1
|
Stroggilos R, Tserga A, Zoidakis J, Vlahou A, Makridakis M. Tissue proteomics repositories for data reanalysis. MASS SPECTROMETRY REVIEWS 2024; 43:1270-1284. [PMID: 37534389 DOI: 10.1002/mas.21860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
We are approaching the third decade since the establishment of the very first proteomics repositories back in the mid-'00s. New experimental approaches and technologies continuously enrich the field while producing vast amounts of mass spectrometry data. Together with initiatives to establish standard terminology and file formats, proteomics is rapidly transforming into a mature component of systems biology. Here we describe the ProteomeXchange consortium repositories. We specifically search, collect and evaluate public human tissue datasets (categorized as "complete" by the repository) submitted in 2015-2022, to both map the existing information and assess the data set reusability. Human tissue data are variably represented in the repositories reviewed, ranging between 10% and 25% of the total data submitted, with cancers being the most represented, followed by neuronal and cardiovascular diseases. About half of the retrieved data sets were found to lack annotations or metadata necessary to directly replicate the analysis. This poses a rough challenge to data reusability and highlights the need to increase awareness of the mage-tab file format for metadata in the community. Overall, proteomics repositories have evolved greatly over the past 7 years, as they have grown in size and become equipped with various powerful applications and tools that enable data searching and analytical tasks. However, to make the most of this potential, priority must be given to finding ways to secure detailed metadata for each submission, which is likely the next major milestone for proteomics repositories.
Collapse
Affiliation(s)
- Rafael Stroggilos
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Athens, Greece
| | - Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Athens, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Athens, Greece
| |
Collapse
|
2
|
Boullard NG, Paris JJ, Shariat-Madar Z, Mahdi F. Increased Prolylcarboxypeptidase Expression Can Serve as a Biomarker of Senescence in Culture. Molecules 2024; 29:2219. [PMID: 38792081 PMCID: PMC11123917 DOI: 10.3390/molecules29102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.
Collapse
Affiliation(s)
| | - Jason J. Paris
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| |
Collapse
|
3
|
Jeon YH, Lee S, Kim DW, Kim S, Bae SS, Han M, Seong EY, Song SH. Serum and urine metabolomic biomarkers for predicting prognosis in patients with immunoglobulin A nephropathy. Kidney Res Clin Pract 2023; 42:591-605. [PMID: 37448290 PMCID: PMC10565460 DOI: 10.23876/j.krcp.22.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most prevalent form of glomerulonephritis worldwide. Prediction of disease progression in IgAN can help to provide individualized treatment based on accurate risk stratification. METHODS We performed proton nuclear magnetic resonance-based metabolomics analyses of serum and urine samples from healthy controls, non-progressor (NP), and progressor (P) groups to identify metabolic profiles of IgAN disease progression. Metabolites that were significantly different between the NP and P groups were selected for pathway analysis. Subsequently, we analyzed multivariate area under the receiver operating characteristic (ROC) curves to evaluate the predictive power of metabolites associated with IgAN progression. RESULTS We observed several distinct metabolic fingerprints of the P group involving the following metabolic pathways: glycolipid metabolism; valine, leucine, and isoleucine biosynthesis; aminoacyl-transfer RNA biosynthesis; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism. In multivariate ROC analyses, the combinations of serum glycerol, threonine, and proteinuria (area under the curve [AUC], 0.923; 95% confidence interval [CI], 0.667-1.000) and of urinary leucine, valine, and proteinuria (AUC, 0.912; 95% CI, 0.667-1.000) showed the highest discriminatory ability to predict IgAN disease progression. CONCLUSION This study identified serum and urine metabolites profiles that can aid in the identification of progressive IgAN and proposed perturbed metabolic pathways associated with the identified metabolites.
