1
|
Li J, Yang M, Dai Y, Guo X, Ding Y, Li X, Zhang S, Xu W, Chen L, Tao J, Liu W. Electroacupuncture regulates Rab5a-mediating NGF transduction to improve learning and memory ability in the early stage of AD mice. CNS Neurosci Ther 2024; 30:e14743. [PMID: 38780008 PMCID: PMC11112630 DOI: 10.1111/cns.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
AIMS Nerve growth factor (NGF) loss is a potential factor for the degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD), and Rab5a is a key regulatory molecule of NGF signaling transduction. Here, we investigated the changes of Rab5a in 5 × FAD mice and further explored the mechanism of Electroacupuncture (EA) treatment in improving cognition in the early stage of AD. METHODS The total Rab5a and Rab5a-GTP in 5-month-old 5 × FAD mice and wild-type mice were detected using WB and IP technologies. 5 × FAD mice were treated with EA at the Bai hui (DU20) and Shen ting (DU24) acupoints for 4 weeks and CRE/LOXP technology was used to confirm the role of Rab5a in AD mediated by EA stimulation. The Novel Object Recognition and Morris water maze tests were used to evaluate the cognitive function of 5 × FAD mice. The Nissl, immunohistochemistry, and Thioflavin S staining were used to observe pathological morphological changes in the basal forebrain circuit. The Golgi staining was used to investigate the synaptic plasticity of the basal forebrain circuit and WB technology was used to detect the expression levels of cholinergic-related and NGF signal-related proteins. RESULTS The total Rab5a was unaltered, but Rab5a-GTP increased and the rab5a-positive early endosomes appeared enlarged in the hippocampus of 5 × FAD mice. Notably, EA reduced Rab5a-GTP in the hippocampus in the early stage of 5 × FAD mice. EA could improve object recognition memory and spatial learning memory by reducing Rab5a activity in the early stage of 5 × FAD mice. Moreover, EA could reduce Rab5a activity to increase NGF transduction and increase the levels of phosphorylated TrkA, AKT, and ERK in the basal forebrain and hippocampus, and increase the expression of cholinergic-related proteins, such as ChAT, vAchT, ChT1, m1AchR, and m2AchR in the basal forebrain and ChAT, m1AchR, and m2AchR in the hippocampus, improving synaptic plasticity in the basal forebrain hippocampal circuit in the early stage of 5 × FAD mice. CONCLUSIONS Rab5a hyperactivation is an early pathological manifestation of 5 × FAD mice. EA could suppress Rab5a-GTP to promote the transduction of NGF signaling, and enhance the synaptic plasticity of the basal forebrain hippocampal circuit improving cognitive impairment in the early stage of 5 × FAD mice.
Collapse
Affiliation(s)
- Jianhong Li
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Aptamers Technology900TH hospital of Joint Logistics Support ForceFuzhouChina
| | - Minguang Yang
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yaling Dai
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xiaoqin Guo
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yanyi Ding
- National‐Local Joint Engineering Research Center of Rehabilitation Medicine TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xiaoling Li
- Provincial and Ministerial Co‐founded Collaborative Innovation Center of Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology900TH hospital of Joint Logistics Support ForceFuzhouChina
| | - Wenshan Xu
- Fujian Key Laboratory of Cognitive RehabilitationAffiliated Rehabilitation Hospital of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Lidian Chen
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jing Tao
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
| | - Weilin Liu
- The Institute of Rehabilitation IndustryFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
2
|
Cao Z, An Y, Lu Y. Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. Int J Mol Sci 2024; 25:1990. [PMID: 38396669 PMCID: PMC10889299 DOI: 10.3390/ijms25041990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
N6-methyladenosine (m6A) constitutes the paramount post-transcriptional modification within eukaryotic mRNA. This modification is subjected to stimulus-dependent regulation within the central nervous system of mammals, being influenced by sensory experiences, learning processes, and injuries. The patterns of m6A methylation within the hippocampal region of diabetes cognitive impairment (DCI) has not been investigated. A DCI model was established by feeding a high-fat diet to C57BL/6J mice. m6A and RNA sequencing was conducted to profile the m6A-tagged transcripts in the hippocampus. Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing analyses yielded differentially m6A-modified and expressed genes in the hippocampus of DCI mice, which were enriched in pathways involving synaptic transmission and axonal guidance. Mechanistic analyses revealed a remarkable change in m6A modification levels through alteration of the mRNA expression of m6A methyltransferases (METTL3 and METTL14) and demethylase (FTO) in the hippocampus of DCI mice. We identified a co-mediated specific RNA regulatory strategy that broadens the epigenetic regulatory mechanism of RNA-induced neurodegenerative disorders associated with metabolic and endocrine diseases.
