1
|
Tucker BS, Hernandez-Moreno G, Hwang PTJ, Jun HW, Thomas V. Influence of Alkanolamine Plasmas on Poly(Ethylene Terephthalate) Fibro-Porous Biomaterial Constructs. Chem Asian J 2024:e202400796. [PMID: 39259619 DOI: 10.1002/asia.202400796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The development of fibrous polymer scaffolds is highly valuable for applications in tissue engineering. Furthermore, there is an extensive body of literature for chemical methods to produce scaffolds that release nitric oxide. However, these methods often use harsh chemistries and leave behind bulk waste. Alkanolamine low-temperature plasma (LTP) is unexplored and single-step processing to form nitric oxide (NO) releasing constructs is highly desirable. The major question addressed is whether it is possible to achieve single-step processing of spun polyester with alkanolamine plasma to achieve nitric oxide releasing capabilities. Herein we report the experiments, processes, and data that support the claim that it is indeed possible to produce such a bio-functional material for potential biomedical applications, especially in cardiovascular implants. Among the tested alkanolamines, monoethylamine (MEA) plasma treated biomaterial outperformed in comparison with diethanolamine (DEA) and triethanolamine (TEA) in terms of NO release and cellular response.
Collapse
Affiliation(s)
- Bernabe S Tucker
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, AL, Birmingham, 35294, USA
| | - Gerardo Hernandez-Moreno
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, AL, Birmingham, 35294, USA
| | - Patrick T J Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, Birmingham, 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, Birmingham, 35294, USA
| | - Vinoy Thomas
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, AL, Birmingham, 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, Birmingham, 35294, USA
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
2
|
Razmshoar P, Besbes F, Madaci A, Mlika R, Bahrami SH, Rabiee M, Martin M, Errachid A, Jaffrezic-Renault N. A conductometric enzymatic methanol sensor based on polystyrene - PAMAM dendritic polymer electrospun nanofibers. Talanta 2023; 260:124630. [PMID: 37178675 DOI: 10.1016/j.talanta.2023.124630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Methanol (MeOH) is a solvent and cleaning agent used in industry, but it is poisonous when ingested. The recommended release threshold for MeOH vapor is 200 ppm. We present a novel sensitive micro-conductometric MeOH biosensor created by grafting alcohol oxidase (AOX) onto electrospun polystyrene-poly(amidoamine) dendritic polymer blend nanofibers (PS-PAMAM-ESNFs) on interdigitated electrodes (IDEs). The analytical performance of the MeOH microsensor was evaluated using gaseous MeOH, ethanol, and acetone samples collected from the headspace above aqueous solution with known concentration. The sensor's response time (tRes) fluctuates from 13 s to 35 s from lower to higher concentrations. The conductometric sensor has a sensitivity of 150.53 μS.cm-1 (v/v) for MeOH and a detection limit of 100 ppm in the gas phase. The MeOH sensor is 7.3 times less sensitive to ethanol and 136.8 times less sensitive to acetone. The sensor was verified for detecting MeOH in commercial rubbing alcohol samples.
Collapse
Affiliation(s)
- Pouyan Razmshoar
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Fatma Besbes
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France; University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, 5019, Monastir, Tunisia
| | - Anis Madaci
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Rym Mlika
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, 5019, Monastir, Tunisia
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Rabiee
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Marie Martin
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Abdelhamid Errachid
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France.
| |
Collapse
|
3
|
An impedimetric immunosensor based on PAMAM decorated electrospun polystyrene fibers for detection of interleukin-10 cytokine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zhao C, Pan B, Wang M, Si Y, Taha AY, Liu G, Pan T, Sun G. Improving the Sensitivity of Nanofibrous Membrane-Based ELISA for On-Site Antibiotics Detection. ACS Sens 2022; 7:1458-1466. [PMID: 35426310 DOI: 10.1021/acssensors.2c00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrasensitive and portable colorimetric enzyme-linked immunosorbent assay (ELISA) sensor for antibiotics was fabricated by immobilizing antibodies inside the largely porous and highly hydrophilic nanofibrous membranes. Different from regular electrospun nanofibrous membranes where antibodies may frequently be blocked by the heterogeneous porous structure and sterically crowded loaded on the surface, the controlled microporous structure and increased hydrophilicity of nanofibrous membranes could improve the diffusion properties of antibodies, reduce the sterically crowding effect, and dramatically improve the sensitivity of the membrane-based ELISA. The limitation of detection (LOD) for chloramphenicol (CAP) reached 0.005 ng/mL, around 200 times lower than the conventional paper-based ELISA, making quantitative analysis and portable on-site detection achievable via the use of smartphones. The successful design and fabrication of the nanofibrous membrane-based ELISA with novel features overcome the structural drawbacks of regular electrospun nanofibrous membranes and provide new paths to develop highly sensitive on-site detection of hazardous chemical agents.
