1
|
Du X, Zhang M, Ma Y, Zhang Y, Li W, Hu T, Liu Y, Huang H, Kang Z. Carbon dots derived from metformin by electrochemical synthesis with broad-spectrum antibacterial properties. J Mater Chem B 2024; 12:2346-2353. [PMID: 38344921 DOI: 10.1039/d3tb02442c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Due to the advantages of good aqueous dispersion and biocompatibility, carbon dots (CDs) are promising candidates for a wide range of applications in the biological field. Notably, CDs derived from biosafe organic precursors will contribute both new types of CDs and new bioactivities. Herein, metformin (MET), a first-line drug for the treatment of type II diabetes, was selected as an organic precursor to fabricate a new type of CDs, namely, semi-carbonized MET (MCDs). These MCDs derived from MET possess a completely new antibacterial activity against Staphylococcus aureus (SA) and Escherichia coli (E. coli) compared with that of MET and achieve complete antibacterial activity at 200 μg mL-1. The broad-spectrum antibacterial mechanism of MCDs involves two aspects. For the Gram-positive bacteria SA, MCDs mainly affect the transport of nutrients by adsorbing onto the surface of bacteria, thereby inhibiting bacterial growth. For the Gram-negative bacteria E. coli, MCDs can easily pass through their thin cell walls and stimulate the bacteria to produce excess ROS, eventually leading to the death of the bacteria. This work may open a new way for the future design and development of CDs prepared from biosafe organic precursors with specific functions.
Collapse
Affiliation(s)
- Xin Du
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
2
|
Beduk T, Gomes M, De Oliveira Filho JI, Shetty SS, Khushaim W, Garcia-Ramirez R, Durmus C, Ait Lahcen A, Salama KN. A Portable Molecularly Imprinted Sensor for On-Site and Wireless Environmental Bisphenol A Monitoring. Front Chem 2022; 10:833899. [PMID: 35252119 PMCID: PMC8888969 DOI: 10.3389/fchem.2022.833899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
The detection of pollutant traces in the public and environmental waters is essential for safety of the population. Bisphenol A (BPA) is a toxic chemical widely used for the production of food storage containers by plastic industries to increase the storage ability. However, the insertion of BPA in water medium leads to serious health risks. Therefore, the development of low-cost, practical, sensitive, and selective devices to monitor BPA levels on-site in the environment is highly needed. Herein, for the first time, we present a homemade portable potentiostat device integrated to a laser-scribed graphene (LSG) sensor for BPA detection as a practical environmental pollutant monitoring tool. Recently, there has been an increasing need regarding the development of graphene-based electrochemical transducers (e.g., electrodes) to obtain efficient biosensing platforms. LSG platform is combined with molecularly imprinted polymer (MIP) matrix. LSG electrodes were modified with gold nanostructures and PEDOT polymer electrodeposition to create a specific MIP biomimetic receptor for ultrasensitive BPA detection. The sensing device has a Bluetooth connection, wirelessly connected to a smartphone providing high sensitivity and sensitivity (LOD: 3.97 nM in a linear range of .01–10 µM) toward BPA. Two commercial bottled water samples, tap water, commercial milk, and baby formula samples have been used to validate the reliability of the portable sensor device.
Collapse
|
3
|
Adil SF, Ashraf M, Khan M, Assal ME, Shaik MR, Kuniyil M, Al-Warthan A, Siddiqui MRH, Tremel W, Tahir MN. Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. CHEM REC 2022; 22:e202100274. [PMID: 35103379 DOI: 10.1002/tcr.202100274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.
Collapse
Affiliation(s)
- Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafiq H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Brain neurochemical monitoring. Biosens Bioelectron 2021; 189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Brain neurochemical monitoring aims to provide continuous and accurate measurements of brain biomarkers. It has enabled significant advances in neuroscience for application in clinical diagnostics, treatment, and prevention of brain diseases. Microfabricated electrochemical and optical spectroscopy sensing technologies have been developed for precise monitoring of brain neurochemicals. Here, a comprehensive review on the progress of sensing technologies developed for brain neurochemical monitoring is presented. The review provides a summary of the widely measured clinically relevant neurochemicals and commonly adopted recognition technologies. Recent advances in sampling, electrochemistry, and optical spectroscopy for brain neurochemical monitoring are highlighted and their application are discussed. Existing gaps in current technologies and future directions to design industry standard brain neurochemical sensing devices for clinical applications are addressed.