Collapse
Affiliation(s)
- Zhaoming Cao
- School of Nursing, Peking University, Beijing 100191, China;
| | - Yu An
- Endocrinology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China;
| |
Collapse
|
3
|
Ge X, Wang L, Cui Q, Yan H, Wang Z, Ye S, Zhang Q, Fei A. Electroacupuncture improves cognitive impairment in diabetic cognitive dysfunction rats by regulating the mitochondrial autophagy pathway. J Physiol Sci 2022; 72:29. [PMID: 36418941 PMCID: PMC10717526 DOI: 10.1186/s12576-022-00854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Diabetes-associated cognitive dysfunction has become a major public health concern. However, the mechanisms driving this disease are elusive. Herein, we explored how electroacupuncture improves learning and memory function in diabetic rats. METHODS The diabetic model was established by intraperitoneal injection of streptozotocin (STZ) in adult Sprague-Dawley rats. Rats were fed on high-fat and high-sugar diets. Learning and memory functions were assessed using behavioral tests. The hematoxylin and eosin (H&E) staining, Western blotting, real-time PCR, ELISA, immunohistochemistry, and transmission electronic microscopy (TEM) was performed to test related indicators. RESULTS High-fat and high-sugar diets impaired learning and memory function in rats, while electroacupuncture treatment reversed these changes. The model group presented highly prolonged escape latency compared to the control group, indicating impaired learning and memory functions. The TEM examination showed that electroacupuncture enhanced Aβ clearance and mitochondrial autophagy in hippocampal neuronal cells by increasing DISC1 expression. CONCLUSIONS Electroacupuncture improves learning and memory function in diabetic rats by increasing DISC1 expression to promote mitophagy. This enhanced Aβ clearance, alleviating cytotoxicity in hippocampal neuronal cells.
Collapse
Affiliation(s)
- Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China
| | - Ling Wang
- College of Second Clinical Medical, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qianqian Cui
- Department of Emergency, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China
| | - Hongli Yan
- Department of Acupuncture-Moxibustion and Rehabilitation, Mingguang Hospital of Traditional Chinese Medicine, Chuzhou, 239499, China
| | - Zhongbao Wang
- College of Third Clinical Medical, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230002, China.
| | - Qingping Zhang
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, China.
| |
Collapse
|
4
|
Ning JQ, Luo JS, Ding LL, Guo YH, Chen ZY, Wang Q, Zhou RL. The Effect of Electroacupuncture Preconditioning on Regional Cerebral Oxygen Saturation Levels in Elderly Patients with Diabetes. Diabetes Metab Syndr Obes 2022; 15:2117-2125. [PMID: 35903412 PMCID: PMC9314758 DOI: 10.2147/dmso.s370974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the effect of electroacupuncture preconditioning on regional cerebral oxygen saturation (rSO2) levels in elderly patients with diabetes. METHODS Forty patients undergoing elective diabetic foot surgery were enrolled in this study. All patients were aged 65 years and above and weighed 45-75 kg. All were characterized as class II or III according to the American Society of Anesthesiologists' physical status classification system. Patients were divided randomly into an electroacupuncture group (group E) and a control group (group C); both groups comprised 20 patients. In group E, the DU20 (Baihui), DU24 (Shenting), and EX-HN1 (Sishencong) acupoints were selected for electroacupuncture 30 min prior to administering anesthesia, while in group C, patients underwent routine anesthesia without electroacupuncture. The patients in both groups were anesthetized using a sciatic nerve block. The number of cases with increased or decreased regional oxygen saturation (rSO2) compared with the baseline as well as rSO2 variability in the two groups were recorded and compared. RESULTS There was no significant difference in the preoperative rSO2 values between the two groups (54.4 ± 4.8 (L), 53.9 ± 5.2 (R) [group C] vs 54.1 ± 5.2 (L), 54.5 ± 4.6 (R)[group E]). Compared with group C, the rSO2 in group E increased (50.3 ± 3.9 [group C] vs 58.4 ± 3.2[group E]), and this difference was statistically significant (P < 0.001). CONCLUSION Electroacupuncture stimulation can increase rSO2 levels in patients with diabetes. CLINICAL REGISTRATION NUMBER ChiCTR2100048783 (http://www.chictr.org.cn).
