1
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
2
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Yang H, Zhou J, Li D, Zhou S, Dai X, Du X, Mao H, Wang B. The inhibitory role of microRNA-141-3p in human cutaneous melanoma growth and metastasis through the fibroblast growth factor 13-mediated mitogen-activated protein kinase axis. Melanoma Res 2023; 33:492-505. [PMID: 36988403 DOI: 10.1097/cmr.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human cutaneous melanoma (CM) is a highly invasive malignancy arising from melanocytes, and accompanied by ever-increasing incidence and mortality rates worldwide. Interestingly, microRNAs (miRNAs) possess the ability to regulate CM cell biological functions, resulting in the aggressive progression of CM. Nevertheless, a comprehensive understanding of the underlying mechanism remains elusive. Accordingly, the current study sought to elicit the functional role of miR-141-3p in human CM cells in association with fibroblast growth factor 13 (FGF13) and the MAPK pathway. First, miR-141-3p expression patterns were detected in human CM tissues and cell lines, in addition to the validation of the targeting relationship between miR-141-3p and FGF13. Subsequently, loss- and gain-of-function studies of miR-141-3p were performed to elucidate the functional role of miR-141-3p in the malignant features of CM cells. Intriguingly, our findings revealed that FGF13 was highly expressed, whereas miR-141-3p was poorly expressed in the CM tissues and cells. Further analysis highlighted FGF13 as a target gene of miR-141-3p. Meanwhile, overexpression of miR-141-3p inhibited the proliferative, invasive, and migratory abilities of CM cells, while enhancing their apoptosis accompanied by downregulation of FGF13 and the MAPK pathway-related genes. Collectively, our findings highlighted the inhibitory effects of miR-141-3p on CM cell malignant properties via disruption of the FGF13-dependent MAPK pathway, suggesting a potential target for treating human CM.
Collapse
Affiliation(s)
- Haojan Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jiateng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dongdong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xinchao Du
- Shanghai Jiao Tong University School of Medicine
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, P. R. China
| |
Collapse
|
4
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Harmange G, Hueros RAR, Schaff DL, Emert B, Saint-Antoine M, Kim LC, Niu Z, Nellore S, Fane ME, Alicea GM, Weeraratna AT, Simon MC, Singh A, Shaffer SM. Disrupting cellular memory to overcome drug resistance. Nat Commun 2023; 14:7130. [PMID: 37932277 PMCID: PMC10628298 DOI: 10.1038/s41467-023-41811-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/15/2023] [Indexed: 11/08/2023] Open
Abstract
Gene expression states persist for varying lengths of time at the single-cell level, a phenomenon known as gene expression memory. When cells switch states, losing memory of their prior state, this transition can occur in the absence of genetic changes. However, we lack robust methods to find regulators of memory or track state switching. Here, we develop a lineage tracing-based technique to quantify memory and identify cells that switch states. Applied to melanoma cells without therapy, we quantify long-lived fluctuations in gene expression that are predictive of later resistance to targeted therapy. We also identify the PI3K and TGF-β pathways as state switching modulators. We propose a pretreatment model, first applying a PI3K inhibitor to modulate gene expression states, then applying targeted therapy, which leads to less resistance than targeted therapy alone. Together, we present a method for finding modulators of gene expression memory and their associated cell fates.
