2014. [PMID: 30721027 DOI: 10.1021/acsnano.8b08475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial cells can be inactivated by external reactive oxygen species (ROS) produced by semiconductor photocatalysis. However, little is known about cellular responses to photocatalysis. For a better understanding of this issue, one strain of Escherichia coli ( E. coli, hereafter named as MT), which has an increased ability to metabolize carbon sources, was screened out from the wild-type (WT) E. coli K12 by repeated exposure to photocatalysis with palladium oxide modified nitrogen-doped titanium dioxide. In this study, transcriptome sequencing of the WT and MT strains that were exposed or unexposed to photocatalysis were carried out. Cellular responses to photocatalysis were inferred from the functions of genes whose transcripts were either increased or decreased. Upregulation of expression of bacterial flagellar assembly genes used for chemotaxis was detected in cells exposed to semilethal photocatalytic conditions of the WT E. coli. Increased capability to degrade superoxide radicals and decreased bacterial flagellar assembly and chemotaxis were observed in MT E. coli compared to WT cells. We conclude that the differences in motility and intracellular ROS between MT and WT are directly related to survivability of E. coli during exposure to photodisinfection.
Collapse
Affiliation(s)
- Jingtao Zhang
- Collaborative Innovation Centre of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Bioengineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Xueying Wang
- Collaborative Innovation Centre of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Bioengineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Xinying Suo
- Collaborative Innovation Centre of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Bioengineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Xing Liu
- Collaborative Innovation Centre of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Bioengineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Bingkun Liu
- School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Mingming Yuan
- Collaborative Innovation Centre of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Bioengineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Guanglu Wang
- Collaborative Innovation Centre of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Bioengineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Chengzhen Liang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Hengzhen Shi
- School of Material and Chemical Engineering , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| |
Collapse
|
43
|
Zhang C, Gao H, Li R, Han D, Wang L, Wu J, Xu P, Zhang S. GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection. MOLECULAR PLANT PATHOLOGY 2019; 20:78-91. [PMID: 30113770 PMCID: PMC6430474 DOI: 10.1111/mpp.12741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytophthora sojae is a destructive pathogen of soybean [Glycine max (L.) Merr.] which causes stem and root rot on soybean plants worldwide. However, the pathogenesis and molecular mechanism of plant defence responses against P. sojae are largely unclear. Herein, we document the underlying mechanisms and function of a novel BTB/POZ protein, GmBTB/POZ, which contains a BTB/POZ domain found in certain animal transcriptional regulators, in host soybean plants in response to P. sojae. It is located in the cell nucleus and is transcriptionally up-regulated by P. sojae. Overexpression of GmBTB/POZ in soybean resulted in enhanced resistance to P. sojae. The activities and expression levels of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants were significantly higher in GmBTB/POZ-overexpressing (GmBTB/POZ-OE) transgenic soybean plants than in wild-type (WT) plants treated with sterile water or infected with P. sojae. The transcript levels of defence-associated genes were also higher in overexpressing plants than in WT on infection. Moreover, salicylic acid (SA) levels and the transcript levels of SA biosynthesis-related genes were markedly higher in GmBTB/POZ-OE transgenic soybean than in WT, but there were almost no differences in jasmonic acid (JA) levels or JA biosynthesis-related gene expression between GmBTB/POZ-OE and WT soybean lines. Furthermore, exogenous SA application induced the expression of GmBTB/POZ and inhibited the increase in P. sojae biomass in both WT and GmBTB/POZ-OE transgenic soybean plants. Taken together, these results suggest that GmBTB/POZ plays a positive role in P. sojae resistance and the defence response in soybean via a process that might be dependent on SA.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Hong Gao
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Rongpeng Li
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Dan Han
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural SciencesKey Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. ChinaHarbin150086PR China
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| |
Collapse
|
44
|
Wang L, Wang H, He S, Meng F, Zhang C, Fan S, Wu J, Zhang S, Xu P. GmSnRK1.1, a Sucrose Non-fermenting-1(SNF1)-Related Protein Kinase, Promotes Soybean Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2019; 10:996. [PMID: 31428116 PMCID: PMC6688127 DOI: 10.3389/fpls.2019.00996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 05/22/2023]
Abstract
Phytophthora root and stem rot, a destructive disease of soybean [Glycine max (L.) Merr.], is caused by the oomycete Phytophthora sojae. However, how the disease resistance mechanisms of soybean respond to P. sojae infection remains unclear. Previously, we showed that GmWRKY31, which interacts with a sucrose non-fermenting-1(SNF1)-related protein kinase (SnRK), enhances resistance to P. sojae in soybean. Here, we report that the membrane-localized SnRK GmSnRK1.1 is involved in the soybean host response to P. sojae. The overexpression of GmSnRK1.1 (GmSnRK1.1-OE) increased soybean resistance to P. sojae, and the RNA interference (RNAi)-mediated silencing of GmSnRK1.1 (GmSnRK1.1-R) reduced resistance to P. sojae. Moreover, the activities and transcript levels of the antioxidant enzymes superoxide dismutase and peroxidase were markedly higher in the GmSnRK1.1-OE transgenic soybean plants than in the wild type (WT), but were reduced in the GmSnRK1.1-R plants. Several isoflavonoid phytoalexins related genes GmPAL, GmIFR, Gm4CL and GmCHS were significantly higher in "Suinong 10" and GmSnRK1.1-OE lines than these in "Dongnong 50," and were significantly lower in GmSnRK1.1-R lines. In addition, the accumulation of salicylic acid (SA) and the expression level of the SA biosynthesis-related gene were significantly higher in the GmSnRK1.1-OE plants than in the WT and GmSnRK1.1-R plants, moreover, SA biosynthesis inhibitor treated GmSnRK1.1-R lines plants displayed clearly increased pathogen biomass compared with H2O-treated plants after 24 h post-inoculation. These results showed that GmSnRK1.1 positively regulates soybean resistance to P. sojae, potentially functioning via effects on the expression of SA-related genes and increased accumulation of SA.
