1
|
Fan J, Zhang Y, Sun H, Duan R, Jiang Y, Wang X, Sun Y, Luo Z, Wang P, Guan S, Liu S, Fan X, Jiao P, Wang Y, Yang J, Zhang Z, Yu H. Overexpression of soybean GmDHN9 gene enhances drought resistance of transgenic Arabidopsis. GM CROPS & FOOD 2024; 15:118-129. [PMID: 38564429 PMCID: PMC10989702 DOI: 10.1080/21645698.2024.2327116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.
Collapse
Affiliation(s)
- Jiayi Fan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yuzhe Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongji Sun
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Ruijie Duan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yushi Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xinyu Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yao Sun
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhipeng Luo
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peiwu Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Changchun Vocational and Technical College, Changchun Vocational Institute of Technology, changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Changchun Vocational and Technical College, Changchun Vocational Institute of Technology, changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Changchun Vocational and Technical College, Changchun Vocational Institute of Technology, changchun, China
| | - Xuhong Fan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yunpeng Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jinhui Yang
- Daan Branch of Baicheng City Tobacco company of Jilin Province, Baicheng, China
| | - Zunyue Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Huiwei Yu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Foresti C, Orduña L, Matus JT, Vandelle E, Danzi D, Bellon O, Tornielli GB, Amato A, Zenoni S. NAC61 regulates late- and post-ripening osmotic, oxidative, and biotic stress responses in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2330-2350. [PMID: 38159048 PMCID: PMC11016852 DOI: 10.1093/jxb/erad507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.
Collapse
Affiliation(s)
- Chiara Foresti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Oscar Bellon
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Manchanda P, Chaudhary P, Deswal R. Photosynthesis regulation, cell membrane stabilization and methylglyoxal detoxification seems major altered pathways under cold stress as revealed by integrated multi-omics meta-analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1395-1407. [PMID: 38076772 PMCID: PMC10709295 DOI: 10.1007/s12298-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 12/17/2023]
Abstract
Climate change has altered cold weather patterns, resulting in irregular cold weather conditions, and changing the global plant distribution pattern affecting plant development processes resulting in severe yield losses. Although molecular mechanisms and interconnections are quite well studied, a cumulative understanding of plant responses to cold stress (CS) is still lacking. Through meta-analysis, integration of data at the multi-omics level and its correlation with known physiological changes to map and understand the global changes in response to CS was made. Meta-analysis was conducted using the metafor R package program based on physiological parameters like relative electrolytic leakage, malondialdehyde, soluble sugar, proline and antioxidant enzymes activity. Proline and soluble sugars showed the highest (> 1.5 mean fold) change over control thus qualifying as global markers for studying CS. Surprisingly most up-regulated (> 15-fold) DEGs corresponded with the dehydrin family and glyoxalase superfamily proteins. Functional annotations of DEGs corresponded with photosynthesis and glycolysis pathway. Proteins responsible for cell signalling and increased soluble sugars were common in all the datasets studied thus correlating with the transcriptome and proteomic data. Proline and soluble sugars were positively regulated in all the metabolomics datasets. This study supported the earlier known players like proline and soluble sugars. Surprisingly, a new player glyoxalase seems to be contributing in CS. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01367-9.
Collapse
Affiliation(s)
- Preet Manchanda
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Parneeta Chaudhary
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
4
|
Aziz MA, Sabeem M, Kutty MS, Rahman S, Alneyadi MK, Alkaabi AB, Almeqbali ES, Brini F, Vijayan R, Masmoudi K. Enzyme stabilization and thermotolerance function of the intrinsically disordered LEA2 proteins from date palm. Sci Rep 2023; 13:11878. [PMID: 37482543 PMCID: PMC10363547 DOI: 10.1038/s41598-023-38426-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
In date palm, the LEA2 genes are of abundance with sixty-two members that are nearly all ubiquitous. However, their functions and interactions with potential target molecules are largely unexplored. In this study, five date palm LEA2 genes, PdLEA2.2, PdLEA2.3, PdLEA2.4, PdLEA2.6, and PdLEA2.7 were cloned, sequenced, and three of them, PdLEA2.2, PdLEA2.3, and PdLEA2.4 were functionally characterized for their effects on the thermostability of two distinct enzymes, lactate dehydrogenase (LDH) and β-glucosidase (bglG) in vitro. Overall, PdLEA2.3 and PdLEA2.4 were moderately hydrophilic, PdLEA2.7 was slightly hydrophobic, and PdLEA2.2 and PdLEA2.6 were neither. Sequence and structure prediction indicated the presence of a stretch of hydrophobic residues near the N-terminus that could potentially form a transmembrane helix in PdLEA2.2, PdLEA2.4, PdLEA2.6 and PdLEA2.7. In addition to the transmembrane helix, secondary and tertiary structures prediction showed the presence of a disordered region followed by a stacked β-sheet region in all the PdLEA2 proteins. Moreover, three purified recombinant PdLEA2 proteins were produced in vitro, and their presence in the LDH enzymatic reaction enhanced the activity and reduced the aggregate formation of LDH under the heat stress. In the bglG enzymatic assays, PdLEA2 proteins further displayed their capacity to preserve and stabilize the bglG enzymatic activity.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - M Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, 680656, India
| | - Shafeeq Rahman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Maitha Khalfan Alneyadi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Alia Binghushoom Alkaabi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Eiman Saeed Almeqbali
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/ University of Sfax, Sfax, Tunisia
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE.