Collapse
Affiliation(s)
- Guillaume Harmange
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raúl A Reyes Hueros
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dylan L Schaff
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Emert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Michael Saint-Antoine
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zijian Niu
- Department of Chemistry, College of the Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics, College of the Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shivani Nellore
- Department of Biology, College of the Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell E Fane
- Cancer Signaling and Microenvironment Research Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gretchen M Alicea
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sydney M Shaffer
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Kontogianni G, Voutetakis K, Piroti G, Kypreou K, Stefanaki I, Vlachavas EI, Pilalis E, Stratigos A, Chatziioannou A, Papadodima O. A Comprehensive Analysis of Cutaneous Melanoma Patients in Greece Based on Multi-Omic Data. Cancers (Basel) 2023; 15:cancers15030815. [PMID: 36765773 PMCID: PMC9913631 DOI: 10.3390/cancers15030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive type of skin cancer, and it is characterised by high mutational load and heterogeneity. In this study, we aimed to analyse the genomic and transcriptomic profile of primary melanomas from forty-six Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from Greek patients. Molecular analysis for both germline and somatic variations was performed in genomic DNA from peripheral blood and melanoma samples, respectively, exploiting whole exome and targeted sequencing, and transcriptomic analysis. Detailed clinicopathological data were also included in our analyses and previously reported associations with specific mutations were recognised. Most analysed samples (43/46) were found to harbour at least one clinically actionable somatic variant. A subset of samples was profiled at the transcriptomic level, and it was shown that specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE primary melanoma tissue. Integrative bioinformatics analyses, including variant prioritisation, differential gene expression analysis, and functional and gene set enrichment analysis by group and per sample, were conducted and molecular circuits that are implicated in melanoma cell programmes were highlighted. Integration of mutational and transcriptomic data in CM characterisation could shed light on genes and pathways that support the maintenance of phenotypic states encrypted into heterogeneous primary tumours.
Collapse
Affiliation(s)
- Georgia Kontogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Georgia Piroti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Katerina Kypreou
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Irene Stefanaki
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | | | | | - Alexander Stratigos
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Aristotelis Chatziioannou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- e-NIOS Applications Private Company, 17671 Kallithea, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| |
Collapse
|
7
|
Lehmann J, Caduff N, Krzywińska E, Stierli S, Salas-Bastos A, Loos B, Levesque MP, Dummer R, Stockmann C, Münz C, Diener J, Sommer L. Escape from NK cell tumor surveillance by NGFR-induced lipid remodeling in melanoma. SCIENCE ADVANCES 2023; 9:eadc8825. [PMID: 36638181 PMCID: PMC9839334 DOI: 10.1126/sciadv.adc8825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/09/2022] [Indexed: 05/27/2023]
Abstract
Metastatic disease is a major cause of death for patients with melanoma. Melanoma cells can become metastatic not only due to cell-intrinsic plasticity but also due to cancer-induced protumorigenic remodeling of the immune microenvironment. Here, we report that innate immune surveillance by natural killer (NK) cells is bypassed by human melanoma cells expressing the stem cell marker NGFR. Using in vitro and in vivo cytotoxic assays, we show that NGFR protects melanoma cells from NK cell-mediated killing and, furthermore, boosts metastasis formation in a mouse model with adoptively transferred human NK cells. Mechanistically, NGFR leads to down-regulation of NK cell activating ligands and simultaneous up-regulation of the fatty acid stearoyl-coenzyme A desaturase (SCD) in melanoma cells. Notably, pharmacological and small interfering RNA-mediated inhibition of SCD reverted NGFR-induced NK cell evasion in vitro and in vivo. Hence, NGFR orchestrates immune control antagonizing pathways to protect melanoma cells from NK cell clearance, which ultimately favors metastatic disease.