Collapse
Affiliation(s)
- You Hyun Jeon
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sujin Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Da Woon Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Miyeun Han
- Division of Nephrology, Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Eun Young Seong
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Mucha K, Pac M, Pączek L. Omics are Getting Us Closer to Understanding IgA Nephropathy. Arch Immunol Ther Exp (Warsz) 2023; 71:12. [PMID: 37060455 PMCID: PMC10105675 DOI: 10.1007/s00005-023-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
During the last decade, thanks to omics technologies, new light has been shed on the pathogenesis of many diseases. Genomics, epigenomics, transcriptomics, and proteomics have helped to provide a better understanding of the origin and heterogeneity of several diseases. However, the risk factors for most autoimmune diseases remain unknown. The successes and pitfalls of omics have also been observed in nephrology, including immunoglobulin A nephropathy (IgAN), the most common form of glomerulonephritis and a principal cause of end-stage renal disease worldwide. Unfortunately, the immense progress in basic research has not yet been followed by the satisfactory development of a targeted treatment. Although, most omics studies describe changes in the immune system, there is still insufficient data to apply their results in the constantly evolving multi-hit pathogenesis model and thus do to provide a complete picture of the disease. Here, we describe recent findings regarding the pathophysiology of IgAN and link omics studies with immune system dysregulation. This review provides insights into specific IgAN markers, which may lead to the identification of potential targets for personalised treatment in the future.
Collapse
Affiliation(s)
- Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Michał Pac
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Tasar GE, Uzerk Kibar M, Dag O, Erdem Y, Ertoy Baydar D, Saglam A. Cytoplasmic WT1 in IgA nephropathy, an indicator of poor prognosis associated with mesangial/peri-mesangial C4d. Int Urol Nephrol 2023; 55:661-669. [PMID: 36036855 DOI: 10.1007/s11255-022-03357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND We aimed to investigate the immuno-histochemical expression of C4d, ADAM10 and WT1 in kidney biopsies of immunoglobulin A nephropathy (IgAN) patients and correlate the findings with clinical, laboratory and histopathologic features in the hope of defining new parameters to better understand the pathogenesis of the disease, and predict prognosis. MATERIALS AND METHODS Paraffin-embedded kidney biopsy samples of 128 IgAN patients were immuno-histochemically treated with C4d and ADAM10/WT1 dual stain. Results were evaluated according to Oxford classification parameters, epidemiologic features, laboratory findings at presentation and clinical follow-up. RESULTS We observed C4d positivity in 40.6% of our patients, 25% of which was mesangial/peri-mesangial (m/pm) staining. Only m/pmC4d positivity statistically correlated with progression to end-stage renal disease (ESRD). M/pmC4d positive patients had statistically significantly higher baseline proteinuria levels, presence of crescents and > 25% segmental sclerosis of glomeruli. There was cytoplasmic staining of WT1 in 11.2% of cases. Presence of cWT1 correlated with m/pmC4d positivity and progression to ESRD. There was no glomerular ADAM10 detected and tubular expression of this protein did not relate to amount of tubular damage or other parameters. CONCLUSION This study is the first to show that cWT1is involved in IgAN and appears as an independent variable for worse prognosis.
Collapse
Affiliation(s)
- Gozde Elif Tasar
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Muge Uzerk Kibar
- Department of Nephrology, Hacettepe University School of Medicine, Hacettepe University, Ankara, Turkey
| | - Osman Dag
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yunus Erdem
- Department of Nephrology, Hacettepe University School of Medicine, Hacettepe University, Ankara, Turkey
| | - Dilek Ertoy Baydar
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Arzu Saglam
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
6
|
Martin CE, Jones N. ShcA expression in podocytes is dispensable for glomerular development but its upregulation is associated with kidney disease. Am J Transl Res 2021; 13:9874-9882. [PMID: 34540124 PMCID: PMC8430102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND ShcA (SHC1) is a phosphotyrosine adaptor protein which plays broad signaling roles within the cell. Systemic loss of ShcA during embryogenesis is lethal, while its aberrant expression contributes to disease. We recently demonstrated that ShcA is highly expressed during glomerular development and that it is upregulated within podocytes in experimental kidney injury and chronic kidney disease. The objective of this study was to analyze the in vivo role of ShcA in podocytes. METHODS We selectively deleted all three isoforms of ShcA from mouse kidney podocytes using the Cre/lox system driven by the podocyte-specific podocin promoter (Nphs2). Immunostaining of kidney sections was used to confirm ShcA deletion in podocytes. Coomassie blue staining of protein gels was used to detect urinary albumin. Light and electron microscopy were used to assess glomerular morphology. Transcript levels of SHC1 in human renal disease were assessed using the Nephroseq database. RESULTS Mice lacking podocyte ShcA were born at the expected Mendelian frequency and did not display overt renal impairment or changes in podocyte architecture beyond one year of age. In parallel, we correlated increased ShcA mRNA expression in the human kidney with proteinuria and reduced glomerular filtration rate. CONCLUSION Our studies reveal that ShcA is dispensable for normal kidney function, but its upregulation is associated with disease.