Collapse
|
5
|
Li Y, Mao L, Yu L, Li X, Zhang J. NiO x nanoparticles obtained from hydrothermally treated NiC 2O 4 as an electron blocking layer for organic photodetectors. NANOTECHNOLOGY 2020; 31:505601. [PMID: 33006318 DOI: 10.1088/1361-6528/abb48d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A room-temperature p-type NiOx film synthesized from a NiC2O4 precursor via hydrothermal treatment is employed as an electron blocking layer (EBL) to fabricate organic photodetectors (OPDs). A simple and efficient calcine process at 375 °C in air decomposes the NiC2O4 particles into NiOx, removes organic components and crystal water, and releases CO2 gas. Our experimental results indicate that this gaseous by-product prevents the agglomeration of NiOx, which yields smaller nanoparticles (5-10 nm). The formation of an EBL at room temperature improves device performance. After optimization, the performance parameters obtained, including dark current density, responsivity, specific detectivity and response, are 1.13 × 10-7 A cm-2, 0.74 A W-1, 3.86 × 1012 Jones, and 0.5/8 ms, respectively. Additionally, the dark current is reduced by more than an order of magnitude after the insertion of the NiOx layer. The proposed simple and easy method for producing an EBL could be beneficial for the commercial low-temperature and large-area preparation of OPDs.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, People's Republic of China
| | - Longmei Mao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, People's Republic of China
| | - Longxin Yu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, People's Republic of China
| | - Xifeng Li
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, People's Republic of China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Lee KS, Park YJ, Shim J, Lim GH, Yim SY, Seo JW, Ryu JH, Son DI. Inhibition of Photoconversion Activity in Self-Assembled ZnO-Graphene Quantum Dots Aggregated by 4-Aminophenol Used as a Linker. Molecules 2020; 25:E2802. [PMID: 32560497 PMCID: PMC7355606 DOI: 10.3390/molecules25122802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
The aggregation of zinc oxide nanoparticles leads to an increased absorbance in the ultraviolet-visible region by an induced light scattering effect. Herein, we demonstrate the inhibition of photoconversion activity in ZnO-graphene core-shell quantum dots (QD) (ZGQDs) agglomerated by 4-aminophenol (4-AP) used as a linker. The ZnO-graphene quantum dots (QD) aggregates (ZGAs) were synthesized using a facile solvothermal process. The ZGAs revealed an increased absorbance in the wavelengths between 350 and 750 nm as compared with the ZGQDs. Against expectation, the calculated average photoluminescence lifetime of ZGAs was 7.37 ns, which was 4.65 ns longer than that of ZGQDs and was mainly due to the high contribution of a slow (τ2, τ3) component by trapped carriers in the functional groups of graphene shells and 4-AP. The photoelectrochemical (PEC) cells and photodetectors (PDs) were fabricated to investigate the influence of ZGAs on the photoconversion activity. The photocurrent density of PEC cells with ZGAs was obtained as 0.04 mA/cm2 at 0.6 V, which was approximately 3.25 times lower than that of the ZGQDs. The rate constant value of the photodegradation value of rhodamine B was also decreased by around 1.4 times. Furthermore, the photoresponsivity of the PDs with ZGAs (1.54 μA·mW-1) was about 2.5 times as low as that of the PDs with ZGQDs (3.85 μA·mW-1). Consequently, it suggests that the device performances could be degraded by the inhibition phenomenon of the photoconversion activity in the ZGAs due to an increase of trap sites.
Collapse
Affiliation(s)
- Kyu Seung Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea; (K.S.L.); (J.S.); (G.-H.L.)
| | - Young Jae Park
- Light Convergence Research Team, Korea Institute of Lighting and ICT, 370, Dongseo-ro, Iksan-si, Jeollabuk-do 54630, Korea; (Y.J.P.); (J.H.R.)
| | - Jaeho Shim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea; (K.S.L.); (J.S.); (G.-H.L.)
| | - Guh-Hwan Lim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea; (K.S.L.); (J.S.); (G.-H.L.)
| | - Sang-Youp Yim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea;
| | - Jin Won Seo
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium;
| | - Jae Hyoung Ryu
- Light Convergence Research Team, Korea Institute of Lighting and ICT, 370, Dongseo-ro, Iksan-si, Jeollabuk-do 54630, Korea; (Y.J.P.); (J.H.R.)
| | - Dong Ick Son
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92, Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Korea; (K.S.L.); (J.S.); (G.-H.L.)
