1
|
Wang H, Li J, Yu K, Lu Y, Ma M, Li Y. The cellular localization and oncogenic or tumor suppressive effects of angiomiotin-like protein 2 in tumor and normal cells. IUBMB Life 2024; 76:764-779. [PMID: 38717123 DOI: 10.1002/iub.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 10/19/2024]
Abstract
Angiomiotin (AMOT) family comprises three members: AMOT, AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). AMOTL2 is widely expressed in endothelial cells, epithelial cells, and various cancer cells. Specifically, AMOTL2 predominantly localizes in the cytoplasm and nucleus in human normal cells, whereas associates with cell-cell junctions and actin cytoskeleton in non-human cells, and locates at cell junctions or within the recycling endosomes in cancer cells. AMOTL2 is implicated in regulation of tube formation, cell polarity, and shape, although the specific impact on tumorigenesis remains to be conclusively determined. It has been shown that AMOTL2 enhances tumor growth and metastasis in pancreatic, breast, and colon cancer, however inhibits cell proliferation and migration in lung, hepatocellular cancer, and glioblastoma. In addition to its role in cell shape and cytoskeletal dynamics through co-localization with F-actin, AMOTL2 modulates the transcription of Yes-associated protein (YAP) by binding to it, thereby affecting its phosphorylation and cellular sequestration. Furthermore, the stability and cellular localization of AMOTL2, influenced by its phosphorylation and ubiquitination mediated by specific proteins, affects its cellular function. Additionally, we observe that AMOTL2 is predominantly downregulated in some tumors, but significantly elevated in colorectal adenocarcinoma (COAD). Moreover, overall analysis, GSEA and ROC curve analysis indicate that AMOTL2 exerts as an oncogenic protein in COAD by modulating Wnt pathway, participating in synthesis of collagen formation, and interacting with extracellular matrix receptor. In addition, AMOTL2 potentially regulates the distribution of immune cells infiltration in COAD. In summary, AMOTL2 probably functions as an oncogene in COAD. Consequently, further in-depth mechanistic research is required to elucidate the precise roles of AMOTL2 in various cancers.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kexun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Kaivola J, Punovuori K, Chastney MR, Miroshnikova YA, Abdo H, Bertillot F, Krautgasser F, Franco JD, Conway JR, Follain G, Hagström J, Mäkitie A, Irjala H, Ventelä S, Hamidi H, Scita G, Cerbino R, Wickström SA, Ivaska J. Restoring mechanophenotype reverts malignant properties of ECM-enriched vocal fold cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609159. [PMID: 39372730 PMCID: PMC11451600 DOI: 10.1101/2024.08.22.609159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Increased extracellular matrix (ECM) and matrix stiffness promote solid tumor progression. However, mechanotransduction in cancers arising in mechanically active tissues remains underexplored. Here, we report upregulation of multiple ECM components accompanied by tissue stiffening in vocal fold cancer (VFC). We compare non-cancerous (NC) and patient-derived VFC cells - from early (mobile, T1) to advanced-stage (immobile, T3) cancers - revealing an association between VFC progression and cell-surface receptor heterogeneity, reduced laminin-binding integrin cell-cell junction localization and a flocking mode of collective cell motility. Mimicking physiological movement of healthy vocal fold tissue (stretching/vibration), decreases oncogenic nuclear β-catenin and YAP levels in VFC. Multiplex immunohistochemistry of VFC tumors uncovered a correlation between ECM content, nuclear YAP and patient survival, concordant with VFC sensitivity to YAP-TEAD inhibitors in vitro. Our findings present evidence that VFC is a mechanically sensitive malignancy and restoration of tumor mechanophenotype or YAP/TAZ targeting, represents a tractable anti-oncogenic therapeutic avenue for VFC.