Collapse
Affiliation(s)
- Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Bofeng Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Minyuan Wang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| | - Yang Si
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Gangyu Liu
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Pavlova E, Maslakova A, Prusakov K, Bagrov D. Optical sensors based on electrospun membranes – principles, applications, and prospects for chemistry and biology. NEW J CHEM 2022. [DOI: 10.1039/d2nj01821g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospun membranes are promising substrates for receptor layer immobilization in optical sensors. Either colorimetric, luminescence, or Raman scattering signal can be used to detect the analyte.
Collapse
Affiliation(s)
- Elizaveta Pavlova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Aitsana Maslakova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| | - Kirill Prusakov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Dmitry Bagrov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| |
Collapse
|
6
|
Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, Lim TS. Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM2 15kDa. Mol Immunol 2021; 135:191-203. [PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yuya Ishikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Smith S, Goodge K, Delaney M, Struzyk A, Tansey N, Frey M. A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2142. [PMID: 33121181 PMCID: PMC7692479 DOI: 10.3390/nano10112142] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
Biomolecule immobilization has attracted the attention of various fields such as fine chemistry and biomedicine for their use in several applications such as wastewater, immunosensors, biofuels, et cetera. The performance of immobilized biomolecules depends on the substrate and the immobilization method utilized. Electrospun nanofibers act as an excellent substrate for immobilization due to their large surface area to volume ratio and interconnectivity. While biomolecules can be immobilized using adsorption and encapsulation, covalent immobilization offers a way to permanently fix the material to the fiber surface resulting in high efficiency, good specificity, and excellent stability. This review aims to highlight the various covalent immobilization techniques being utilized and their benefits and drawbacks. These methods typically fall into two categories: (1) direct immobilization and (2) use of crosslinkers. Direct immobilization techniques are usually simple and utilize the strong electrophilic functional groups on the nanofiber. While crosslinkers are used as an intermediary between the nanofiber substrate and the biomolecule, with some crosslinkers being present in the final product and others simply facilitating the reactions. We aim to provide an explanation of each immobilization technique, biomolecules commonly paired with said technique and the benefit of immobilization over the free biomolecule.
Collapse
Affiliation(s)
- Soshana Smith
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Katarina Goodge
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Michael Delaney
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (M.D.); (A.S.)
| | - Ariel Struzyk
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (M.D.); (A.S.)
| | - Nicole Tansey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Margaret Frey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| |
Collapse
|
8
|
Barati F, Arpanaei A, Mahmoudifard M. Highly efficient detection of cancer-derived exosomes using modified core-shell electrospun nanofibers as a capture substrate and antibody immobilized-graphene quantum dots as a signaling agent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3670-3681. [PMID: 32701088 DOI: 10.1039/d0ay00944j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the past few years graphene quantum dots (GQDs) have been used as a signaling agent for medical diagnosis. They can be modified and labeled with different macromolecules to give them potential to be attached to a specific target. Herein GQDs were labeled with an antibody which is specific for cancer-derived exosomes, isolated from blood serum by using a specialized PCL-gelatin core-shell NFM. This membrane showed excellent sensitivity for isolating exosomes from a complex mixture such as serum, and the GQD-antibody complex detected the isolated exosomes with great sensitivity. The final results allow this method to be considered as one that can be used to quantify the concentration of a desired analyte in a mixture.
Collapse
Affiliation(s)
- Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | | | | |
Collapse
|
9
|
Dufay M, Jimenez M, Degoutin S. Effect of Cold Plasma Treatment on Electrospun Nanofibers Properties: A Review. ACS APPLIED BIO MATERIALS 2020; 3:4696-4716. [DOI: 10.1021/acsabm.0c00154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Malo Dufay
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Maude Jimenez
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Stéphanie Degoutin
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| |
Collapse
|
10
|
A promising approach toward efficient isolation of the exosomes by core-shell PCL-gelatin electrospun nanofibers. Bioprocess Biosyst Eng 2020; 43:1961-1971. [PMID: 32607862 DOI: 10.1007/s00449-020-02385-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Exosomes as cell-derived vesicles are promising biomarkers for noninvasive and early detection of different types of cancer. However, a straightforward and cost-effective technique for isolation of exosomes in routine clinical settings is still challenging. Herein, we present for the first time, a novel coaxial nanofiber structure for the exosome isolation from body fluids with high efficiency. Coaxial nanofiber structure is composed of polycaprolactone polymer as core and a thin layer of gelatin (below 10 nm) as the shell. The thermo-sensitive thin layer of gelatin can efficiently release the captured exosome by specific antibody namely, CD63, whenever its temperature raised to the physiological temperature of 37 °C. Moreover, the thin layer of gelatin induces less contamination to separated exosomes. The interconnected micro-pores of electrospun nanofibrous membrane insurances large surface area for immobilization of specific antibody for efficient exosome capturing. The efficacy of exosome isolation is determined by direct ELISA and compared with ultracentrifugation technique. For the exosome isolation, it was observed that over 87% of exosomes existed in the culture medium can be effectively isolated by coaxial electrospun nanofibers with the average thickness of 50 µm. Therefore, this promising technique can be substituted for the traditional techniques for exosome isolation which are mostly suffering from low efficacy, high cost, and troublesome process.