- KIST School, Department of Nanomaterials and Nano Science, University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
7
|
Curcio M, Farfalla A, Saletta F, Valli E, Pantuso E, Nicoletta FP, Iemma F, Vittorio O, Cirillo G. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020; 25:E2102. [PMID: 32365886 PMCID: PMC7249046 DOI: 10.3390/molecules25092102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures (CN) are emerging valuable materials for the assembly of highly engineered multifunctional nanovehicles for cancer therapy, in particular for counteracting the insurgence of multi-drug resistance (MDR). In this regard, carbon nanotubes (CNT), graphene oxide (GO), and fullerenes (F) have been proposed as promising materials due to their superior physical, chemical, and biological features. The possibility to easily modify their surface, conferring tailored properties, allows different CN derivatives to be synthesized. Although many studies have explored this topic, a comprehensive review evaluating the beneficial use of functionalized CNT vs G or F is still missing. Within this paper, the most relevant examples of CN-based nanosystems proposed for MDR reversal are reviewed, taking into consideration the functionalization routes, as well as the biological mechanisms involved and the possible toxicity concerns. The main aim is to understand which functional CN represents the most promising strategy to be further investigated for overcoming MDR in cancer.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Emanuele Valli
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| |
Collapse
|
8
|
Sarmiento V, Oropeza-Guzmán MT, Lockett M, Chen W, Ahn S, Wang J, Vazquez-Mena O. Electrochemical functionalization strategy for chemical vapor deposited graphene on silicon substrates: grafting, electronic properties and biosensing. NANOTECHNOLOGY 2019; 30:475703. [PMID: 31426031 DOI: 10.1088/1361-6528/ab3ca0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we present an electrochemical functionalization strategy for high quality single-layer and multilayer chemical vapor deposited (CVD) graphene directly on a Si/SiO2 chip facilitating electronic interfacing. This method avoids oxidation and tearing of graphene basal planes. We demonstrate effective functionalization by D-(+)-biotin (Bio), 4-(phenyldiazenyl)-aniline (Dz), and gallic acid (Gall) using cyclic voltammetry. Raman spectroscopy and XPS are used to demonstrate effective functionalization. In order to evaluate the effect of the electrochemical functionalization on graphene properties, DC electrical conductivity, XPS, mobility, and carrier density analysis are presented. We show that this functionalization strategy does not degrade graphene mobility (103 cm2 V-1s-1). After functionalization we observe a rise in Fermi level of ∼0.06 eV. In addition, we prove sensing capabilities with a CVD graphene monolayer on the biotin/avidin system by electrical resistance measurements and electrochemical impedance spectroscopy reaching a detection of 2.5 ng ml-1. This paper demonstrates an effective strategy to functionalize high quality CVD graphene on a chip compatible with an electronic interface readout.
Collapse
Affiliation(s)
- Viviana Sarmiento
- Universidad Autónoma de Baja California, Tijuana, BC. 22427, México. Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, United States of America. Calibaja Center for Resilient Materials and Systems, University of California, San Diego, La Jolla, CA 92093, United States of America
| | | | | | | | | | | | | |
Collapse
|
9
|
Vermisoglou E, Jakubec P, Bakandritsos A, Pykal M, Talande S, Kupka V, Zbořil R, Otyepka M. Chemical Tuning of Specific Capacitance in Functionalized Fluorographene. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4698-4709. [PMID: 31371868 PMCID: PMC6662882 DOI: 10.1021/acs.chemmater.9b00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/06/2019] [Indexed: 05/14/2023]
Abstract
Owing to its high surface area and excellent conductivity, graphene is considered an efficient electrode material for supercapacitors. However, its restacking in electrolytes hampers its broader utilization in this field. Covalent graphene functionalization is a promising strategy for providing more efficient electrode materials. The chemistry of fluorographene is particularly attractive as it allows scalable chemical production of useful graphene derivatives. Nevertheless, the influence of chemical composition on the capacitance of graphene derivatives is a largely unexplored field in nanomaterials science, limiting further development of efficient graphene-based electrode materials. In the present study, we obtained well-defined graphene derivatives differing in chemical composition but with similar morphologies by controlling the reaction time of 5-aminoisophthalic acid with fluorographene. The gravimetric specific capacitance ranged from 271 to 391 F g-1 (in 1 M Na2SO4), with the maximum value achieved by a delicate balance between the amount of covalently grafted functional groups and density of the sp2 carbon network governing the conductivity of the material. Molecular dynamics simulations showed that covalent grafting of functional groups with charged and ionophilic/hydrophilic character significantly enhanced the ionic concentration and hydration due to favorable electrostatic interactions among the charged centers and ions/water molecules. Therefore, conductive and hydrophilic graphitic surfaces are important features of graphene-based supercapacitor electrode materials. These findings provide important insights into the role of chemical composition on capacitance and pave the way toward designing more efficient graphene-based supercapacitor electrode materials.