Collapse
Affiliation(s)
- Jia-Qi Ning
- Department of Anesthesiology, Capital Medical University, Beijing, 100069, People’s Republic of China
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Jian-Sheng Luo
- Department of Anesthesiology, Capital Medical University, Beijing, 100069, People’s Republic of China
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
- Correspondence: Ling-Ling Ding, Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China, Tel/Fax +86 1087906647, Email ;
| | - Yu-Hong Guo
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Zhuo-Ya Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Qi Wang
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Rui-Ling Zhou
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| |
Collapse
|
5
|
Lee HJ, Jung DH, Kim NK, Shin HK, Choi BT. Effects of electroacupuncture on the functionality of NG2-expressing cells in perilesional brain tissue of mice following ischemic stroke. Neural Regen Res 2021; 17:1556-1565. [PMID: 34916441 PMCID: PMC8771106 DOI: 10.4103/1673-5374.330611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neural/glial antigen 2 (NG2)-expressing cells has multipotent stem cell activity under cerebral ischemia. Our study examined the effects of electroacupuncture (EA) therapy (2 Hz, 1 or 3 mA, 20 minutes) at the Sishencong acupoint on motor function after ischemic insult in the brain by investigating the rehabilitative potential of NG2-derived cells in a mouse model of ischemic stroke. EA stimulation alleviated motor deficits caused by ischemic stroke, and 1 mA EA stimulation was more efficacious than 3 mA EA stimulation or positive control treatment with edaravone, a free radical scavenger. The properties of NG2-expressing cells were altered with 1 mA EA stimulation, enhancing their survival in perilesional brain tissue via reduction of tumor necrosis factor alpha expression. EA stimulation robustly activated signaling pathways related to proliferation and survival of NG2-expressing cells and increased the expression of neurotrophic factors such as brain-derived neurotrophic factor, tumor growth factor beta, and neurotrophin 3. In the perilesional striatum, EA stimulation greatly increased the number of NG2-expressing cells double-positive for oligodendrocyte, endothelial cell, and microglia/macrophage markers (CC1, CD31, and CD68). EA therapy also greatly activated brain-derived neurotrophic factor/tropomyosin receptor kinase B and glycogen synthase kinase 3 beta signaling. Our results indicate that EA therapy may prevent functional loss at the perilesional site by enhancing survival and differentiation of NG2-expressing cells via the activation of brain-derived neurotrophic factor -induced signaling, subsequently ameliorating motor dysfunction. The animal experiments were approved by the Animal Ethics Committee of Pusan National University (approval Nos. PNU2019-2199 and PNU2019-2884) on April 8, 2019 and June 19, 2019.
Collapse
Affiliation(s)
- Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Nam Kwen Kim
- Department of Korean Ophthalmology, Otolaryngology and Dermatology, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
6
|
Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114464. [PMID: 34329715 DOI: 10.1016/j.jep.2021.114464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cognitive dysfunction (DCD) is mainly one of the complications of type 2 diabetes mellitus (T2DM) with complex and obscure pathogenesis. Extensive evidence has demonstrated the effectiveness and safety of traditional Chinese medicine (TCM) for DCD management. AIM OF THE STUDY This review attempted to systematically summarize the possible pathogenesis of DCD and the current Chinese medicine on the treatment of DCD. MATERIALS AND METHODS We acquired information of TCM on DCD treatment from PubMed, Web of Science, Science Direct and CNKI databases. We then dissected the potential mechanisms of currently reported TCMs and their active ingredients for the treatment of DCD by discussing the deficiencies and giving further recommendations. RESULTS Most TCMs and their active ingredients could improve DCD through alleviating insulin resistance, microvascular dysfunction, abnormal gut microbiota composition, inflammation, and the damages of the blood-brain barrier, cerebrovascular and neurons under hyperglycemia conditions. CONCLUSIONS TCM is effective in the treatment of DCD with few adverse reactions. A large number of in vivo and in vitro, and clinical trials are still needed to further reveal the potential quality markers of TCM on DCD treatment.