| |
Collapse
|
5
|
Musallam A, Abu-Romman S, Sadder MT. Molecular Characterization of Dehydrin in Azraq Saltbush among Related Atriplex Species. BIOTECH 2023; 12:biotech12020027. [PMID: 37092471 PMCID: PMC10123722 DOI: 10.3390/biotech12020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Atriplex spp. (saltbush) is known to survive extremely harsh environmental stresses such as salinity and drought. It mitigates such conditions based on specialized physiological and biochemical characteristics. Dehydrin genes (DHNs) are considered major players in this adaptation. In this study, a novel DHN gene from Azrak (Jordan) saltbush was characterized along with other Atriplex species from diverse habitats. Intronless DHN-expressed sequence tags (495-761 bp) were successfully cloned and sequenced. Saltbush dehydrins contain one S-segment followed by three K-segments: an arrangement called SK3-type. Two substantial insertions were detected including three copies of the K2-segemnet in A. canescens. New motif variants other than the six-serine standard were evident in the S-segment. AhaDHN1 (A. halimus) has a cysteine residue (SSCSSS), while AgaDHN1 (A. gardneri var. utahensis) has an isoleucine residue (SISSSS). In contrast to the conserved K1-segment, both the K2- and K3-segment showed several substitutions, particularly in AnuDHN1 (A. nummularia). In addition, a parsimony phylogenetic tree based on homologs from related genera was constructed. The phylogenetic tree resolved DHNs for all of the investigated Atriplex species in a superclade with an 85% bootstrap value. Nonetheless, the DHN isolated from Azraq saltbush was uniquely subclustred with a related genera Halimione portulacoides. The characterized DHNs revealed tremendous diversification among the Atriplex species, which opens a new venue for their functional analysis.
Collapse
Affiliation(s)
- Anas Musallam
- Biotechnology Research Directorate, National Agricultural Research Center, Baq'a 19381, Jordan
| | - Saeid Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Monther T Sadder
- Plant Biotechnology Lab, Department of Horticulture and Crop Science, School of Agriculture, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Chen N, Fan X, Wang C, Jiao P, Jiang Z, Ma Y, Guan S, Liu S. Overexpression of ZmDHN15 Enhances Cold Tolerance in Yeast and Arabidopsis. Int J Mol Sci 2022; 24:480. [PMID: 36613921 PMCID: PMC9820458 DOI: 10.3390/ijms24010480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays L.) originates from the subtropical region and is a warm-loving crop affected by low-temperature stress. Dehydrin (DHN) protein, a member of the Group 2 LEA (late embryogenesis abundant proteins) family, plays an important role in plant abiotic stress. In this study, five maize DHN genes were screened based on the previous transcriptome sequencing data in our laboratory, and we performed sequence analysis and promoter analysis on these five DHN genes. The results showed that the promoter region has many cis-acting elements related to cold stress. The significantly upregulated ZmDHN15 gene has been further screened by expression pattern analysis. The subcellular localization results show that ZmDHN15 fusion protein is localized in the cytoplasm. To verify the role of ZmDHN15 in cold stress, we overexpressed ZmDHN15 in yeast and Arabidopsis. We found that the expression of ZmDHN15 can significantly improve the cold resistance of yeast. Under cold stress, ZmDHN15-overexpressing Arabidopsis showed lower MDA content, lower relative electrolyte leakage, and less ROS (reactive oxygen species) when compared to wild-type plants, as well as higher seed germination rate, seedling survival rate, and chlorophyll content. Furthermore, analysis of the expression patterns of ROS-associated marker genes and cold-response-related genes indicated that ZmDHN15 genes play an important role in the expression of these genes. In conclusion, the overexpression of the ZmDHN15 gene can effectively improve the tolerance to cold stress in yeast and Arabidopsis. This study is important for maize germplasm innovation and the genetic improvement of crops.