Collapse
Affiliation(s)
- Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Karolina Punovuori
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Megan R. Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yekaterina A. Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hind Abdo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabien Bertillot
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jasmin Di Franco
- Faculty of Physics, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Physics, University of Vienna, Vienna, Austria
| | - James R.W. Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaana Hagström
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku and Turku University Hospital, Turku, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Giorgio Scita
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | | | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki Finland
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Life Technologies, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
3
|
Fonseca P, Cui W, Struyf N, Tong L, Chaurasiya A, Casagrande F, Zhao H, Fernando D, Chen X, Tobin NP, Seashore-Ludlow B, Lundqvist A, Hartman J, Göndör A, Östling P, Holmgren L. A phenotypic screening approach to target p60AmotL2-expressing invasive cancer cells. J Exp Clin Cancer Res 2024; 43:107. [PMID: 38594748 PMCID: PMC11003180 DOI: 10.1186/s13046-024-03031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Pedro Fonseca
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Weiyingqi Cui
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nona Struyf
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Le Tong
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Ayushi Chaurasiya
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Felipe Casagrande
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Honglei Zhao
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Dinura Fernando
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Department of Clinical Molecular Biology, University of Oslo, Akershus Universitetssykehus, 1478, Lørenskog, Oslo, Norway
| | - Päivi Östling
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden.
| |
Collapse
|
4
|
Ma N, Wibowo YC, Wirtz P, Baltus D, Wieland T, Jansen S. Tankyrase inhibition interferes with junction remodeling, induces leakiness, and disturbs YAP1/TAZ signaling in the endothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1763-1789. [PMID: 37741944 PMCID: PMC10858845 DOI: 10.1007/s00210-023-02720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Tankyrase inhibitors are increasingly considered for therapeutic use in malignancies that are characterized by high intrinsic β-catenin activity. However, how tankyrase inhibition affects the endothelium after systemic application remains poorly understood. In this study, we aimed to investigate how the tankyrase inhibitor XAV939 affects endothelial cell function and the underlying mechanism involved. Endothelial cell function was analyzed using sprouting angiogenesis, endothelial cell migration, junctional dynamics, and permeability using human umbilical vein endothelial cells (HUVEC) and explanted mouse retina. Underlying signaling was studied using western blot, immunofluorescence, and qPCR in HUVEC in addition to luciferase reporter gene assays in human embryonic kidney cells. XAV939 treatment leads to altered junctional dynamics and permeability as well as impaired endothelial migration. Mechanistically, XAV939 increased stability of the angiomotin-like proteins 1 and 2, which impedes the nuclear translocation of YAP1/TAZ and consequently suppresses TEAD-mediated transcription. Intriguingly, XAV939 disrupts adherens junctions by inducing RhoA-Rho dependent kinase (ROCK)-mediated F-actin bundling, whereas disruption of F-actin bundling through the ROCK inhibitor H1152 restores endothelial cell function. Unexpectedly, this was accompanied by an increase in nuclear TAZ and TEAD-mediated transcription, suggesting differential regulation of YAP1 and TAZ by the actin cytoskeleton in endothelial cells. In conclusion, our findings elucidate the complex relationship between the actin cytoskeleton, YAP1/TAZ signaling, and endothelial cell function and how tankyrase inhibition disturbs this well-balanced signaling.
Collapse
Affiliation(s)
- Nan Ma
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Yohanes Cakrapradipta Wibowo
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Phillip Wirtz
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Doris Baltus
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Mannheim, Germany.
| | - Sepp Jansen
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Ma M, Zhang L, Liu Z, Teng Y, Li M, Peng X, An L. Effect of blastocyst development on hatching and embryo implantation. Theriogenology 2024; 214:66-72. [PMID: 37857152 DOI: 10.1016/j.theriogenology.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The mammalian zygote, formed after a sperm fertilizes an egg, undergoes several rounds of mitosis and morphogenesis to form the blastocyst. During the peri-implantation period, the blastocyst hatches out of the zona pellucida (ZP) and invades the receptive uterine endometrium. This process promotes maternal-fetal dialogue at the physiological and molecular level, thereby initiating the implantation process. Blastocyst hatching is a consequence of elevated osmotic pressure due to active Na+/K+ ion transporter in the blastocyst cavity, as well as proteases produced by trophectoderm (TE) that hydrolyze the ZP. This review summarizes the process underpinning blastocyst hatching, such as the hatching schedule, the location of TEs during initial hatching out of the ZP, the molecules involved in blastocyst hatching, and how these processes affect implantation events. Additionally, we focus on identifying crucial molecules that may influence the quality of implantation and predict the outcome of embryo implantation. Further understanding the mechanism of these molecules may help us to improve the efficiency of Assisted reproductive technology (ART) in livestock breeding. This review provides insight into embryonic development, specifically during the short-term process of blastocyst hatching and its effects on the following implantation.