Collapse
Affiliation(s)
- Jinni Meng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, China
| | - Huixia Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
7
|
Astaxanthin-s-allyl cysteine diester against high glucose-induced neuronal toxicity in vitro and diabetes-associated cognitive decline in vivo: Effect on p53, oxidative stress and mitochondrial function. Neurotoxicology 2021; 86:114-124. [PMID: 34339762 DOI: 10.1016/j.neuro.2021.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Neuroprotective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against high glucose (HG)-induced oxidative stress in in vitro and cognitive decline under diabetes conditions in in vivo has been explored. Pretreatment of AST-SAC (5, 10 and 15 μM) dose-dependently preserved the neuronal cells (SH-SY5Y) viability against HG toxicity through i) decreasing oxidative stress (decreasing reactive oxygen species generation and increasing endogenous antioxidants level); ii) protecting mitochondrial function [oxidative phosphorylation (OXPHOS) complexes activity and mitochondrial membrane potential (MMP)]; and iii) decreasing p53 level thereby subsequently decreasing the level of apoptotic marker proteins. Male Spraque-Dawley rats were orally administered AST-SAC (1 mg/kg/day) for 45 days in streptozotocin-induced diabetes mellitus (DM) rats. AST-SAC administration prevented the loss of spatial memory in DM rats as determined using the novel object location test. AST-SAC administration alleviated the DM-induced injury in brain such as increased cholinesterases activity, elevated oxidative stress and mitochondrial dysfunction. Altogether, the results from the present study demonstrated that AST-SAC averted the neuronal apoptosis and preserved the cognitive function against HG toxicity under DM conditions.
Collapse
|
8
|
Soligo M, Felsani FM, Da Ros T, Bosi S, Pellizzoni E, Bruni S, Isopi J, Marcaccio M, Manni L, Fiorito S. Distribution in the brain and possible neuroprotective effects of intranasally delivered multi-walled carbon nanotubes. NANOSCALE ADVANCES 2021; 3:418-431. [PMID: 36131737 PMCID: PMC9418508 DOI: 10.1039/d0na00869a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/12/2020] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) are currently under active investigation for their use in several biomedical applications, especially in neurological diseases and nervous system injury due to their electrochemical properties. Nowadays, no CNT-based therapeutic products for internal use appear to be close to the market, due to the still limited knowledge on their fate after delivery to living organisms and, in particular, on their toxicological profile. The purpose of the present work was to address the distribution in the brain parenchyma of two intranasally delivered MWCNTs (MWCNTs 1 and a-MWCNTs 2), different from each other, the first being non electroconductive while the second results in being electroconductive. After intranasal delivery, the presence of CNTs was investigated in several brain areas, discriminating the specific cell types involved in the CNT uptake. We also aimed to verify the neuroprotective potential of the two types of CNTs, delivering them in rats affected by early diabetic encephalopathy and analysing the modulation of nerve growth factor metabolism and the effects of CNTs on the neuronal and glial phenotypes. Our findings showed that both CNT types, when intranasally delivered, reached numerous brain areas and, in particular, the limbic area that plays a crucial role in the development and progression of major neurodegenerative diseases. Furthermore, we demonstrated that electroconductive MWCNTs were able to exert neuroprotective effects through the modulation of a key neurotrophic factor and probably the improvement of neurodegeneration-related gliosis.