Collapse
Affiliation(s)
- Julia Lehmann
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Nicole Caduff
- University of Zurich, Institute of Experimental Immunology, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ewelina Krzywińska
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Salome Stierli
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Adrian Salas-Bastos
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Benjamin Loos
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mitchell P. Levesque
- University of Zurich Hospital, Department of Dermatology, Gloriastrasse 31, 8091 Zürich, Switzerland
| | - Reinhard Dummer
- University of Zurich Hospital, Department of Dermatology, Gloriastrasse 31, 8091 Zürich, Switzerland
| | - Christian Stockmann
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Münz
- University of Zurich, Institute of Experimental Immunology, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Johanna Diener
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
8
|
Decoding molecular programs in melanoma brain metastases. Nat Commun 2022; 13:7304. [PMID: 36435874 PMCID: PMC9701224 DOI: 10.1038/s41467-022-34899-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease. Molecularly, the expression of E-cadherin (Ecad) or NGFR, the BRAF mutation state and level of immune cell infiltration subdivides tumors into proliferative/pigmented and invasive/stem-like/therapy-resistant irrespective of the intracranial location. The analysis of MAPK inhibitor-naive and refractory MBM reveals switching from Ecad-associated into NGFR-associated programs during progression. NGFR-associated programs control cell migration and proliferation via downstream transcription factors such as SOX4. Moreover, global methylome profiling uncovers 46 differentially methylated regions that discriminate BRAFmut and wildtype MBM. In summary, we propose that the expression of Ecad and NGFR sub- classifies MBM and suggest that the Ecad-to-NGFR phenotype switch is a rate-limiting process which potentially indicates drug-response and intracranial progression states in melanoma patients.
Collapse
|
9
|
Heme Oxygenase-1 Has a Greater Effect on Melanoma Stem Cell Properties Than the Expression of Melanoma-Initiating Cell Markers. Int J Mol Sci 2022; 23:ijms23073596. [PMID: 35408953 PMCID: PMC8998882 DOI: 10.3390/ijms23073596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma-initiating cells (MICs) contribute to the tumorigenicity and heterogeneity of melanoma. MICs are identified by surface and functional markers and have been shown to display cancer stem cell (CSC) properties. However, the existence of MICs that follow the hierarchical CSC model has been questioned by studies showing that single unselected melanoma cells are highly tumorigenic in xenotransplantation assays. Herein, we characterize cells expressing MIC markers (CD20, CD24, CD133, Sca-1, ABCB1, ABCB5, ALDHhigh) in the B16-F10 murine melanoma cell line. We use flow cytometric phenotyping, single-cell sorting followed by in vitro clonogenic assays, and syngeneic in vivo serial transplantation assays to demonstrate that the expression of MIC markers does not select CSC-like cells in this cell line. Previously, our group showed that heme-degrading enzyme heme oxygenase-1 (HO-1) can be upregulated in melanoma and increase its aggressiveness. Here, we show that HO-1 activity is important for non-adherent growth of melanoma and HO-1 overexpression enhances the vasculogenic mimicry potential, which can be considered protumorigenic activity. However, HO-1 overexpression decreases clone formation in vitro and serial tumor initiation in vivo. Thus, HO-1 plays a dual role in melanoma, improving the progression of growing tumors but reducing the risk of melanoma initiation.
Collapse
|
10
|
Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, Sono T, Qin Q, Lu A, Xing X, McCarthy EF, Clemens TL, James AW. NGF-p75 signaling coordinates skeletal cell migration during bone repair. SCIENCE ADVANCES 2022; 8:eabl5716. [PMID: 35302859 PMCID: PMC8932666 DOI: 10.1126/sciadv.abl5716] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Bone regeneration following injury is initiated by inflammatory signals and occurs in association with infiltration by sensory nerve fibers. Together, these events are believed to coordinate angiogenesis and tissue reprogramming, but the mechanism of coupling immune signals to reinnervation and osteogenesis is unknown. Here, we found that nerve growth factor (NGF) is expressed following cranial bone injury and signals via p75 in resident mesenchymal osteogenic precursors to affect their migration into the damaged tissue. Mice lacking Ngf in myeloid cells demonstrated reduced migration of osteogenic precursors to the injury site with consequently delayed bone healing. These features were phenocopied by mice lacking p75 in Pdgfra+ osteoblast precursors. Single-cell transcriptomics identified mesenchymal subpopulations with potential roles in cell migration and immune response, altered in the context of p75 deletion. Together, these results identify the role of p75 signaling pathway in coordinating skeletal cell migration during early bone repair.