Collapse
Affiliation(s)
- Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
7
|
Bülow RD, Dimitrov D, Boor P, Saez-Rodriguez J. How will artificial intelligence and bioinformatics change our understanding of IgA Nephropathy in the next decade? Semin Immunopathol 2021; 43:739-752. [PMID: 33835214 PMCID: PMC8551101 DOI: 10.1007/s00281-021-00847-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 01/16/2023]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis. It is characterized by the deposition of immune complexes containing immunoglobulin A (IgA) in the kidney’s glomeruli, triggering an inflammatory process. In many patients, the disease has a progressive course, eventually leading to end-stage kidney disease. The current understanding of IgAN’s pathophysiology is incomplete, with the involvement of several potential players, including the mucosal immune system, the complement system, and the microbiome. Dissecting this complex pathophysiology requires an integrated analysis across molecular, cellular, and organ scales. Such data can be obtained by employing emerging technologies, including single-cell sequencing, next-generation sequencing, proteomics, and complex imaging approaches. These techniques generate complex “big data,” requiring advanced computational methods for their analyses and interpretation. Here, we introduce such methods, focusing on the broad areas of bioinformatics and artificial intelligence and discuss how they can advance our understanding of IgAN and ultimately improve patient care. The close integration of advanced experimental and computational technologies with medical and clinical expertise is essential to improve our understanding of human diseases. We argue that IgAN is a paradigmatic disease to demonstrate the value of such a multidisciplinary approach.
Collapse
Affiliation(s)
- Roman David Bülow
- University Hospital RWTH Aachen, Institute of Pathology, Aachen, Germany
| | - Daniel Dimitrov
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Peter Boor
- University Hospital RWTH Aachen, Institute of Pathology, Aachen, Germany.
- Department of Nephrology and Immunology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074, RWTH Aachen University, Aachen, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
8
|
Latosinska A, Siwy J, Faguer S, Beige J, Mischak H, Schanstra JP. Value of Urine Peptides in Assessing Kidney and Cardiovascular Disease. Proteomics Clin Appl 2021; 15:e2000027. [PMID: 32710812 DOI: 10.1002/prca.202000027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Urinary peptides gained significant attention as potential biomarkers especially in the context of kidney and cardiovascular disease. In this manuscript the recent literature since 2015 on urinary peptide investigation in human kidney and cardiovascular disease is reviewed. The technology most commonly used in this context is capillary electrophoresis coupled mass spectrometry, in part owed to the large database available and the well-defined dataspace. Several studies based on over 1000 subjects are reported in the recent past, especially examining CKD273, a classifier for assessment of chronic kidney disease based on 273 urine peptides. Interestingly, the most abundant urinary peptides are generally collagen fragments, which may have gone undetected for some time as they are typically modified via proline hydroxylation. The data available suggest that urinary peptides specifically depict inflammation and fibrosis, and may serve as a non-invasive tool to assess fibrosis, which appears to be a key driver in kidney and cardiovascular disease. The recent successful completion of the first urinary peptide guided intervention trial, PRIORITY, is expected to further spur clinical application of urinary peptidomics, aiming especially at early detection of chronic diseases, prediction of progression, and prognosis of drug response.