Collapse
Affiliation(s)
- Eleni
C. Vermisoglou
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Petr Jakubec
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Martin Pykal
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Smita Talande
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vojtěch Kupka
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
10
|
Cao Q, Puthongkham P, Venton BJ. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:247-261. [PMID: 30740148 PMCID: PMC6366673 DOI: 10.1039/c8ay02472c] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The carbon-fiber microelectrode has been used for decades as a neurotransmitter sensor. Recently, new strategies have been developed for making carbon electrodes, including using carbon nanomaterials or pyrolyzing photoresist etched by nanolithography or 3D printing. This review summarizes how chemical and 3D surface structures of new carbon electrodes are optimized for neurotransmitter detection. There are effects of the chemical structure that are advantageous and nanomaterials are used ranging from carbon nanotube (CNT) to graphene to nanodiamond. Functionalization of these materials promotes surface oxide groups that adsorb dopamine and dopants introduce defect sites good for electron transfer. Polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) or Nafion also enhance the selectivity, particularly for dopamine over ascorbic acid. Changing the 3D surface structure of an electrode increases current by adding more surface area. If the surface structure has roughness or pores on the micron scale, the electrode also acts as a thin layer cell, momentarily trapping the analyte for redox cycling. Vertically-aligned CNTs as well as lithographically-made or 3D printed pillar arrays act as thin layer cells, producing more reversible cyclic voltammograms. A better understanding of how chemical and surface structure affects electrochemistry enables rational design of electrodes. New carbon electrodes are being tested in vivo and strategies to reduce biofouling are being developed. Future studies should test the robustness for long term implantation, explore electrochemical properties of neurotransmitters beyond dopamine, and combine optimized chemical and physical structures for real-time monitoring of neurotransmitters.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
11
|
Manju V, Vusa CSR, Arumugam P, Berchmans S. Modulating Metal-Free and Non-Enzymatic Electrocatalytic Activity of sp 2
Carbons Towards H 2
O 2
Reduction by a Facile and Low-Temperature Electrochemical Approach. ChemElectroChem 2018. [DOI: 10.1002/celc.201801232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Venkatesan Manju
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
- Academy of scientific and innovative research; Karaikudi- 630003 India
| | - Chiranjeevi S. R. Vusa
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
| | - Palaniappan Arumugam
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
- Academy of scientific and innovative research; Karaikudi- 630003 India
| | - Sheela Berchmans
- Council of scientific and industrial research; Central electrochemical research institute; Karaikudi- 630003 India
- Academy of scientific and innovative research; Karaikudi- 630003 India
| |
Collapse
|
12
|
Berchmans S, Venkatesan M, Vusa CSR, Arumugam P. PAMAM Dendrimer Modified Reduced Graphene Oxide Postfunctionalized by Horseradish Peroxidase for Biosensing H 2O 2. Methods Enzymol 2018; 609:143-170. [PMID: 30244788 DOI: 10.1016/bs.mie.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this chapter, we describe the tethering of horseradish peroxidase (HRP) to reduced graphene oxide (RGO) for sensing H2O2 in serum. To accomplish this, RGO was synthesized through a green route by reducing graphene oxide (GO) prepared by Hummers method with carrot extract. The RGO was then covalently functionalized by electrochemical amination using fourth generation, amine-terminated PAMAM dendrimers. Subsequently, HRP was postfunctionalized through glutaraldehyde linkage. The synthesized RGO and the functionalization steps were well characterized by spectroscopic, microscopic, and electrochemical techniques. The application of HRP tethered RGO was demonstrated for H2O2 sensing in blood serum. This work provides scope for extending this functionalization strategy for other carbonaceous materials as well.
Collapse
Affiliation(s)
- Sheela Berchmans
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India.
| | - Manju Venkatesan
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|