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Lu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward F. McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas L. Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Cell Surface Proteins for Enrichment and In Vitro Characterization of Human Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cells Int 2022; 2022:2735414. [PMID: 35251185 PMCID: PMC8894063 DOI: 10.1155/2022/2735414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human myogenic progenitors can be derived from pluripotent stem cells (PSCs) for use in modeling natural and pathological myogenesis, as well as treating muscle diseases. Transgene-free methods of deriving myogenic progenitors from different PSC lines often produce mixed populations that are heterogeneous in myogenic differentiation potential, yet detailed and accurate characterization of human PSC-derived myogenic progenitors remains elusive in the field. The isolation and purification of human PSC-derived myogenic progenitors is thus an important methodological consideration when we investigate the properties and behaviors of these cells in culture. We previously reported a transgene-free, serum-free floating sphere culture method for the derivation of myogenic progenitors from human PSCs. In this study, we first performed comprehensive cell surface protein profiling of the sphere culture cells through the screening of 255 antibodies. Next, we used magnetic activated cell sorting and enriched the cells according to the expression of specific surface markers. The ability of muscle differentiation in the resulting cells was characterized by immunofluorescent labeling and quantification of positively stained cells. Our results revealed that myotube-forming cells resided in the differentiated cultures of CD29+, CD56+, CD271+, and CD15– fractions, while thick and multinucleated myotubes were identified in the differentiated cultures from CD9+ and CD146+ fractions. We found that PAX7 localization to the nucleus correlates with myotube-forming ability in these sorted populations. We also demonstrated that cells in unsorted, CD271+, and CD15– fractions responded differently to cryopreservation and prolonged culture expansion. Lastly, we showed that CD271 expression is essential for terminal differentiation of human PSC-derived myogenic progenitors. Taken together, these cell surface proteins are not only useful markers to identify unique cellular populations in human PSC-derived myogenic progenitors but also functionally important molecules that can provide valuable insight into human myogenesis.
Collapse
|
12
|
Decoding Single Cell Morphology in Osteotropic Breast Cancer Cells for Dissecting Their Migratory, Molecular and Biophysical Heterogeneity. Cancers (Basel) 2022; 14:cancers14030603. [PMID: 35158871 PMCID: PMC8833404 DOI: 10.3390/cancers14030603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.
Collapse
|
13
|
Vidal A, Redmer T. Tracking of Melanoma Cell Plasticity by Transcriptional Reporters. Int J Mol Sci 2022; 23:1199. [PMID: 35163127 PMCID: PMC8835814 DOI: 10.3390/ijms23031199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Clonal evolution and cellular plasticity are the genetic and non-genetic driving forces of tumor heterogeneity, which in turn determine tumor cell responses towards therapeutic drugs. Several lines of evidence suggest that therapeutic interventions foster the selection of drug-resistant neural crest stem-like cells (NCSCs) that establish minimal residual disease (MRD) in melanoma. Here, we establish a dual-reporter system, enabling the tracking of NGFR expression and mRNA stability and providing insights into the maintenance of NCSC states. We observed that a transcriptional reporter that contained a 1-kilobase fragment of the human NGFR promoter was activated only in a minor subset (0.72 ± 0.49%, range 0.3-1.5), and ~2-4% of A375 melanoma cells revealed stable NGFR mRNA. The combination of both reporters provides insights into phenotype switching and reveals that both cellular subsets gave rise to cellular heterogeneity. Moreover, whole transcriptome profiling and gene-set enrichment analysis (GSEA) of the minor cellular subset revealed hypoxia-associated programs that might serve as potential drivers of an in vitro switching of NGFR-associated phenotypes and relapse of post-BRAF inhibitor-treated tumors. Concordantly, we observed that the minor cellular subset increased in response to dabrafenib over time. In summary, our reporter-based approach provides insights into plasticity and identified a cellular subset that might be responsible for the establishment of MRD in melanoma.