Collapse
Affiliation(s)
- Meixiang Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Liang Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zihan Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yadi Teng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Miaolong Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xinrong Peng
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, 830011, China.
| | - Liyou An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
6
|
Vandal K, Biondic S, Canizo J, Petropoulos S. Manual Dissociation of Mammalian Preimplantation Embryos for Single-Cell Genomics. Methods Mol Biol 2024; 2767:293-305. [PMID: 37418145 DOI: 10.1007/7651_2023_494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Single-cell genomics allow the characterization and quantification of molecular heterogeneity from a wide variety of tissues. Here, we describe the manual dissociation and collection of single cells, a method adapted for the characterization of precious small tissues like preimplantation embryos. We also describe the acquisition of mouse embryos by flushing of the oviducts. The cells can then be used in multiple sequencing protocols, for example, Smart-seq2, Smart-seq3, smallseq, and scBSseq.
Collapse
Affiliation(s)
- Katherine Vandal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
| | - Savana Biondic
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
| | - Jesica Canizo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
- , Stockholm, Sweden
| |
Collapse
|
7
|
Cui W, Subramani A, Fonseca P, Zhang Y, Tong L, Zhang Y, Egevad L, Lundqvist A, Holmgren L. Deciphering the Role of p60AmotL2 in Epithelial Extrusion and Cell Detachment. Cells 2023; 12:2158. [PMID: 37681890 PMCID: PMC10486482 DOI: 10.3390/cells12172158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Preserving an accurate cell count is crucial for maintaining homeostasis. Apical extrusion, a process in which redundant cells are eliminated by neighboring cells, plays a key role in this regard. Recent studies have revealed that apical extrusion can also be triggered in cells transformed by oncogenes, suggesting it may be a mechanism through which tumor cells escape their microenvironment. In previous work, we demonstrated that p60AmotL2 modulates the E-cadherin function by inhibiting its connection to radial actin filaments. This isoform of AmotL2 is expressed in invasive breast and colon tumors and promotes invasion in vitro and in vivo. Transcriptionally regulated by c-Fos, p60AmotL2 is induced by local stress signals such as severe hypoxia. In this study, we investigated the normal role of p60AmotL2 in epithelial tissues. We found that this isoform is predominantly expressed in the gut, where cells experience rapid turnover. Through time-lapse imaging, we present evidence that cells expressing p60AmotL2 are extruded by their normal neighboring cells. Based on these findings, we hypothesize that tumor cells exploit this pathway to detach from normal epithelia and invade surrounding tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum J6:20, Solnavägen 30, Karolinska Institutet, 171 64 Stockholm, Sweden (L.E.)
| |
Collapse
|
8
|
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng F, Lei Y, Tan Y, Zhu Y, Wang Y, Wang Y, Yu FX. WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT. Cell Death Dis 2023; 14:491. [PMID: 37528078 PMCID: PMC10394084 DOI: 10.1038/s41419-023-06020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
WWC1 regulates episodic learning and memory, and genetic nucleotide polymorphism of WWC1 is associated with neurodegenerative diseases such as Alzheimer's disease. However, the molecular mechanism through which WWC1 regulates neuronal function has not been fully elucidated. Here, we show that WWC1 and its paralogs (WWC2/3) bind directly to angiomotin (AMOT) family proteins (Motins), and recruit USP9X to deubiquitinate and stabilize Motins. Deletion of WWC genes in different cell types leads to reduced protein levels of Motins. In mice, neuron-specific deletion of Wwc1 and Wwc2 results in reduced expression of Motins and lower density of dendritic spines in the cortex and hippocampus, in association with impaired cognitive functions such as memory and learning. Interestingly, ectopic expression of AMOT partially rescues the neuronal phenotypes associated with Wwc1/2 deletion. Thus, WWC proteins modulate spinogenesis and cognition, at least in part, by regulating the protein stability of Motins.