Collapse
Affiliation(s)
- Marzia Soligo
- Institute of Translational Pharmacology, CNR Via Fosso del Cavaliere 100 00133 Rome Italy
| | - Fausto Maria Felsani
- Institute of Translational Pharmacology, CNR Via Fosso del Cavaliere 100 00133 Rome Italy
| | - Tatiana Da Ros
- INSTM - Trieste Unit, Department of Chemical and Pharmaceutical Sciences, University of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| | - Susanna Bosi
- INSTM - Trieste Unit, Department of Chemical and Pharmaceutical Sciences, University of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| | - Elena Pellizzoni
- INSTM - Trieste Unit, Department of Chemical and Pharmaceutical Sciences, University of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| | - Stefano Bruni
- Former Medical Director Sanofi - Genzyme, Italy, currently Orchard Therapeutics 108 Cannon Street London UK
| | - Jacopo Isopi
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi, 2 40126 Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi, 2 40126 Bologna Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, CNR Via Fosso del Cavaliere 100 00133 Rome Italy
| | - Silvana Fiorito
- Institute of Translational Pharmacology, CNR Via Fosso del Cavaliere 100 00133 Rome Italy
| |
Collapse
|
9
|
Dallagi Y, Rahali D, Perrotte M, Dkhili H, Korsan A, El May MV, El Fazaa S, Ramassamy C, El Golli N. Date seeds alleviate behavioural and neuronal complications of metabolic syndrome in rats. Arch Physiol Biochem 2020; 129:582-596. [PMID: 33290103 DOI: 10.1080/13813455.2020.1849311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unhealthy dietary habits can play a crucial role in metabolic damages, promoting alteration of neural functions through the lifespan. Recently, dietary change has been perceived as the first line intervention in prevention and/or treatment of metabolic damages and related diseases. In this context, our study was designed to assess the eventual therapeutic effect of date seeds administration on memory and learning and on neuronal markers in a rat Metabolic Syndrome model. For this purpose, 32 adult male Wistar rats were fed with standard diet or high-fat high-sugar diet during ten weeks. After this, 16 rats were sacrified and the remaining rats received an oral administration of 300 mg of date seeds/kg of body weight during four supplementary weeks. Before sacrifice, we evaluate cognitive performances by the Barnes maze test. Afterwards, neuronal, astrocytic, microtubular and oxidative markers were investigated by immunoblotting methods. In Metabolic syndrome rats, results showed impairment of spatial memory and histological alterations. We identified neuronal damages in hippocampus, marked by a decrease of NeuN and an increase of GFAP and pTau396. Finally, we recorded an increase in protein oxidation and lipid peroxidation, respectively identified by an up-regulation of protein carbonyls and 4-HNe. Interestingly, date seeds administration improved these behavioural, histological, neuronal and oxidative damages highlighting the neuroprotective effect of this natural compound. Liquid Chromatography-Mass Spectrometry (LC-MS) identified, in date seeds, protocatechuic acid, caffeoylshikimic acid and vanillic acid, that could potentially prevent the progression of neurodegenerative diseases, acting through their antioxidant properties.
Collapse
Affiliation(s)
- Yosra Dallagi
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Dalila Rahali
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Morgane Perrotte
- INRS-Institute Armand Frappier, boul. des Prairies, Laval, Canada
| | - Houssem Dkhili
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Asma Korsan
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Michele Veronique El May
- Laboratory of Histology Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Saloua El Fazaa
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Charles Ramassamy
- INRS-Institute Armand Frappier, boul. des Prairies, Laval, Canada
- Institute of Nutrition and Functional Food (INAF), Laval University, Quebec, Canada
| | - Narges El Golli
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
10
|
Song Y, Wang Q, Li L, Chen S, Zhao Y, Gao L. Comprehensive epigenetic analysis of m6A modification in the hippocampal injury of diabetic rats. Epigenomics 2020; 12:1811-1824. [PMID: 33112671 DOI: 10.2217/epi-2020-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To study RNA N6-methyladenosine (m6A) modification in the diabetic hippocampus. Methods: Behavioral tests and staining were performed to evaluate the damage to the diabetic hippocampus in model rats. Western blotting was performed to investigate the expression of methylation-related enzymes, and flow cytometry was used to demonstrate HT22 cell apoptosis. M6A and RNA sequencing analyses were conducted to profile m6A-tagged transcripts in the diabetic hippocampus. Results: The rat models of diabetes mellitus suffered from cognitive disorders and hippocampal neuron damage. High glucose levels altered the expression of methylation-related enzymes. A total of 4890 differentially methylated m6A peaks and 63 differentially expressed genes and differentially methylated m6A sites were identified. Conclusion: The findings suggest that m6A modification is altered in the diabetic hippocampus and provide new insight into diabetic hippocampal injury.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