Collapse
Affiliation(s)
- Anna Vidal
- Institute of Medical Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Torben Redmer
- Institute of Medical Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria;
- Unit of Laboratory Animal Pathology, Institute of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
14
|
Saltari A, Dzung A, Quadri M, Tiso N, Facchinello N, Hernández-Barranco A, Garcia-Silva S, Nogués L, Stoffel CI, Cheng PF, Turko P, Eichhoff OM, Truzzi F, Marconi A, Pincelli C, Peinado H, Dummer R, Levesque MP. Specific Activation of the CD271 Intracellular Domain in Combination with Chemotherapy or Targeted Therapy Inhibits Melanoma Progression. Cancer Res 2021; 81:6044-6057. [PMID: 34645608 PMCID: PMC9397645 DOI: 10.1158/0008-5472.can-21-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
CD271 (NGFR) is a neurotrophin receptor that belongs to the tumor necrosis receptor (TNFR) family. Upon ligand binding, CD271 can mediate either survival or cell death. Although the role of CD271 as a marker of tumor-initiating cells is still a matter of debate, its role in melanoma progression has been well documented. Moreover, CD271 has been shown to be upregulated after exposure to both chemotherapy and targeted therapy. In this study, we demonstrate that activation of CD271 by a short β-amyloid-derived peptide (Aβ(25-35)) in combination with either chemotherapy or MAPK inhibitors induces apoptosis in 2D and 3D cultures of eight melanoma cell lines. This combinatorial treatment significantly reduced metastasis in a zebrafish xenograft model and led to significantly decreased tumor volume in mice. Administration of Aβ(25-35) in ex vivo tumors from immunotherapy- and targeted therapy-resistant patients significantly reduced proliferation of melanoma cells, showing that activation of CD271 can overcome drug resistance. Aβ(25-35) was specific to CD271-expressing cells and induced CD271 cleavage and phosphorylation of JNK (pJNK). The direct protein-protein interaction of pJNK with CD271 led to PARP1 cleavage, p53 and caspase activation, and pJNK-dependent cell death. Aβ(25-35) also mediated mitochondrial reactive oxygen species (mROS) accumulation, which induced CD271 overexpression. Finally, CD271 upregulation inhibited mROS production, revealing the presence of a negative feedback loop in mROS regulation. These results indicate that targeting CD271 can activate cell death pathways to inhibit melanoma progression and potentially overcome resistance to targeted therapy. SIGNIFICANCE: The discovery of a means to specifically activate the CD271 death domain reveals unknown pathways mediated by the receptor and highlights new treatment possibilities for melanoma.
Collapse
Affiliation(s)
- Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Marika Quadri
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology University of Padova, Padova, Italy
| | - Nicola Facchinello
- Laboratory of Developmental Genetics, Department of Biology University of Padova, Padova, Italy
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susana Garcia-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Corinne Isabelle Stoffel
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Phil F. Cheng
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Ossia M. Eichhoff
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Francesca Truzzi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland.,Corresponding Author: Mitchell P. Levesque, Department of Dermatology, University Hospital of Zurich, Wagistrasse 18, Zurich 8952, Switzerland. E-mail:
| |
Collapse
|
15
|
Kasemeier-Kulesa JC, Spengler JA, Muolo CE, Morrison JA, Woolley TE, Schnell S, Kulesa PM. The embryonic trunk neural crest microenvironment regulates the plasticity and invasion of human neuroblastoma via TrkB signaling. Dev Biol 2021; 480:78-90. [PMID: 34416224 DOI: 10.1016/j.ydbio.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/20/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
Mistakes in trunk neural crest (NC) cell migration may lead to birth defects of the sympathetic nervous system (SNS) and neuroblastoma (NB) cancer. Receptor tyrosine kinase B (TrkB) and its ligand BDNF critically regulate NC cell migration during normal SNS development and elevated expression of TrkB is correlated with high-risk NB patients. However, in the absence of a model with in vivo interrogation of human NB cell and gene expression dynamics, the mechanistic role of TrkB in NB disease progression remains unclear. Here, we study the functional relationship between TrkB, cell invasion and plasticity of human NB cells by taking advantage of our validated in vivo chick embryo transplant model. We find that LAN5 (high TrkB) and SHSY5Y (moderate TrkB) human NB cells aggressively invade host embryos and populate typical NC targets, however loss of TrkB function significantly reduces cell invasion. In contrast, NB1643 (low TrkB) cells remain near the transplant site, but over-expression of TrkB leads to significant cell invasion. Invasive NB cells show enhanced expression of genes indicative of the most invasive host NC cells. In contrast, transplanted human NB cells down-regulate known NB tumor initiating and stem cell markers. Human NB cells that remain within the dorsal neural tube transplant also show enhanced expression of cell differentiation genes, resulting in an improved disease outcome as predicted by a computational algorithm. These in vivo data support TrkB as an important biomarker and target to control NB aggressiveness and identify the chick embryonic trunk neural crest microenvironment as a source of signals to drive NB to a less aggressive state, likely acting at the dorsal neural tube.