Collapse
Affiliation(s)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - Stanislas Faguer
- Département de Néphrologie et Transplantation d'organes, Centre de référence des maladies rénales rares, Centre Hospitalier Universitaire de Toulouse, 1, Avenue Jean Poulhes, Toulouse, 31059, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 Avenue Jean Poulhès, BP 84225, Toulouse Cedex 4, 31432, France
- Université Toulouse III Paul-Sabatier, Route de Narbonne, Toulouse, 31330, France
| | - Joachim Beige
- Department of Nephrology and Kuratorium for Dialysis and Transplantation Renal Unit, Hospital St Georg, Delitzscher Str. 141, 04129, Leipzig, Germany
- Department of Nephrology, Martin-Luther-University Halle/Wittenberg, Universitätsplatz 10, 06108, Halle (Saale), Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 Avenue Jean Poulhès, BP 84225, Toulouse Cedex 4, 31432, France
- Université Toulouse III Paul-Sabatier, Route de Narbonne, Toulouse, 31330, France
| |
Collapse
|
9
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Comparative proteomic analysis of renal proteins from IgA nephropathy model mice and control mice. Clin Exp Nephrol 2020; 24:666-679. [PMID: 32436031 DOI: 10.1007/s10157-020-01898-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND High-IgA ddY (HIGA) mice, an animal model of human IgA nephropathy (IgAN), spontaneously develop nephropathy with glomerular IgA deposition and markedly elevated serum IgA levels from 25 weeks of age. METHODS We performed a comparative proteomic analysis of the renal proteins collected from HIGA mice and control C57BL/6 mice at 5 or 38 weeks of age (the H5, H38, C5, and C38 groups) (n = 4 in each group). Proteins were extracted from the left whole kidney of each mouse and analyzed using nano-liquid chromatography-tandem mass spectrometry. The right kidneys were used for histopathological examinations. RESULTS Immunohistochemical examinations showed glomerular deposition of IgA and the immunoglobulin joining (J) chain, and increased numbers of interstitial IgA- and J-chain-positive plasma cells in the H38 group. In the proteomic analysis, > 5000 proteins were identified, and 33 proteins with H38/H5 ratios of > 5.0, H38/C38 ratios of > 5.0, and C38/C5 ratios of < 1.5 were selected. Among them, there were various proteins that are known to be involved in human IgAN and/or animal IgAN models. Immunohistochemical examinations validated the proteomic results for some proteins. Furthermore, two proteins that are known to be associated with kidney disease displayed downregulated expression (H38/H5 ratio: 0.01) in the H38 group. CONCLUSIONS The results of comparative proteomic analysis of renal proteins were consistent with previous histopathological and serological findings obtained in ddY and HIGA mice. Various proteins that are known to be involved in kidney disease, including IgAN, and potential disease marker proteins exhibited markedly altered levels in HIGA mice.
Collapse
|
11
|
Teclemariam ET, Pergande MR, Cologna SM. Considerations for mass spectrometry-based multi-omic analysis of clinical samples. Expert Rev Proteomics 2020; 17:99-107. [PMID: 31996049 DOI: 10.1080/14789450.2020.1724540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.
Collapse
Affiliation(s)
- Esei T Teclemariam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Taherkhani A, Farrokhi Yekta R, Mohseni M, Saidijam M, Arefi Oskouie A. Chronic kidney disease: a review of proteomic and metabolomic approaches to membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy biomarkers. Proteome Sci 2019; 17:7. [PMID: 31889913 PMCID: PMC6925425 DOI: 10.1186/s12953-019-0155-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a global health problem annually affecting millions of people around the world. It is a comprehensive syndrome, and various factors may contribute to its occurrence. In this study, it was attempted to provide an accurate definition of chronic kidney disease; followed by focusing and discussing on molecular pathogenesis, novel diagnosis approaches based on biomarkers, recent effective antigens and new therapeutic procedures related to high-risk chronic kidney disease such as membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy, which may lead to end-stage renal diseases. Additionally, a considerable number of metabolites and proteins that have previously been discovered and recommended as potential biomarkers of various CKDs using ‘-omics-’ technologies, proteomics, and metabolomics were reviewed.