11
|
Soligo M, Protto V, Chiaretti A, Piccinin S, De Stefano ME, Nisticò R, Bracci-Laudiero L, Manni L. Effects of intranasally-delivered pro-nerve growth factors on the septo-hippocampal system in healthy and diabetic rats. Neuropharmacology 2020; 176:108223. [PMID: 32681844 DOI: 10.1016/j.neuropharm.2020.108223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022]
Abstract
Pro-nerve growth factor (proNGF) is the predominant form of NGF in the brain and its levels increase in neurodegenerative diseases. The balance between NGF receptors may explain the contradictory biological activities of proNGF. However, the specific role of the two main proNGF variants is mostly unexplored. proNGF-A is prevalently expressed in healthy brain, while proNGF-B content increases in the neuro-degenerating brain. Recently we have investigated in vitro the biological action of native mouse proNGF variants. To gain further insights into the specific functions of the two proNGFs, here we intranasally delivered mouse-derived proNGF-A and proNGF-B to the brain parenchyma of healthy and diabetic rats, the latter characterized by dysfunction in spatial learning and memory, in the septo-hippocampal circuitry and by relative increase in proNGF-B hippocampal levels. Exogenous proNGF-B induces depression of hippocampal DG-LTP and impairment of hippocampal neurogenesis in healthy animals, with concomitant decrease in basal forebrain cholinergic neurons and cholinergic fibers projecting to the hippocampus. proNGF-A, while ineffective in healthy animals, rescues the diabetes-induced impairment in DG-LTP and hippocampal neurogenesis, promoting the concomitant recovery of the basal forebrain cholinergic phenotype. Our experimental evidences suggest that the balance between different proNGFs may influence the development and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Virginia Protto
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Robert Nisticò
- European Brain Research Institute (EBRI), Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Bracci-Laudiero
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy; Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy.
| |
Collapse
|
12
|
Xue F, Xue SS, Liu L, Sang HF, Ma QR, Tan QR, Wang HN, Zhou CH, Peng ZW. Early intervention with electroacupuncture prevents PTSD-like behaviors in rats through enhancing hippocampal endocannabinoid signaling. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:171-181. [PMID: 30946940 DOI: 10.1016/j.pnpbp.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Electroacupuncture (EA) is a clinically useful physiological therapy that has been recently adopted to treat several brain disorders. However, the potential role of early EA intervention in the prevention of posttraumatic stress disorder (PTSD) as well as its potential cellular and molecular mechanism has never been investigated previously. In the present study, we used an enhanced single prolonged stress (ESPS) model to access the effects of early EA intervention on the prevention of anxiety-like and fear learning behaviors, as well as the influence of the expression of post-synaptic density protein 95 (PSD95), synaptophysin (Syn), brain derived neurotrophic factor (BDNF), diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R) in the hippocampus with or without DAGLα or CB1R knockdown by a short hairpin RNA (shRNA) in the hippocampus. Moreover, the effects of electrical stimulation with different parameters on the expression of DAGLα and CB1R in the hippocampal astrocytes were also observed. The results showed that Early EA intervention improved hippocampal synaptic plasticity and ameliorated PTSD-like behaviors and also increased expression of BDNF, DAGLα and CB1R. However, either DAGLα or CB1R knockdown by a short hairpin RNA (shRNA) eliminated the neuroprotective effects of early EA intervention. Furthermore, electrical stimulation with 2/15 Hz 1 mA elevated the expression of DAGLα and CB1R. Altogether, our findings provide new insights regarding the possibility of using early EA intervention in the prevention of PTSD, and the protective effects of EA is involving the activation of DAGLα and CB1R.