Collapse
Affiliation(s)
| | | | - Connor E Muolo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff, CF24, UK
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
Kulesa PM, Kasemeier-Kulesa JC, Morrison JA, McLennan R, McKinney MC, Bailey C. Modelling Cell Invasion: A Review of What JD Murray and the Embryo Can Teach Us. Bull Math Biol 2021; 83:26. [PMID: 33594536 DOI: 10.1007/s11538-021-00859-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Cell invasion and cell plasticity are critical to human development but are also striking features of cancer metastasis. By distributing a multipotent cell type from a place of birth to distal locations, the vertebrate embryo builds organs. In comparison, metastatic tumor cells often acquire a de-differentiated phenotype and migrate away from a primary site to inhabit new microenvironments, disrupting normal organ function. Countless observations of both embryonic cell migration and tumor metastasis have demonstrated complex cell signaling and interactive behaviors that have long confounded scientist and clinician alike. James D. Murray realized the important role of mathematics in biology and developed a unique strategy to address complex biological questions such as these. His work offers a practical template for constructing clear, logical, direct and verifiable models that help to explain complex cell behaviors and direct new experiments. His pioneering work at the interface of development and cancer made significant contributions to glioblastoma cancer and embryonic pattern formation using often simple models with tremendous predictive potential. Here, we provide a brief overview of advances in cell invasion and cell plasticity using the embryonic neural crest and its ancestral relationship to aggressive cancers that put into current context the timeless aspects of his work.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA.
| | | | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Caleb Bailey
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83460, USA
| |
Collapse
|
17
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
18
|
Inactivating p53 is essential for nerve growth factor receptor to promote melanoma-initiating cell-stemmed tumorigenesis. Cell Death Dis 2020; 11:550. [PMID: 32686661 PMCID: PMC7371866 DOI: 10.1038/s41419-020-02758-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Nerve growth factor receptor (NGFR, CD271, or p75NTR) is highly expressed in melanoma-initiating cells (MICs) and is critical for their proliferation and tumorigenesis, and yet the underlying mechanism(s) remain incompletely understood. We previously showed that NGFR inhibits p53 activity in a negative feedback manner in various cancer cells. Here we report that this feedback inhibition of p53 by NGFR plays an essential role in maintaining the sphere formation (stem-like phenotype) and proliferation of MICs, and in promoting MIC-derived melanoma growth in vivo. Knockdown of NGFR markedly reduced the size and number of spheroid formation of melanoma cells, which can be rescued by ectopically expressed NGFR. This reduction was also reversed by depleting p53. Consistently, knockdown of NGFR led to the suppression of MIC-derived xenograft tumor growth by inducing the p53 pathway. These results demonstrate that the NGFR-p53 feedback loop is essential for maintaining MIC stem-like phenotype and MIC-derived tumorigenesis, and further validates NGFR as a potential target for developing a molecule-based therapy against melanoma.