Collapse
Affiliation(s)
- Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
The Halophyte Dehydrin Sequence Landscape. Biomolecules 2022; 12:biom12020330. [PMID: 35204830 PMCID: PMC8869203 DOI: 10.3390/biom12020330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Dehydrins (DHNs) belong to the LEA (late embryogenesis abundant) family group II, that comprise four conserved motifs (the Y-, S-, F-, and K-segments) and are known to play a multifunctional role in plant stress tolerance. Based on the presence and order of these segments, dehydrins are divided into six subclasses: YnSKn, FnSKn, YnKn, SKn, Kn, and KnS. DHNs are rarely studied in halophytes, and their contribution to the mechanisms developed by these plants to survive in extreme conditions remains unknown. In this work, we carried out multiple genomic analyses of the conservation of halophytic DHN sequences to discover new segments, and examine their architectures, while comparing them with their orthologs in glycophytic plants. We performed an in silico analysis on 86 DHN sequences from 10 halophytic genomes. The phylogenetic tree showed that there are different distributions of the architectures among the different species, and that FSKn is the only architecture present in every plant studied. It was found that K-, F-, Y-, and S-segments are highly conserved in halophytes and glycophytes with a few modifications, mainly involving charged amino acids. Finally, expression data collected for three halophytic species (Puccinillia tenuiflora, Eutrema salsugenium, and Hordeum marinum) revealed that many DHNs are upregulated by salt stress, and the intensity of this upregulation depends on the DHN architecture.
Collapse
|
8
|
Smith MA, Graether SP. The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective. Biomolecules 2022; 12:biom12020294. [PMID: 35204794 PMCID: PMC8961592 DOI: 10.3390/biom12020294] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dehydrins are intrinsically disordered proteins composed of several well conserved sequence motifs known as the Y-, S-, F-, and K-segments, the latter of which is a defining feature of all dehydrins. These segments are interspersed by regions of low sequence conservation and are organized modularly, which results in seven different architectures: Kn, SKn, YnSKn, YnKn, KnS, FnK and FnSKn. Dehydrins are expressed ubiquitously throughout the plant kingdom during periods of low intracellular water content, and are capable of improving desiccation tolerance in plants. In vitro evidence of dehydrins shows that they are involved in the protection of membranes, proteins and DNA from abiotic stresses. However, the molecular mechanisms by which these actions are achieved are as of yet somewhat unclear. With regards to macromolecule cryoprotection, there is evidence to suggest that a molecular shield-like protective effect is primarily influenced by the hydrodynamic radius of the dehydrin and to a lesser extent by the charge and hydrophobicity. The interaction between dehydrins and membranes is thought to be a surface-level, charge-based interaction that may help to lower the transition temperature, allowing membranes to maintain fluidity at low temperatures and preventing membrane fusion. In addition, dehydrins are able to protect DNA from damage, showing that these abiotic stress protection proteins have multiple roles.
Collapse
Affiliation(s)
- Margaret A. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology and Graduate Program in Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
9
|
Melgar AE, Zelada AM. Evolutionary analysis of angiosperm dehydrin gene family reveals three orthologues groups associated to specific protein domains. Sci Rep 2021; 11:23869. [PMID: 34903751 PMCID: PMC8669000 DOI: 10.1038/s41598-021-03066-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dehydrins (DHNs) are a family of plant proteins that play important roles on abiotic stress tolerance and seed development. They are classified into five structural subgroups: K-, SK-, YK-, YSK-, and KS-DHNs, according to the presence of conserved motifs named K-, Y- and S- segments. We carried out a comparative structural and phylogenetic analysis of these proteins, focusing on the less-studied KS-type DHNs. A search for conserved motifs in DHNs from 56 plant genomes revealed that KS-DHNs possess a unique and highly conserved N-terminal, 15-residue amino acid motif, not previously described. This novel motif, that we named H-segment, is present in DHNs of angiosperms, gymnosperms and lycophytes, suggesting that HKS-DHNs were present in the first vascular plants. Phylogenetic and microsynteny analyses indicate that the five structural subgroups of angiosperm DHNs can be assigned to three groups of orthologue genes, characterized by the presence of the H-, F- or Y- segments. Importantly, the hydrophilin character of DHNs correlate with the phylogenetic origin of the DHNs rather than to the traditional structural subgroups. We propose that angiosperm DHNs can be ultimately subdivided into three orthologous groups, a phylogenetic framework that should help future studies on the evolution and function of this protein family.