Collapse
Affiliation(s)
- Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Liu
- Institution of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Han-Fei Sang
- Department of Anesthesiology, Xiang'an Hospital, Xiamen University, Xiamen 361101, China
| | - Quan-Rui Ma
- Department of Human Anatomy and Histology and Embryology, Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Different responses of PC12 cells to different pro-nerve growth factor protein variants. Neurochem Int 2019; 129:104498. [PMID: 31278975 DOI: 10.1016/j.neuint.2019.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023]
Abstract
The present work aimed to explore the innovative hypothesis that different transcript/protein variants of a pro-neurotrophin may generate different biological outcomes in a cellular system. Nerve growth factor (NGF) is important in the development and progression of neurodegenerative and cancer conditions. Mature NGF (mNGF) originates from a precursor, proNGF, produced in mouse in two major variants, proNGF-A and proNGF-B. Different receptors bind mNGF and proNGF, generating neurotrophic or neurotoxic outcomes. It is known that dysregulation in the proNGF/mNGF ratio and in NGF-receptors expression affects brain homeostasis. To date, however, the specific roles of the two major proNGF variants remain unexplored. Here we attempted a first characterization of the possible differential effects of proNGF-A and proNGF-B on viability, differentiation and endogenous ngf gene expression in the PC12 cell line. We also investigated the differential involvement of NGF receptors in the actions of proNGF. We found that native mouse mNGF, proNGF-A and proNGF-B elicited different effects on PC12 cell survival and differentiation. Only mNGF and proNGF-A promoted neurotrophic responses when all NGF receptors are exposed at the cell surface. Tropomyosine receptor kinase A (TrkA) blockade inhibited cell differentiation, regardless of which NGF was added to culture media. Only proNGF-A exerted a pro-survival effect when TrkA was inhibited. Conversely, proNGF-B exerted differentiative effects when the p75 neurotrophin receptor (p75NTR) was antagonized. Stimulation with NGF variants differentially regulated the autocrine production of distinct proNgf mRNA. Overall, our findings suggest that mNGF and proNGF-A may elicit similar neurotrophic effects, not necessarily linked to activation of the same NGF-receptor, while the action of proNGF-B may be determined by the NGF-receptors balance. Thus, the proposed involvement of proNGF/NGF on the development and progression of neurodegenerative and tumor conditions may depend on the NGF-receptors balance, on specific NGF trancript expression and on the proNGF protein variant ratio.
Collapse
|
14
|
Protto V, Soligo M, De Stefano ME, Farioli‐Vecchioli S, Marlier LNJL, Nisticò R, Manni L. Electroacupuncture in rats normalizes the diabetes‐induced alterations in the septo‐hippocampal cholinergic system. Hippocampus 2019; 29:891-904. [DOI: 10.1002/hipo.23088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/27/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Virginia Protto
- Institute of Translational PharmacologyConsiglio Nazionale delle Ricerche (CNR) Rome Italy
| | - Marzia Soligo
- Institute of Translational PharmacologyConsiglio Nazionale delle Ricerche (CNR) Rome Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University Rome Italy
| | | | | | - Robert Nisticò
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute (EBRI) Rome Italy
- Department of BiologyUniversity of Rome Tor Vergata Rome Italy
| | - Luigi Manni
- Institute of Translational PharmacologyConsiglio Nazionale delle Ricerche (CNR) Rome Italy
| |
Collapse
|
15
|
Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol 2018; 16:1455-1465. [PMID: 29651949 PMCID: PMC6295934 DOI: 10.2174/1570159x16666180412092859] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Since its discovery, nerve growth factor (NGF) has long occupied a critical role in developmental and adult neurobiology for its many important regulatory functions on the survival, growth and differentiation of nerve cells in the peripheral and central nervous system. NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5). NGF was discovered for its action on the survival and differentiation of selected populations of peripheral neurons. Since then, an enormous number of basic and human studies were undertaken to explore the role of purified NGF to prevent the death of NGF-receptive cells. These studies revealed that NGF possesses important therapeutic properties, after topical administration, on human cutaneous pressure ulcer, corneal ulcers, glaucoma, retinal maculopathy, Retinitis Pigmentosa and in pediatric optic gliomas and brain traumas. The aim of this review is to present our previous, recent and ongoing clinical studies on the therapeutic properties of NGF.
Collapse
Affiliation(s)
| | | | | | - Luigi Aloe
- Address correspondence to this author at the Fondazione IRET ONLUS, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia (BO), Italy; Tel: +39-051-798776; Fax: +39-051-799673; E-mail:
| |
Collapse
|