Collapse
Affiliation(s)
- Runyi Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China.
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zhang Y, Zhang Y, Hutterer E, Hultin S, Bergman O, Kolbeinsdottir S, Jin H, Forteza MJ, Ketelhuth DFJ, Roy J, Hedin U, Enge M, Matic L, Eriksson P, Holmgren L. The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inflammation and the formation of abdominal aortic aneurysms. NATURE CARDIOVASCULAR RESEARCH 2023; 2:629-644. [PMID: 39195920 PMCID: PMC11358041 DOI: 10.1038/s44161-023-00298-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/01/2023] [Indexed: 08/29/2024]
Abstract
Endothelial cells respond to mechanical forces exerted by blood flow. Endothelial cell-cell junctions and the sites of endothelial adhesion to the matrix sense and transmit mechanical forces to the cellular cytoskeleton. Here we show that the scaffold protein AmotL2 connects junctional VE-cadherin and actin filaments to the nuclear lamina. AmotL2 is essential for the formation of radial actin filaments and the alignment of endothelial cells, and, in its absence, nuclear integrity and positioning are altered. Molecular analysis demonstrated that VE-cadherin binds to AmotL2 and actin, resulting in a cascade that transmits extracellular mechanical signals to the nuclear membrane. Furthermore, the endothelial deficit of AmotL2 in mice fed normal diet provoked a pro-inflammatory response and abdominal aortic aneurysms (AAAs). Transcriptome analysis of human AAA samples revealed a negative correlation between AmotL2 and inflammation of the aortic intima. These findings offer insight into the link between junctional mechanotransduction and vascular disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Evelyn Hutterer
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hultin
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Otto Bergman
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Solrun Kolbeinsdottir
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria J Forteza
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institutet of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Subramani A, Cui W, Zhang Y, Friman T, Zhao Z, Huang W, Fonseca P, Lui WO, Narayanan V, Bobrowska J, Lekka M, Yan J, Conway DE, Holmgren L. Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion. Cells 2023; 12:1682. [PMID: 37443716 PMCID: PMC10340588 DOI: 10.3390/cells12131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.
Collapse
Affiliation(s)
- Aravindh Subramani
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weiyingqi Cui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Yuanyuan Zhang
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Tomas Friman
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Zhihai Zhao
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Pedro Fonseca
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weng-Onn Lui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Jie Yan
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Lars Holmgren
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| |
Collapse
|
11
|
Liu Y, Jones C, Coward K. An investigation of mechanisms underlying mouse blastocyst hatching: a ribonucleic acid sequencing study. F&S SCIENCE 2022; 3:35-48. [PMID: 35559994 DOI: 10.1016/j.xfss.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the regulatory mechanisms and signaling molecules underlying hatching in mouse embryos. DESIGN Experimental laboratory study using a mouse embryo model. SETTING University-based basic scientific research laboratory. ANIMALS A total of 40 B6C3F1 × B6D2F1 mouse embryos were used in this study. INTERVENTION(S) Frozen/thawed mouse embryos, at the 8-cell stage, were cultured in vitro for 2 days. The resulting hatching and prehatching blastocysts were then used for complementary deoxyribonucleic acid (cDNA) library preparation and ribonucleic acid (RNA) sequencing analysis (n = 8 for each group). Differentially expressed genes were then used for downstream functional analysis. In addition, a list of genes related to developmental progression in humans was used to identify genes that were potentially related to the hatching of human embryos. MAIN OUTCOME MEASURE(S) Differentially expressed genes, enriched Gene Ontology terms and canonical pathways, clustered gene networks, activated upstream regulators, and common genes between a gene list of hatching-related genes in mice and a gene list associated with developmental progression in humans. RESULT(S) A total 275 differentially expressed genes were identified between hatching and prehatching blastocysts: 230 up-regulated and 45 down-regulated genes. Functional enrichment analysis suggested that blastocyst hatching in vitro is an adenosine triphosphate (ATP)-dependent process that involves protein biosynthesis and organization of the cytoskeleton. Furthermore, by regulating cell motility, the RhoA signaling pathway (including Arpc2, Cfl1, Gsn, Pfn1, Tpi1, Grb2, Tmsb10, Enah, and Rnd3 genes) may be a crucial signaling pathway during hatching. We also identified a cluster of genes (Krt8, Krt7, Cldn4, and Aqp3) that exerted functional roles in cell-cell junctions and water homeostasis during hatching. Moreover, some growth factors (angiotensinogen and fibroblast growth factor 2) and endocrine factors (estrogen receptor and prolactin) were predicted to be involved in the regulation of embryo hatching. In addition, we identified 81 potential genes that are potentially involved in the hatching process in human embryos. CONCLUSION(S) Our analysis identified potential genes and molecular regulatory pathways involved in the blastocyst hatching process in mice; we also identified genes that may potentially regulate hatching in human embryos. Our findings enhance our knowledge of embryo development and provide useful information for further exploring the mechanisms underlying embryo hatching.