Collapse
Affiliation(s)
- Amir Taherkhani
- 1Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maede Mohseni
- 3Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- 1Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Arefi Oskouie
- 4Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Matrix-assisted laser desorption/ionization mass spectrometry imaging to uncover protein alterations associated with the progression of IgA nephropathy. Virchows Arch 2019; 476:903-914. [PMID: 31838587 DOI: 10.1007/s00428-019-02705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
IgA nephropathy (IgAN) is one of the most diffuse glomerulonephrites worldwide, and many issues still remain regarding our understanding of its pathogenesis. The disease is diagnosed by renal biopsy examination, but potential pitfalls still persist with regard to discriminating its primary origin and, as a result, determining patient outcome remains challenging. In this pilot study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) was performed on renal biopsies obtained from patients with IgAN (n = 11) and other mesangioproliferative glomerulonephrites (MesPGN, n = 6) in order to enlighten proteomic alterations that may be associated with the progression of IgAN. Differences in the proteomic profiles of IgAN and MesPGN tissue could clearly be detected using this approach and, furthermore, 14 signals (AUC ≥ 0.8) were observed to have an altered intensity among the different CKD stages within the IgAN group. In particular, large increases in the intensity of these signals could be observed at CKD stages II and above. These signals primarily corresponded to proteins involved in either inflammatory and healing pathways and their increased intensity was localized within regions of tissue with large amounts of inflammatory cells or sclerosis. Despite much work in recent years, our molecular understanding of IgAN progression remains incomplete. This pilot study represents a promising starting point in the search for novel protein markers that can assist clinicians in better understanding the pathogenesis of IgAN and highlighting those patients who may progress to end-stage renal disease.
Collapse
|
14
|
Taylor S, Pieri K, Nanni P, Tica J, Barratt J, Didangelos A. Phosphatidylethanolamine binding protein-4 (PEBP4) is increased in IgA nephropathy and is associated with IgA-positive B-cells in affected kidneys. J Autoimmun 2019; 105:102309. [PMID: 31402200 DOI: 10.1016/j.jaut.2019.102309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and a major cause of chronic kidney disease and failure. IgAN is driven by an autoimmune reaction against galactose-deficient IgA1 that results in the generation of autoantibodies and large IgG-IgA immune complexes. Immune complexes accumulate in the glomerular mesangium causing chronic inflammation and renal scarring. A significant proportion of IgAN patients develop end-stage kidney disease and require dialysis or transplantation. Currently, there are no approved specific therapies that can ameliorate the systemic autoimmune reaction in IgAN and no biomarkers that can predict renal inflammation and scarring. In this study, we used shotgun LC-MS/MS proteomics to compare small volumes of urine from healthy subjects and IgAN patients. We identified multiple urine proteins with unknown renal or IgAN function. Our attention was captured by the increase of phosphatidylethanolamine binding protein-4 (PEBP4) in IgAN urine. The function of PEBP4 in IgAN or renal disease is unknown. Increased levels of urine and serum PEBP4 were subsequently validated in different cohorts of IgAN patients and PEBP4 was linked to declining kidney function in IgAN. Strong PEBP4 staining was sporadically seen in IgAN kidney biopsies, colocalising with IgA in glomeruli and in the lumen of kidney tubules. In a small number of IgAN biopsies, PEBP4 colocalised with IgA and CD19 while the increased excretion of PEBP4 in IgAN urine was accompanied by increased excretion of classic B-cell factors BAFF, BCMA and TACI as well as IgA and IgG. PEBP4 is a new IgAN-related protein with unknown function and a likely renal disease marker in urine and serum.
Collapse
Affiliation(s)
- Scott Taylor
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Kyriaki Pieri
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Paolo Nanni
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Jure Tica
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Jonathan Barratt
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom
| | - Athanasios Didangelos
- University of Leicester, Mayer IgA Nephropathy Laboratory, University Road, LE1 7RH, Leicester, United Kingdom.
| |
Collapse
|
15
|
Abstract
The field of biomarker research in IgA nephropathy has experienced a major boost in recent years with the publication of a large number of scientific reports. Candidate biomarkers from blood, urine, and renal tissue obtained through the use of clinical chemistry, molecular biology, and omics have been proposed for translation in clinical practice. Nevertheless, individual biomarkers often lack sensitivity and specificity with the consequent impairment of disease specificity. This review, moving on from the analysis of the four-hit hypothesis, illustrates the biomarkers linked to the abnormal glycosylation process of IgA1 and the immune complex formation. It also describes other serum and urinary biomarkers. Given the profound insights into the pleiotropic function of a single biomarker that is specific for a pathophysiological mechanism, this review suggests a novel approach based on a panel of biomarkers that covers the entire pathogenic process of the disease. Clinical bioinformatics that integrate genetic, clinical, and bioinformatics data sets could optimize the specific value of each biomarker in a multimarker panel. This is a promising approach for precision medicine and personalized therapy in IgA nephropathy.