Collapse
Affiliation(s)
- Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Huiyu Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Shengfu He
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fanshan Meng
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Chuanzhong Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Sujie Fan
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- *Correspondence: Shuzhen Zhang,
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- Pengfei Xu,
| |
Collapse
|
45
|
Comparative Transcriptome Analysis between a Resistant and a Susceptible Wild Tomato Accession in Response to Phytophthora parasitica. Int J Mol Sci 2018; 19:ijms19123735. [PMID: 30477181 PMCID: PMC6320849 DOI: 10.3390/ijms19123735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/25/2023] Open
Abstract
Phytophthora parasitica is one of the most widespread Phytophthora species, which is known to cause multiple diseases in tomato and is capable of infecting almost all plant parts. Our current understanding of tomato-Phytophthora parasitica interaction is very limited and currently nothing is known at the whole genome or transcriptome level. In this study, we have analyzed and compared the transcriptome of a resistant and a susceptible wild tomato accession in response to P. parasitica infection using the RNA-seq technology. We have identified 2657 and 3079 differentially expressed genes (DEGs) in treatment vs control comparison of resistant (Sp-R) and susceptible (Sp-S) samples respectively. Functional annotation of DEGs revealed substantial transcriptional reprogramming of diverse physiological and cellular processes, particularly the biotic stress responses in both Sp-R and Sp-S upon P. parasitica treatment. However, subtle expression differences among some core plant defense related genes were identified and their possible role in resistance development against P. parasitica is discussed. Our results revealed 1173 genes that were differentially expressed only in Sp-R accession upon P. parasitica inoculation. These exclusively found DEGs in Sp-R accession included some core plant defense genes, for example, several protease inhibitors, chitinases, defensin, PR-1, a downy mildew susceptibility factor, and so on, were all highly induced. Whereas, several R genes, WRKY transcriptions factors and a powdery mildew susceptibility gene (Mlo) were highly repressed during the resistance outcome. Analysis reported here lays out a strong foundation for future studies aimed at improving genetic resistance of tomato cultivars against to Phytopphthora species.
Collapse
|
46
|
Hossain MZ, Ishiga Y, Yamanaka N, Ogiso-Tanaka E, Yamaoka Y. Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:424-433. [PMID: 30290334 DOI: 10.1016/j.plaphy.2018.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 05/02/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is responsible for severe yield losses of up to 90% in all soybean producing countries. Till today, eight resistance to Phakopsora pachyrhizi (Rpp) loci have been mapped in soybean. Their resistance mechanism is race specific but largely unknown. The transcriptomes of susceptible BRS184 and Rpp3 with ASR isolates T1-2 at 24 h after inoculation (hai) and without ASR inoculation (mock) were annotated by similarity searching with different databases. A total of 4518 differentially expressed genes were identified. We found 70.89%, 56.61%, 32.13%, and 56.04% genes in the protein family databases (PFAM), Gene Ontology (GO), Eukaryotic clusters of Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG), respectively. KEGG disclosed that 52% of the phenylpropanoid pathway related genes were up-regulated. The relative gene expression study for selected genes of that pathway was conducted by RT-qPCR using Rpp1-Rpp4 carrying lines with T1-2 infection. The RT-qPCR results revealed that the Rpp lines utilized these genes in a rate limiting manner as a defence response. With the exception of glycinol 4-dimethylallyltransferase (G4DT) and chalcone reductase (CHR), all the genes showed the greatest expression at 12 hai, but the gene expressions which occur between 24 and 96 hai make these Rpp lines unique to their respective ASR isolates. Moreover, functional coordination of arogenate dehydratase 6 (ADT6) and 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (ispG), chalcone synthase (CHS) and CHR, and G4DT and phytyltransferase 3 (PT3) may have a great impact on soybean resistance against ASR.
Collapse
Affiliation(s)
- Md Zakir Hossain
- Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Naoki Yamanaka
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuichi Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|