Collapse
Affiliation(s)
- Yaqiong Liu
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
12
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
13
|
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DKC, Balland M, Barker TH, Cavallo F, Holmgren L. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep 2021; 36:109616. [PMID: 34433061 DOI: 10.1016/j.celrep.2021.109616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Sumako Kameishi
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Yujuan Zheng
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - John Nicosia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - David Kung-Chun Chiu
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden.
| |
Collapse
|
14
|
Forsyth JE, Al-Anbaki AH, de la Fuente R, Modare N, Perez-Cortes D, Rivera I, Seaton Kelly R, Cotter S, Plusa B. IVEN: A quantitative tool to describe 3D cell position and neighbourhood reveals architectural changes in FGF4-treated preimplantation embryos. PLoS Biol 2021; 19:e3001345. [PMID: 34310594 PMCID: PMC8341705 DOI: 10.1371/journal.pbio.3001345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/05/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Architectural changes at the cellular and organism level are integral and necessary to successful development and growth. During mammalian preimplantation development, cells reduce in size and the architecture of the embryo changes significantly. Such changes must be coordinated correctly to ensure continued development of the embryo and, ultimately, a successful pregnancy. However, the nature of such transformations is poorly defined during mammalian preimplantation development. In order to quantitatively describe changes in cell environment and organism architecture, we designed Internal Versus External Neighbourhood (IVEN). IVEN is a user-interactive, open-source pipeline that classifies cells into different populations based on their position and quantifies the number of neighbours of every cell within a dataset in a 3D environment. Through IVEN-driven analyses, we show how transformations in cell environment, defined here as changes in cell neighbourhood, are related to changes in embryo geometry and major developmental events during preimplantation mammalian development. Moreover, we demonstrate that modulation of the FGF pathway alters spatial relations of inner cells and neighbourhood distributions, leading to overall changes in embryo architecture. In conjunction with IVEN-driven analyses, we uncover differences in the dynamic of cell size changes over the preimplantation period and determine that cells within the mammalian embryo initiate growth phase only at the time of implantation.
Collapse
Affiliation(s)
- Jessica E. Forsyth
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- School of Mathematics, Alan Turing Building, University of Manchester, Manchester, United Kingdom
| | - Ali H. Al-Anbaki
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Roberto de la Fuente
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Nikkinder Modare
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Diego Perez-Cortes
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Isabel Rivera
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Rowena Seaton Kelly
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Simon Cotter
- School of Mathematics, Alan Turing Building, University of Manchester, Manchester, United Kingdom
| | - Berenika Plusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
MAGI1 inhibits the AMOTL2/p38 stress pathway and prevents luminal breast tumorigenesis. Sci Rep 2021; 11:5752. [PMID: 33707576 PMCID: PMC7952706 DOI: 10.1038/s41598-021-85056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Alterations to cell polarization or to intercellular junctions are often associated with epithelial cancer progression, including breast cancers (BCa). We show here that the loss of the junctional scaffold protein MAGI1 is associated with bad prognosis in luminal BCa, and promotes tumorigenesis. E-cadherin and the actin binding scaffold AMOTL2 accumulate in MAGI1 deficient cells which are subjected to increased stiffness. These alterations are associated with low YAP activity, the terminal Hippo-pathway effector, but with an elevated ROCK and p38 Stress Activated Protein Kinase activities. Blocking ROCK prevented p38 activation, suggesting that MAGI1 limits p38 activity in part through releasing actin strength. Importantly, the increased tumorigenicity of MAGI1 deficient cells is rescued in the absence of AMOTL2 or after inhibition of p38, demonstrating that MAGI1 acts as a tumor-suppressor in luminal BCa by inhibiting an AMOTL2/p38 stress pathway.