Collapse
Affiliation(s)
- Alejandra E Melgar
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - Alicia M Zelada
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci 2021; 22:ijms222312619. [PMID: 34884426 PMCID: PMC8657568 DOI: 10.3390/ijms222312619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.
Collapse
|
11
|
Ju H, Li D, Li D, Yang X, Liu Y. Overexpression of ZmDHN11 could enhance transgenic yeast and tobacco tolerance to osmotic stress. PLANT CELL REPORTS 2021; 40:1723-1733. [PMID: 34142216 DOI: 10.1007/s00299-021-02734-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE Maize group II LEA protein ZmDHN11 could protect protein activity and confer resistance to osmotic stress on transgenic yeast and tobacco. Late embryogenesis abundant (LEA) proteins are widely assumed to play crucial roles in environmental stress tolerance, but their function has remained obscure. Dehydrins are group II LEA proteins, which are highly hydrophilic plant stress proteins. In the present study, a novel group II LEA protein, ZmDHN11, was cloned and identified from maize. The expression of ZmDHN11 was induced by high osmotic stress, low temperature, salinity, and ABA (abscisic acid). The ZmDHN11 protein specifically accumulated in the nuclei and cytosol. Further study indicated that ZmDHN11 is phosphorylated by the casein kinase CKII. ZmDHN11 protected the activity of LDH under water-deficit stress. The overexpression of ZmDHN11 endows transgenic yeast and tobacco with tolerance to osmotic stress.
Collapse
Affiliation(s)
- Huining Ju
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Daxing Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
12
|
Wang Z, Zhang Q, Qin J, Xiao G, Zhu S, Hu T. OsLEA1a overexpression enhances tolerance to diverse abiotic stresses by inhibiting cell membrane damage and enhancing ROS scavenging capacity in transgenic rice. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:860-870. [PMID: 33820598 DOI: 10.1071/fp20231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/11/2021] [Indexed: 05/14/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are involved in diverse abiotic stresses tolerance in many different organisms. Our previous studies have shown that the heterologous expression of OsLEA1a interfered with the resistance of Escherichia coli to abiotic stresses. However, in the present study, based on growth status and physiological indices of rice plant, the overexpression of OsLEA1a in rice conferred increased resistance to abiotic stresses compared with the wild-type (WT) plants. Before applying abiotic stresses, there were no significant differences in physiological indices of rice seedlings. After NaCl, sorbitol, CuSO4 and H2O2 stresses, the transgenic lines had lower relative electrical conductivity, malondialdehyde and lipid peroxidation, greater the contents of proline, soluble sugar and glutathione, and higher the activities of superoxide dismutase, catalase and peroxidase than the WT plants. The results indicate that the OsLEA1a gene is involved in the protective response of plants to various abiotic stresses by inhibiting cell membrane damage and enhancing reactive oxygen species scavenging capacity. It was speculated that post-translational modification causes OsLEA1a functional differences in E. coli and rice. The present study shows that OsLEA1a could be a useful candidate gene for engineering abiotic stress tolerance in cultivated plants.
Collapse
Affiliation(s)
- Zhaodan Wang
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Qin
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Guosheng Xiao
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Shanshan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China; and Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; and Corresponding author.
| |
Collapse
|
13
|
Yu H, Zheng H, Liu Y, Yang Q, Li W, Zhang Y, Fu F. Antifreeze protein from Ammopiptanthus nanus functions in temperature-stress through domain A. Sci Rep 2021; 11:8458. [PMID: 33875741 PMCID: PMC8055964 DOI: 10.1038/s41598-021-88021-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Temperature stress restricts plant growth and development. Antifreeze protein (AFP) can improve plants antifreeze ability. In our previous study, the AnAFP gene cloned from Ammopiptanthus nanus was confirmed to be an excellent candidate enhancing plant cold resistance. But, AnAFP protein shared similar structures with KnS type dehydrins including K, N and S domains except ice crystal binding domain A. Here, we generated AnAFPΔA, AnAFPΔK, AnAFPΔN and AnAFPΔS, and transformed them into ordinary and cold sensitive strains of E. coli, and Arabidopsis KS type dehydrin mutant to evaluate their function. Expression of AnAFPΔA decreases cold and heat tolerance in E. coli, meanwhile, AnAFP enhances heat tolerance in Arabidopsis, suggesting that domain A is a thermal stable functional domain. AnAFP, AnAFPΔA and AnAFPΔS localize in whole cell, but AnAFPΔK and AnAFPΔN only localizes in nucleus and cytoplasm, respectively, exhibiting that K and N domains control localization of AnAFP. Likewise, K domain blocks interaction between AnAFP and AnICE1. The result of RT-qPCR showed that expression of AnAFP, AnICE1 and AnCBF genes was significantly induced by high-temperature, indicating that the AnAFP is likely regulated by ICE1-CBF-COR signal pathway. Taken together, the study provides insights into understanding the mechanism of AnAFP in response to temperature stress and gene resource to improve heat or cold tolerance of plants in transgenic engineering.