Collapse
|
19
|
Dormant tumor cells interact with memory CD8 + T cells in RET transgenic mouse melanoma model. Cancer Lett 2020; 474:74-81. [PMID: 31962142 DOI: 10.1016/j.canlet.2020.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
Melanoma is an aggressive form of skin-cancer. Melanoma cells are characterized by their plasticity, resulting in therapy resistance. Using RET transgenic mouse melanoma model, we characterized dormant tumor cells accumulated in the bone marrow (BM) and investigated their interaction with effector memory CD8+ T cells. We found that cells expressing melanoma-associated antigen tyrosinase related protein (TRP)-2 and stemness marker CD133 represented less than 1.5% of all melanoma cells in primary skin lesions and metastatic lymph nodes. The majority of these cells were negative for the proliferation marker Ki67. In the BM, CD133+TRP-2+ melanoma cells displayed an aberrant expression of p16, p27, Ki67 and PCNA proteins, suggesting their dormant phenotype. Moreover, these cells were characterized by an elevated expression of various molecules characterized stemness, metastatic, angiogenic and immunosuppressive properties such as CD271, CD34, HIF-1α, CXCR3, CXCR4, VEGR2, PD-L1, CTLA-4, CD39 and CCR4 as compared to their CD133- counterparts. Disseminated BM dormant TRP-2+ tumor cells were found to be co-localized with memory CD8+ T cells. Our data suggest that these dormant melanoma cells in the BM could play an important role in the maintenance of memory T cells in the BM.
Collapse
|
20
|
Webster MR, Fane ME, Alicea GM, Basu S, Kossenkov AV, Marino GE, Douglass SM, Kaur A, Ecker BL, Gnanapradeepan K, Ndoye A, Kugel C, Valiga A, Palmer J, Liu Q, Xu X, Morris J, Yin X, Wu H, Xu W, Zheng C, Karakousis GC, Amaravadi RK, Mitchell TC, Almeida FV, Xiao M, Rebecca VW, Wang YJ, Schuchter LM, Herlyn M, Murphy ME, Weeraratna AT. Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Mol Cell 2019; 77:633-644.e5. [PMID: 31836388 DOI: 10.1016/j.molcel.2019.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.
Collapse
Affiliation(s)
- Marie R Webster
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.
| | - Mitchell E Fane
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Gretchen M Alicea
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Gloria E Marino
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Stephen M Douglass
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Amanpreet Kaur
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Brett L Ecker
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Surgery, University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Keerthana Gnanapradeepan
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abibatou Ndoye
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Curtis Kugel
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Alexander Valiga
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Jessica Palmer
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Qin Liu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessicamarie Morris
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Filipe V Almeida
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Min Xiao
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Vito W Rebecca
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center at Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ashani T Weeraratna
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Relevance of Neurotrophin Receptors CD271 and TrkC for Prognosis, Migration, and Proliferation in Head and Neck Squamous Cell Carcinoma. Cells 2019; 8:cells8101167. [PMID: 31569361 PMCID: PMC6830344 DOI: 10.3390/cells8101167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and often has a poor prognosis. The present study investigated the role of the low affinity nerve growth factor receptor CD271 as a putative therapy target in HNSCC. Neurotrophins that bind to CD271 also have a high affinity for the tropomyosin receptor kinase family (Trk), consisting of TrkA, TrkB, and TrkC, which must also be considered in addition to CD271. A retrospective study and functional in vitro cell line tests (migration assay and cell sorting) were conducted in order to evaluate the relevance of CD271 expression alone and with regard to Trk expression. CD271 and Trks were heterogeneously expressed in human HNSCC. The vast majority of tumors exhibited CD271 and TrkA, whereas only half of the tumors expressed TrkB and TrkC. High expression of CD271-positive cells predicted a bad clinical outcome of patients with HNSCC and was associated with distant metastases. However, the human carcinomas that also expressed TrkC had a reduced correlation with distant metastases and better survival rates. In vitro, CD271 expression marked a subpopulation with higher proliferation rates, but proliferation was lower in tumor cells that co-expressed CD271 and TrkC. The CD271 inhibitor LM11A 31 suppressed cell motility in vitro. However, neither TrkA nor TrkB expression were linked to prognosis or cell proliferation. We conclude that CD271 is a promising candidate that provides prognostic information for HNSCC and could be a putative target for HNSCC treatment.