Collapse
|
16
|
Varghese PC, Rajam SM, Nandy D, Jory A, Mukherjee A, Dutta D. Histone chaperone APLF level dictates the implantation of mouse embryos. J Cell Sci 2021; 134:jcs.246900. [PMID: 33277378 DOI: 10.1242/jcs.246900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Our recent findings demonstrated that the histone chaperone and DNA repair factor aprataxin and PNK-like factor (APLF) could regulate epithelial to mesenchymal transition (EMT) during the reprogramming of murine fibroblasts and in breast cancer metastasis. Therefore, we investigated the function of APLF in EMT associated with mouse development. Here, we show that APLF is predominantly enhanced in trophectoderm (TE) and lineages derived from TE in pre- and post-implantation embryos. Downregulation of APLF induced the hatching of embryos in vitro, with a significant increase in Cdh1 and Cdx2 expression. Aplf short hairpin RNA-microinjected embryos failed to implant in vivo Rescue experiments neutralized the knockdown effects of APLF both in vitro and in vivo Reduced expression of Snai2 and Tead4, and the gain in Cdh1 and sFlt1 (also known as Flt1) level, marked the differentiation of APLF-knocked down trophoblast stem cells that might contribute towards the impaired implantation of embryos. Hence, our findings suggest a novel role for APLF during implantation and post-implantation development of mouse embryos. We anticipate that APLF might contribute to the establishment of maternal-fetal connection, as its fine balance is required to achieve implantation and thereby attain proper pregnancy.
Collapse
Affiliation(s)
- Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Debparna Nandy
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India
| | - Aurelie Jory
- Mouse Genome Engineering Facility, National Centre for Biological Sciences, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
17
|
Ge P, Ma H, Li Y, Ni A, Isa AM, Wang P, Bian S, Shi L, Zong Y, Wang Y, Jiang L, Hagos H, Yuan J, Sun Y, Chen J. Identification of microRNA-Associated-ceRNA Networks Regulating Crop Milk Production in Pigeon ( Columba livia). Genes (Basel) 2020; 12:genes12010039. [PMID: 33396684 PMCID: PMC7824448 DOI: 10.3390/genes12010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. In this study, we investigated the miRNAs expression profile of female pigeon crop, explored the potential key genes, and found the regulatory mechanisms of crop milk production. A total of 71 miRNAs were identified differentially expressed significantly. Meanwhile, miR-20b-5p, miR-146b-5p, miR-21-5p, and miR-26b-5p were found to be the key miRNAs regulating lactation. Target genes of these miRNAs participated mainly in cell development; protein and lipid synthesis; and ion signaling processes, such as cell-cell adhesion, epithelial cell morphogenesis, calcium signaling pathway, protein digestion, and absorption. In the ceRNA network, miR-193-5p was located in the central position, and miR-193-5p/CREBRF/LOC110355588, miR-460b-5p/GRHL2/MSTRG.132954, and miR-193-5p/PIK3CD/LOC110355588 regulatory axes were believed to affect lactation. Collectively, our findings enriched the miRNA expression profile of pigeon and provided novel insights into the microRNA-associated-ceRNA networks regulating crop milk production in pigeon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-628-160-05
| |
Collapse
|
18
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
19
|
Tocci A. The unknown human trophectoderm: implication for biopsy at the blastocyst stage. J Assist Reprod Genet 2020; 37:2699-2711. [PMID: 32892265 DOI: 10.1007/s10815-020-01925-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (choriocarcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore, trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous experimental protocols in academic contexts.