Collapse
Affiliation(s)
- HaoQiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - HongYing Zheng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - QingQing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - WanChen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - YuanYuan Zhang
- College of Life Science & Biotechnology, Mianyang Teachers' College, Mianyang, 621000, China.
| | - FengLing Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
CaDHN3, a Pepper ( Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation. Int J Mol Sci 2021; 22:ijms22063205. [PMID: 33809823 PMCID: PMC8004091 DOI: 10.3390/ijms22063205] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/24/2023] Open
Abstract
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.
Collapse
|
15
|
Wang X, Zhang M, Xie B, Jiang X, Gai Y. Functional Characteristics Analysis of Dehydrins in Larix kaempferi under Osmotic Stress. Int J Mol Sci 2021; 22:1715. [PMID: 33572055 PMCID: PMC7915896 DOI: 10.3390/ijms22041715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins (DHN) belong to the late embryogenesis abundant II family and have been found to enhance plant tolerance to abiotic stress. In the present study, we reported four DHNs in Larix kaempferi (LkDHN) which were identified from the published transcriptome. Alignment analysis showed that these four LkDHNs shared close relationships and belonged to SK3-type DHNs. The electrophoretic mobility shift assay indicated that these four LkDHNs all possess sequence-independent binding capacity for double-strands DNAs. The subcellular localizations of the four LkDHNs were in both the nucleus and cytoplasm, indicating that these LkDHNs enter the nucleus to exert the ability to bind DNA. The preparation of tobacco protoplasts with different concentrations of mannitol showed that LkDHNs enhanced the tolerance of plant cells under osmotic stress. The overexpression of LkDHNs in yeasts enhanced their tolerance to osmotic stress and helped the yeasts to survive severe stress. In addition, LkDHNs in the nucleus of salt treated tobacco increased. All of these results indicated that the four LkDHNs help plants survive from heavy stress by participating in DNA protection. These four LKDHNs played similar roles in the response to osmotic stress and assisted in the adaptation of L. kaempferi to the arid and cold winter of northern China.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Meng Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Baohui Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
16
|
Thermal Stresses in Maize: Effects and Management Strategies. PLANTS 2021; 10:plants10020293. [PMID: 33557079 PMCID: PMC7913793 DOI: 10.3390/plants10020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023]
Abstract
Climate change can decrease the global maize productivity and grain quality. Maize crop requires an optimal temperature for better harvest productivity. A suboptimal temperature at any critical stage for a prolonged duration can negatively affect the growth and yield formation processes. This review discusses the negative impact of temperature extremes (high and low temperatures) on the morpho-physiological, biochemical, and nutritional traits of the maize crop. High temperature stress limits pollen viability and silks receptivity, leading to a significant reduction in seed setting and grain yield. Likewise, severe alterations in growth rate, photosynthesis, dry matter accumulation, cellular membranes, and antioxidant enzyme activities under low temperature collectively limit maize productivity. We also discussed various strategies with practical examples to cope with temperature stresses, including cultural practices, exogenous protectants, breeding climate-smart crops, and molecular genomics approaches. We reviewed that identified quantitative trait loci (QTLs) and genes controlling high- and low temperature stress tolerance in maize could be introgressed into otherwise elite cultivars to develop stress-tolerant cultivars. Genome editing has become a key tool for developing climate-resilient crops. Moreover, challenges to maize crop improvement such as lack of adequate resources for breeding in poor countries, poor communication among the scientists of developing and developed countries, problems in germplasm exchange, and high cost of advanced high-throughput phenotyping systems are discussed. In the end, future perspectives for maize improvement are discussed, which briefly include new breeding technologies such as transgene-free clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas)-mediated genome editing for thermo-stress tolerance in maize.