Collapse
|
11
|
Boffito M, Torchio A, Tonda-Turo C, Laurano R, Gisbert-Garzarán M, Berkmann JC, Cassino C, Manzano M, Duda GN, Vallet-Regí M, Schmidt-Bleek K, Ciardelli G. Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Front Bioeng Biotechnol 2020; 8:384. [PMID: 32509740 PMCID: PMC7248334 DOI: 10.3389/fbioe.2020.00384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023] Open
Abstract
Injectable therapeutic formulations locally releasing their cargo with tunable kinetics in response to external biochemical/physical cues are gaining interest in the scientific community, with the aim to overcome the cons of traditional administration routes. In this work, we proposed an alternative solution to this challenging goal by combining thermo-sensitive hydrogels based on custom-made amphiphilic poly(ether urethane)s (PEUs) and mesoporous silica nanoparticles coated with a self-immolative polymer sensitive to acid pH (MSN-CS-SIP). By exploiting PEU chemical versatility, Boc-protected amino groups were introduced as PEU building block (PEU-Boc), which were then subjected to a deprotection reaction to expose pendant primary amines along the polymer backbone (PEU-NH2, 3E18 -NH2/gPEU-NH2) with the aim to accelerate system response to external acid pH environment. Then, thermo-sensitive hydrogels were designed (15% w/v) showing fast gelation in physiological conditions (approximately 5 min), while no significant changes in gelation temperature and kinetics were induced by the Boc-deprotection. Conversely, free amines in PEU-NH2 effectively enhanced and accelerated acid pH transfer (pH 5) through hydrogel thickness (PEU-Boc and PEU-NH2 gels covered approximately 42 and 52% of the pH delta between their initial pH and the pH of the surrounding buffer within 30 min incubation, respectively). MSN-CS-SIP carrying a fluorescent cargo as model drug (MSN-CS-SIP-Ru) were then encapsulated within the hydrogels with no significant effects on their thermo-sensitivity. Injectability and in situ gelation at 37°C were demonstrated ex vivo through sub-cutaneous injection in rodents. Moreover, MSN-CS-SIP-Ru-loaded gels turned out to be detectable through the skin by IVIS imaging. Cargo acid pH-triggered delivery from PEU-Boc and PEU-NH2 gels was finally demonstrated through drug release tests in neutral and acid pH environments (in acid pH environment approximately 2-fold higher cargo release). Additionally, acid-triggered payload release from PEU-NH2 gels was significantly higher compared to PEU-Boc systems at 3 and 4 days incubation. The herein designed hybrid injectable formulations could thus represent a significant step forward in the development of multi-stimuli sensitive drug carriers. Indeed, being able to adapt their behavior in response to biochemical cues from the surrounding physio-pathological environment, these formulations can effectively trigger the release of their payload according to therapeutic needs.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Surgical Sciences, Università degli Studi di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Surgical Sciences, Università degli Studi di Torino, Turin, Italy
| | - Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria del Hospital, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Julia C. Berkmann
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria del Hospital, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Georg N. Duda
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria del Hospital, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
12
|
Hosseini S, Azari P, Cardenas-Benitez B, Martínez-Guerra E, Aguirre-Tostado FS, Vázquez-Villegas P, Pingguan-Murphy B, Madou MJ, Martinez-Chapa SO. A LEGO inspired fiber probe analytical platform for early diagnosis of Dengue fever. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110629. [DOI: 10.1016/j.msec.2020.110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
13
|
Asghari S, Rezaei Z, Mahmoudifard M. Electrospun nanofibers: a promising horizon toward the detection and treatment of cancer. Analyst 2020; 145:2854-2872. [PMID: 32096500 DOI: 10.1039/c9an01987a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the increase in the number of cancer patients, because of environmental parameters, high stress, low immunity, etc., there is an urgent need to develop cost-effective sensors for early targeted detection of cancerous cells with adequate selectivity and efficiency. Early disease diagnosis is important, as it is necessary to start treatments before disease progression. On the other hand, we need new, more efficient cancer treatment approaches with minimized side effects, more biocompatibility, and easy disposal. Nanobiotechnology is a field that can assist in developing new diagnostic and treatment approaches, specifically in fatal cancers. Herein, a study on the different applications of nanofibers in cancer detection as well as its treatment has been done. Here, a very brief survey on the main structure of biosensors and their different categories has been conducted and will precede the discussion of the study to serve as a reference and guide the reader's understanding.