Collapse
Affiliation(s)
- Angelo Tocci
- Reproductive Medicine Unit, Gruppo Donnamed, Via Giuseppe Silla 12, Rome, Italy.
| |
Collapse
|
20
|
Gómez-González M, Latorre E, Arroyo M, Trepat X. Measuring mechanical stress in living tissues. NATURE REVIEWS. PHYSICS 2020; 2:300-317. [PMID: 39867749 PMCID: PMC7617344 DOI: 10.1038/s42254-020-0184-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 01/28/2025]
Abstract
Living tissues are active multifunctional materials capable of generating, sensing, withstanding and responding to mechanical stress. These capabilities enable tissues to adopt complex shapes during development, to sustain those shapes during homeostasis, and to restore them during healing and regeneration. Abnormal stress is associated with a broad range of pathologies, including developmental defects, inflammatory diseases, tumor growth and metastasis. Here we review techniques that measure mechanical stress in living tissues with cellular and subcellular resolution. We begin with 2D techniques to map stress in cultured cell monolayers, which provide the highest resolution and accessibility. These techniques include 2D traction microscopy, micro-pillar arrays, monolayer stress microscopy, and monolayer stretching between flexible cantilevers. We next focus on 3D traction microscopy and the micro-bulge test, which enable mapping forces in tissues cultured in 3D. Finally, we review techniques to measure stress in vivo, including servo-null methods for measuring luminal pressure, deformable inclusions, FRET sensors, laser ablation and computational methods for force inference. Whereas these techniques remain far from becoming everyday tools in biomedical laboratories, their rapid development is fostering key advances in the way we understand the role of mechanics in morphogenesis, homeostasis and disease.
Collapse
Affiliation(s)
- Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ernest Latorre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona08028, Spain
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
21
|
Chen L, Pan X, Zhang YH, Kong X, Huang T, Cai YD. Tissue differences revealed by gene expression profiles of various cell lines. J Cell Biochem 2019; 120:7068-7081. [PMID: 30368905 DOI: 10.1002/jcb.27977] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
Mechanisms through which tissues are formed and maintained remain unknown but are fundamental aspects in biology. Tissue-specific gene expression is a valuable tool to study such mechanisms. But in many biomedical studies, cell lines, rather than human body tissues, are used to investigate biological mechanisms Whether or not cell lines maintain their tissue-specific characteristics after they are isolated and cultured outside the human body remains to be explored. In this study, we applied a novel computational method to identify core genes that contribute to the differentiation of cell lines from various tissues. Several advanced computational techniques, such as Monte Carlo feature selection method, incremental feature selection method, and support vector machine (SVM) algorithm, were incorporated in the proposed method, which extensively analyzed the gene expression profiles of cell lines from different tissues. As a result, we extracted a group of functional genes that can indicate the differences of cell lines in different tissues and built an optimal SVM classifier for identifying cell lines in different tissues. In addition, a set of rules for classifying cell lines were also reported, which can give a clearer picture of cell lines in different issues although its performance was not better than the optimal SVM classifier. Finally, we compared such genes with the tissue-specific genes identified by the Genotype-tissue Expression project. Results showed that most expression patterns between tissues remained in the derived cell lines despite some uniqueness that some genes show tissue specificity.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Sampedro MF, Izaguirre MF, Sigot V. E-cadherin expression pattern during zebrafish embryonic epidermis development. F1000Res 2019; 7:1489. [PMID: 30473778 PMCID: PMC6234749 DOI: 10.12688/f1000research.15932.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background: E-cadherin is the major adhesion receptor in epithelial adherens junctions (AJs). On established epidermis, E-cadherin performs fine-tuned cell-cell contact remodeling to maintain tissue integrity, which is characterized by modulation of cell shape, size and packing density. In zebrafish, the organization and distribution of E-cadherin in AJs during embryonic epidermis development remain scarcely described. Methods: Combining classical immunofluorescence, deconvolution microscopy and 3D-segmentation of AJs in epithelial cells, a quantitative approach was implemented to assess the spatial and temporal distribution of E-cadherin across zebrafish epidermis between 24 and 72 hpf. Results: increasing levels of E-cadh protein parallel higher cell density and the appearance of hexagonal cells in the enveloping layer (EVL) as well as the establishments of new cell-cell contacts in the epidermal basal layer (EBL), being significantly between 31 and 48 hpf
. Conclusions: Increasing levels of E-cadherin in AJs correlates with extensive changes in cell morphology towards hexagonal packing during the epidermis morphogenesis.