Collapse
Affiliation(s)
- Francesco Paolo Schena
- Policlinic, University of Bari, Bari, Italy; Laboratory Research, Schena Foundation, Valenzano, Bari, Italy.
| | - Sharon Natasha Cox
- Policlinic, University of Bari, Bari, Italy; Laboratory Research, Schena Foundation, Valenzano, Bari, Italy
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Immunoglobulin A (IgA) nephropathy (IgAN) is a heterogeneous disease, and predicting individual patient risk of renal progression is challenging. Recent studies provide new evidence regarding the use of clinical, histologic, and biomarker predictors of renal outcome in IgAN. RECENT FINDINGS A meta-analysis of clinical trials demonstrated that early change in proteinuria is a valid surrogate outcome measure for longer term decline in renal function, which supports the use of proteinuria to dynamically re-evaluate patient prognosis over time. The MEST histologic classification has been further validated in a large European cohort. An international multiethnic observational study demonstrated that crescents are independently associated with renal outcome, and as a result a crescent score (<25% versus >25% of glomeruli) has been added to MEST. Proteinuria, estimated glomerular filtration rate (GFR), and blood pressure at the time of biopsy can be used to accurately predict prognosis when combined with MEST, instead of using 2 years of follow-up data. Currently, no available risk prediction model that combines clinical and histologic predictors has been sufficiently validated for routine use. There are multiple biomarkers that have been studied in IgAN, however none have been externally validated and shown to improve prediction beyond clinical and histologic risk factors. SUMMARY Proteinuria, estimated GFR, blood pressure, and the MEST-C score are the most readily available risk factors to predict renal prognosis in IgAN. Future research is required to develop and validate methods of integrating these risk factors together to accurately risk stratify individual patients, and provide the framework for evaluating biomarkers capable of further improving risk prediction.
Collapse
|
17
|
Xiao C, Xiao P, Li X, Li X, Li H, Chen Y, Wang Y, Xu Y, Huang G, Zhou Q. Cordyceps sinensis may inhibit Th22 cell chemotaxis to improve kidney function in lgA nephropathy. Am J Transl Res 2018; 10:857-865. [PMID: 29636875 PMCID: PMC5883126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
IgA nephropathy is the most common form of primary glomerulonephritis and an important cause of kidney failure. Cordyceps sinensis (CS) is a parasitic fungus that has a long history of use in Chinese medicine for the treatment of nephritis. Interleukin (IL)-22-producing helper T cells (Th22 cells) have been reported to be involved in lgA nephropathy. Th22 cells link the immune response to tissue inflammation. To elucidate the possible efficacy and mechanisms by which CS counteracts nephritis, we established an IgA nephropathy model in 6-week-old female BALB/c mice. The mice were randomly separated into 3 groups, the normal control, IgA nephropathy and CS (5 mg/kg/d) treatment groups. The Th22 cell frequencies and the relative pathological and cytokine changes were measured with flow cytometry, whereas the serum chemokine ligand 27 (CCL27) and IL-22 concentrations were detected with ELISA. The Th22 cell frequency decreased after 1 month of CS therapy. Additionally, mesangial cell proliferation decreased. Moreover, the chemokine receptor type 10 (CCR10), CCL27 and IL-22 expression levels were significantly reduced. In conclusion, CS may modulate the chemotaxis of Th22 cells to suppress inflammatory responses in IgA nephropathy.
Collapse
Affiliation(s)
- Chenggen Xiao
- Department of Emergency Medicine, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xiaogang Li
- Department of Emergency Medicine, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Hui Li
- Department of Respiratory Medicine, The First Hospital of ChangshaChangsha 410005, Hunan, China
| | - Yusa Chen
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yang Wang
- Department of Emergency Medicine, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yan Xu
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Guoqing Huang
- Department of Emergency Medicine, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|