Collapse
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | |
Collapse
|
14
|
Qasim M, Chae DS, Lee NY. Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J Biomed Mater Res A 2019; 108:394-411. [PMID: 31618509 DOI: 10.1002/jbm.a.36817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Bone and cartilage tissue engineering is an integrative approach that is inspired by the phenomena associated with wound healing. In this respect, growth factors have emerged as important moieties for the control and regulation of this process. Growth factors act as mediators and control the important physiological functions of bone regeneration. Herein, we discuss the importance of growth factors in bone and cartilage tissue engineering, their loading and delivery strategies, release kinetics, and their integration with biomaterials and stem cells to heal bone fractures. We also highlighted the role of growth factors in the determination of the bone tissue microenvironment based on the reciprocal signaling with cells and biomaterial scaffolds on which future bone and cartilage tissue engineering technologies and medical devices will be based upon.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, Seongnam-si, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
15
|
Vogiazi V, de la Cruz A, Mishra S, Shanov V, Heineman WR, Dionysiou DD. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. ACS Sens 2019; 4:1151-1173. [PMID: 31056912 PMCID: PMC6625642 DOI: 10.1021/acssensors.9b00376] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyanobacteria harmful algal blooms are increasing in frequency and cyanotoxins have become an environmental and public concern in the U.S. and worldwide. In this Review, the majority of reported studies and developments of electrochemical affinity biosensors for cyanotoxins are critically reviewed and discussed. Essential background information about cyanobacterial toxins and electrochemical biosensors is combined with the rapidly moving development of electrochemical biosensors for these toxins. Current issues and future challenges for the development of useful electrochemical biosensors for cyanotoxin detection that meet the demands for applications in field freshwater samples are discussed. The major aspects of the entire review article in a prescribed sequence include (i) the state-of-the-art knowledge of the toxicity of cyanotoxins, (ii) important harmful algal bloom events, (iii) advisories, guidelines, and regulations, (iv) conventional analytical methods for determination of cyanotoxins, (v) electrochemical transduction, (vi) recognition receptors, (vii) reported electrochemical biosensors for cyanotoxins, (viii) summary of analytical performance, and (ix) recent advances and future trends. Discussion includes electrochemical techniques and devices, biomolecules with high affinity, numerous array designs, various detection approaches, and research strategies in tailoring the properties of the transducer-biomolecule interface. Scientific and engineering aspects are presented in depth. This review aims to serve as a valuable source to scientists and engineers entering the interdisciplinary field of electrochemical biosensors for detection of cyanotoxins in freshwaters.
Collapse
Affiliation(s)
- Vasileia Vogiazi
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Armah de la Cruz
- Office of Research and Development , US Environmental Protection Agency , Cincinnati , Ohio 45220 , United States
| | - Siddharth Mishra
- Mechanical and Materials Engineering , University of Cincinnati , Cincinnati 45221 , Ohio United States
| | - Vesselin Shanov
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
- Mechanical and Materials Engineering , University of Cincinnati , Cincinnati 45221 , Ohio United States
| | - William R Heineman
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
16
|
Mahmoudifard M, Vossoughi M. Different PES nanofibrous membrane parameters effect on the efficacy of immunoassay performance. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matin Mahmoudifard
- Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and Biotechnology(NIGEB) Tehran Iran
| | - Manuchehr Vossoughi
- Chemical and Petroleum Engineering DepartmentSharif University of Technology Tehran Iran
| |
Collapse
|
17
|
Jannat M, Yang KL. Immobilization of Enzymes on Flexible Tubing Surfaces for Continuous Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14226-14233. [PMID: 30383968 DOI: 10.1021/acs.langmuir.8b02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immobilized enzymes can be used to catalyze biochemical reactions in a batch process, however, it is more difficult to use them in a continuous process. Herein, we develop an enzyme immobilization technique for flexible tubing surfaces, which can be used to catalyze biochemical reactions in a continuous process. In this technique, the tubing is first treated with (3-aminopropyl)triethoxysilane at 50 °C and baked at 100 °C in vacuum to form a network of reactive amine functional group on the inner tubing surface. Subsequently, dextran polyaldehyde, a polymeric cross-linker, is used to immobilize crude protease extract and catalase for hydrolyzing casein and degrading H2O2, respectively, in a continuous process. The immobilized proteases are highly stable even after a long-term storage at 4 °C. After 12 weeks of storage, 90% of the original protease activity can be preserved. Meanwhile, the immobilized catalase is able to degrade 0.1% H2O2 solution flowing at 5 μL/min. The immobilization technique is potentially useful for bioassays and industrial wastewater treatments when continuous processes are preferred.
Collapse
Affiliation(s)
- Mahbuba Jannat
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117576 , Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117576 , Singapore
| |
Collapse
|