Collapse
Affiliation(s)
- María Florencia Sampedro
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET- Universidad Nacional de Entre Ríos), Oro Verde, 3100, Argentina
| | - María Fernanda Izaguirre
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina
| | - Valeria Sigot
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET- Universidad Nacional de Entre Ríos), Oro Verde, 3100, Argentina
| |
Collapse
|
23
|
Characterizing Inner Pressure and Stiffness of Trophoblast and Inner Cell Mass of Blastocysts. Biophys J 2018; 115:2443-2450. [PMID: 30509858 DOI: 10.1016/j.bpj.2018.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
It has long been recognized that mechanical forces underlie mammalian embryonic shape changes. Before gastrulation, the blastocyst embryo undergoes significant shape changes, namely, the blastocyst cavity emerges and expands, and the inner cell mass (ICM) forms and changes in shape. The embryo's inner pressure has been hypothesized to be the driving mechanical input that causes the expansion of the blastocyst cavity and the shape changes of the ICM. However, how the inner pressure and the mechanics of the trophoblast and the ICM change during development is unknown because of the lack of a suitable tool for quantitative characterization. This work presents a laser-assisted magnetic tweezer technique for measuring the inner pressure and Young's modulus of the trophoblast and ICM of the blastocyst-stage mouse embryo. The results quantitatively showed that the inner pressure and Young's modulus of the trophoblast and ICM all increase during progression of mouse blastocysts, providing useful data for understanding how mechanical factors are physiologically integrated with other cues to direct embryo development.
Collapse
|
24
|
Latorre E, Kale S, Casares L, Gómez-González M, Uroz M, Valon L, Nair RV, Garreta E, Montserrat N, Del Campo A, Ladoux B, Arroyo M, Trepat X. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 2018; 563:203-208. [PMID: 30401836 DOI: 10.1038/s41586-018-0671-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Fundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour-which we term active superelasticity-that enables epithelial sheets to sustain extreme stretching under constant tension.
Collapse
Affiliation(s)
- Ernest Latorre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.,LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Sohan Kale
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Laura Casares
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Léo Valon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Roshna V Nair
- INM-Leibniz Institut für Neue Materialien, Saarbrücken, Germany
| | - Elena Garreta
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Aránzazu Del Campo
- INM-Leibniz Institut für Neue Materialien, Saarbrücken, Germany.,Chemistry Department, Saarland University, Saarbrücken, Germany
| | - Benoit Ladoux
- CNRS UMR 7592, Institut Jacques Monod (IJM), Université Paris Diderot, Paris, France.,Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain. .,LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain. .,Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
25
|
Hultin S, Subramani A, Hildebrand S, Zheng Y, Majumdar A, Holmgren L. AmotL2 integrates polarity and junctional cues to modulate cell shape. Sci Rep 2017; 7:7548. [PMID: 28790366 PMCID: PMC5548744 DOI: 10.1038/s41598-017-07968-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The assembly of individual epithelial or endothelial cells into a tight cellular sheet requires stringent control of cell packing and organization. These processes are dependent on the establishment and further integration of cellular junctions, the cytoskeleton and the formation of apical-basal polarity. However, little is known how these subcellular events are coordinated. The (Angiomotin) Amot protein family consists of scaffold proteins that interact with junctional cadherins, polarity proteins and the cytoskeleton. In this report, we have studied how these protein complexes integrate to control cellular shapes consistent with organ function. Using gene-inactivating studies in zebrafish and cell culture systems in vitro, we show that Par3 to be essential for localization of AmotL2 to cellular junctions to associate with VE/E-cadherin and subsequently the organization of radial actin filaments. Our data provide mechanistic insight in how critical processes such as aortic lumen expansion as well as epithelial packing into hexagonal shapes are controlled.
Collapse
Affiliation(s)
- Sara Hultin
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Aravindh Subramani
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Sebastian Hildebrand
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.,Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden
| | - Yujuan Zheng
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Arindam Majumdar
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Lars Holmgren
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.
| |
Collapse
|