Collapse
|
17
|
Aduse Poku S, Nkachukwu Chukwurah P, Aung HH, Nakamura I. Over-Expression of a Melon Y3SK2-Type LEA Gene Confers Drought and Salt Tolerance in Transgenic Tobacco Plants. PLANTS 2020; 9:plants9121749. [PMID: 33321898 PMCID: PMC7763651 DOI: 10.3390/plants9121749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Climate change, with its attendant negative effects, is expected to hamper agricultural production in the coming years. To counteract these negative effects, breeding of environmentally resilient plants via conventional means and genetic engineering is necessary. Stress defense genes are valuable tools by which this can be achieved. Here we report the successful cloning and functional characterization of a melon Y3SK2-type dehydrin gene, designated as CmLEA-S. We generated CmLEA-S overexpressing transgenic tobacco lines and performed in vitro and in vivo drought and salt stress analyses. Seeds of transgenic tobacco plants grown on 10% polyethylene glycol (PEG) showed significantly higher germination rates relative to wild-type seeds. In the same way, transgenic seeds grown on 150 mM sodium chloride (NaCl) recorded significantly higher germination percentages compared with wild-type plants. The fresh weights and root lengths of young transgenic plants subjected to drought stress were significantly higher than that of wild-type plants. Similarly, the fresh weights and root lengths of transgenic seedlings subjected to salt stress treatments were also significantly higher than wild-type plants. Moreover, transgenic plants subjected to drought and salt stresses in vivo showed fewer signs of wilting and chlorosis, respectively. Biochemical assays revealed that transgenic plants accumulated more proline and less malondialdehyde (MDA) compared with wild-type plants under both drought and salt stress conditions. Finally, the enzymatic activities of ascorbate peroxidase (APX) and catalase (CAT) were enhanced in drought- and salt-stressed transgenic lines. These results suggest that the CmLEA-S gene could be used as a potential candidate gene for crop improvement.
Collapse
Affiliation(s)
| | | | | | - Ikuo Nakamura
- Correspondence: ; Tel.: +81-47-308-8852; Fax: +81-47-308-8853
| |
Collapse
|
18
|
Sun H, Zhou X, Zhou Q, Zhao Y, Kong X, Luo M, Ji S. Disorder of membrane metabolism induced membrane instability plays important role in pericarp browning of refrigerated ‘Nanguo’ pears. Food Chem 2020; 320:126684. [DOI: 10.1016/j.foodchem.2020.126684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023]
|
19
|
Zhang D, Lv A, Yang T, Cheng X, Zhao E, Zhou P. Protective functions of alternative splicing transcripts ( CdDHN4- L and CdDHN4- S) of CdDHN4 from bermudagrass under multiple abiotic stresses. Gene 2020; 763S:100033. [PMID: 32550559 PMCID: PMC7285969 DOI: 10.1016/j.gene.2020.100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
Dehydrins (DHNs) play critical roles in plant adaptation to abiotic stresses. The objective of this study was to characterize DHNs in bermudagrass (Cynodon spp.). CdDHN4 gene was cloned from bermudagrass ‘Tifway’. Two CdDHN4 transcripts were detected due to alternative splicing (the nonspliced CdDHN4-L and the spliced CdDHN4-S) and both the CdDHN4-S and CdDHN4-L proteins are YSK2-type DHNs, the Φ-segment is present in CdDHN4-L and absent in CdDHN4-S. Transgenic Arabidopsis thaliana expressing CdDHN4-L or CdDHN4-S exhibited improved tolerance to salt, osmotic, low temperature and drought stress compared to the wild type (WT). The two transgenic lines did not differ in salt or drought tolerance, while plants expressing CdDHN4-S grew better under osmotic stress than those expressing CdDHN4-L. Both transgenic lines exhibited reduced content of malondialdehyde (MDA) and reactive oxygen species (ROS); and higher antioxidant enzymatic activities than the wild type plants under salt or drought stress. CdDHN4-S exhibited a higher ROS-scavenging capacity than CdDHN4-L. Two CdDHN4 transcripts (CdDHN4-L and CdDHN4-S) were detected due to alternative splicing in bermudagrass ‘Tifway’. CdDHN4s transgenic Arabidopsis thaliana exhibited higher tolerance to multiple abiotic stress compared to the wild type. CdDHN4s transgenic lines has lower content of ROS than the wild type under salt or drought stress. CdDHN4-S had a higher ROS-scavenging capacity than CdDHN4-L.
Collapse
Key Words
- Abiotic stress
- Alternative splicing
- AsA, ascorbic acid
- Bermudagrass
- CAT, catalase
- DEGs, differentially expressed genes
- DHN, Dehydrin
- DR, disordered region
- Dehydrin
- ETR, electron transport rate
- GSH, glutathione
- IDP, intrinsically disordered protein
- LEA proteins, late-embryogenesis abundant proteins
- MDA, malondialdehyde
- ORF, open reading frame
- PAM, pulse-amplitude modulation
- POD, peroxidase
- ROS
- ROS, reactive oxygen species
- SOD, superoxide dismutase
Collapse
Affiliation(s)
- Di Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianchen Yang
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqing Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Enhua Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:546213. [PMID: 33343588 PMCID: PMC7744598 DOI: 10.3389/fpls.2020.546213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: P. B. Kavi Kishor,
| | | | | | - Nagaraju Marka
- Biochemistry Division, National Institute of Nutrition-ICMR, Hyderabad, India
| | | | - Divya Dhulala
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Kummari Divya
- Department of Genetics, Osmania University, Hyderabad, India
| | - Madhavi Doma
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | |
Collapse
|
21
|
Guo X, Zhang L, Wang X, Zhang M, Xi Y, Wang A, Zhu J. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS One 2019; 14:e0225090. [PMID: 31738789 PMCID: PMC6860438 DOI: 10.1371/journal.pone.0225090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023] Open
Abstract
Dehydrins are late embryogenesis abundant proteins that help regulate abiotic stress responses in plants. Overexpression of the Saussurea involucrata dehydrin gene SiDHN has previously been shown to improve water-use efficiency and enhance cold and drought tolerance of transgenic tobacco. To understand the mechanism by which SiDHN exerts its protective function, we transformed the SiDHN gene into tomato plants (Solanum lycopersicum L.) and assessed their response to abiotic stress. We observed that in response to stresses, the SiDHN transgenic tomato plants had increased contents of chlorophyll a and b, carotenoid and relative water content compared with wild-type plants. They also had higher maximal photochemical efficiency of photosystem II and accumulated more proline and soluble sugar. Compared to those wild-type plants, malondialdehyde content and relative electron leakage in transgenic plants were not significantly increased, and H2O2 and O2- contents in transgenic tomato plants were significantly decreased. We further observed that the production of stress-related antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, peroxidase, and catalase, as well as pyrroline-5-carboxylate synthetase and lipid transfer protein 1, were up-regulated in the transgenic plants under cold and drought stress. Based on these observations, we conclude that overexpression of SiDHN gene can promote cold and drought tolerance of transgenic tomato plants by inhibiting cell membrane damage, protecting chloroplasts, and enhancing the reactive oxygen species scavenging capacity. The finding can be beneficial for the application of SiDHN gene in improving crop tolerance to abiotic stress and oxidative damage.
Collapse
Affiliation(s)
- Xinyong Guo
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Xiaozhen Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Minhuan Zhang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Yuxin Xi
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Aiying Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
- * E-mail:
| |
Collapse
|
22
|
Arun Dev Sharma, Kaur P, Mamik S. PCR Amplification and In-Silico Analysis of Putative Boiling Stable Protein Encoding Genes from Invasive Alien Plant Lantana camara. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2019. [DOI: 10.1134/s207511171903010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Molecular Mechanisms Underlying Increase in Lysine Content of Waxy Maize through the Introgression of the opaque2 Allele. Int J Mol Sci 2019; 20:ijms20030684. [PMID: 30764507 PMCID: PMC6386912 DOI: 10.3390/ijms20030684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
The opaque2 (o2) mutation in maize is associated with high lysine content in endosperm and good nutritional value. To improve the nutritional quality of waxy maize, the o2 allele was introgressed into the wxwx line using marker-assisted backcrossing selection technology. The lysine content of o2o2wxwx lines was higher than that of the wxwx line. To reveal the mechanism of increasing lysine content through introgression of the o2 in waxy maize, the transcriptome on kernels (18th day after pollination) of the o2o2wxwx and parent lines was analyzed using RNA-sequencing (RNA-Seq). The RNA-Seq analysis revealed 49 differentially expressed genes (DEGs). Functional analysis showed that these DEGs were mostly related to the catalytic activity and metabolic processes. The O2 gene regulated multiple metabolic pathways related to biological processes (BP) and molecular function (MP) during waxy maize endosperm development. In particular, in the o2o2wxwx lines, the two genes that encode the EF-1α and LHT1 were up-regulated, but the gene that encodes sulfur-rich proteins was down-regulated, raising the grain lysine content. These findings are of great importance for understanding the molecular mechanism underlying the lysine content increase due to o2 allele introgression into waxy maize.
Collapse
|
25
|
Tiwari P, Indoliya Y, Singh PK, Singh PC, Chauhan PS, Pande V, Chakrabarty D. Role of dehydrin-FK506-binding protein complex in enhancing drought tolerance through the ABA-mediated signaling pathway. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 158:136-149. [DOI: 10.1016/j.envexpbot.2018.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
26
|
Lv A, Su L, Liu X, Xing Q, Huang B, An Y, Zhou P. Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC PLANT BIOLOGY 2018; 18:299. [PMID: 30477420 PMCID: PMC6258397 DOI: 10.1186/s12870-018-1511-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dehydrins play positive roles in regulating plant abiotic stress responses. The objective of this study was to characterize two dehydrin genes, CdDHN4-L and CdDHN4-S, generated by alternative splicing of CdDHN4 in bermudagrass. RESULTS Overexpression of CdDHN4-L with φ-segment and CdDHN4-S lacking of φ-segment in Arabidopsis significantly increased tolerance against abiotic stresses. The growth phenotype of Arabidopsis exposed to NaCl at 100 mM was better in plants overexpressing CdDHN4-L than those overexpressing CdDHN4-S, as well as better in E.coli cells overexpressing CdDHN4-L than those overexpressing CdDHN4-S in 300 and 400 mM NaCl, and under extreme temperature conditions at - 20 °C and 50 °C. The CdDHN4-L had higher disordered characterization on structures than CdDHN4-S at temperatures from 10 to 90 °C. The recovery activities of lactic dehydrogenase (LDH) and alcohol dehydrogenase (ADH) in presence of CdDHN4-L and CdDHN4-S were higher than that of LDH and ADH alone under freeze-thaw damage and heat. Protein-binding and bimolecular fluorescence complementation showed that both proteins could bind to proteins with positive isoelectric point via electrostatic forces. CONCLUSIONS These results indicate that CdDHN4-L has higher protective ability against abiotic stresses due to its higher flexible unfolded structure and thermostability in comparison with CdDHN4-S. These provided direct evidence of the function of the φ-segment in dehydrins for protecting plants against abiotic stress and to show the electrostatic interaction between dehydrins and client proteins.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xingchen Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Qiang Xing
- Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Jersey, NJ 08901 USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101 People’s Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
27
|
Yu Z, Wang X, Zhang L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int J Mol Sci 2018; 19:ijms19113420. [PMID: 30384475 PMCID: PMC6275027 DOI: 10.3390/ijms19113420] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
28
|
Ferreira LA, Walczyk Mooradally A, Zaslavsky B, Uversky VN, Graether SP. Effect of an Intrinsically Disordered Plant Stress Protein on the Properties of Water. Biophys J 2018; 115:1696-1706. [PMID: 30297135 DOI: 10.1016/j.bpj.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Dehydrins are plant proteins that are able to protect plants from various forms of dehydrative stress such as drought, cold, and high salinity. Dehydrins can prevent enzymes from losing activity after freeze/thaw treatments. Previous studies had suggested that the dehydrins function by a molecular shield effect, essentially preventing a denatured enzyme from aggregating with another enzyme. Therefore, the larger the dehydrin, the larger the shield and theoretically the more effective the protection. Although this relationship holds for smaller dehydrins, it fails to explain why larger dehydrins are less efficient than would be predicted from their size. Using solvatochromic dyes to probe the solvent features of water, we first confirm that the dehydrins do not bind the dyes, which would interfere with interpretation of the data. We then show that the dehydrins have an effect on three solvent properties of water (dipolarity/polarizability, hydrogen-bond donor acidity and hydrogen-bond acceptor basicity), which can contribute to the protective mechanism of these proteins. Interpretation of these data suggests that although polyethylene glycol and dehydrins have similar protective effects, dehydrins may more efficiently modify the hydrogen-bonding ability of bulk water to prevent enzyme denaturation. This possibly explains why dehydrins recover slightly more enzyme activity than polyethylene glycol.
Collapse
Affiliation(s)
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation.
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
29
|
Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.). Int J Mol Sci 2018; 19:ijms19010191. [PMID: 29316727 PMCID: PMC5796140 DOI: 10.3390/ijms19010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT), a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2), 642 bp (P3), 428 bp (P4) and 245 bp (P5) were constructed from the 1048 bp (P1) promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control) plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s). Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.
Collapse
|
30
|
Halder T, Upadhyaya G, Basak C, Das A, Chakraborty C, Ray S. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:136. [PMID: 29491874 PMCID: PMC5817096 DOI: 10.3389/fpls.2018.00136] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 05/06/2023]
Abstract
Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH⋅) generated during Fenton's reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H2O2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment.
Collapse
|
31
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|