Collapse
|
22
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
23
|
CD271 is a molecular switch with divergent roles in melanoma and melanocyte development. Sci Rep 2019; 9:7696. [PMID: 31118427 PMCID: PMC6531451 DOI: 10.1038/s41598-019-42773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of signaling networks controlling self-renewal and migration of developmental cell lineages is closely linked to the proliferative and invasive properties of tumors. Identification of such signaling pathways and their critical regulators is vital for successful design of effective targeted therapies against neoplastic tissue growth. The neurotrophin receptor (CD271/NGFR/p75NTR) is a key regulator of the melanocytic cell lineage through its ability to mediate cell growth, survival, and differentiation. Using clinical melanoma samples, normal melanocytes and global gene expression profiling we have investigated the role of CD271 in rewiring signal transduction networks of melanoma cells during neoplastic transformation. Our analysis demonstrates that depending on the cell fate of tumor initiation vs normal development, elevated levels of CD271 can serve as a switch between proliferation/survival and differentiation/cell death. Two divergent arms of neurotrophin signaling hold the balance between positive regulators of tumor growth controlled by E2F, MYC, SREBP1 and AKT3 pathways on the one hand, and differentiation, senescence, and apoptosis controlled by TRAF6/IRAK-dependent activation of AP1 and TP53 mediated processes on the other hand. A molecular network map revealed in this study uncovers CD271 as a context-specific molecular switch between normal development and malignant transformation.
Collapse
|
24
|
Beretti F, Bertoni L, Farnetani F, Pellegrini C, Gorelli G, Cesinaro AM, Reggiani Bonetti L, Di Nardo L, Kaleci S, Chester J, Longo C, Massi D, Fargnoli MC, Pellacani G. Melanoma types by in vivo reflectance confocal microscopy correlated with protein and molecular genetic alterations: A pilot study. Exp Dermatol 2019; 28:254-260. [PMID: 30636079 DOI: 10.1111/exd.13877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Cutaneous melanoma (CM) is one of the most prevalent skin cancers, which lacks both a prognostic marker and a specific and lasting treatment, due to the complexity of the disease and heterogeneity of patients. Reflectance confocal microscopy (RCM) in vivo analysis is a versatile approach offering immediate morphological information, enabling the identification of four primary cutaneous RCM CM types. Whether RCM CM types are associated with a specific protein and molecular genetic profiles at the tissue level remains unclear. The current pilot study was designed to identify potential correlations between RCM CM types and specific biological characteristics, combining immunohistochemistry (IHC) and molecular analyses. Eighty primary CMs evaluated at patient bedside with RCM (type 1 [19, 24%], type 2 [12, 15%], type 3 [7, 9%] and type 4 [42, 52%]) were retrospectively evaluated by IHC stains (CD271, CD20, CD31, cyclin D1), fluorescence in situ hybridization FISH for MYC gain and CDKN2A loss and molecular analysis for somatic mutations (BRAF, NRAS and KIT). RCM CM types correlated with markers of stemness property, density of intra-tumoral lymphocytic B infiltrate and cyclin D1 expression, while no significant association was found with blood vessel density nor molecular findings. RCM CM types show a different marker profile expression, suggestive of a progression and an increase in aggressiveness, according to RCM morphologies.
Collapse
Affiliation(s)
- Francesca Beretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Farnetani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Greta Gorelli
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Anna Maria Cesinaro
- Anatomic Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Di Nardo
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | - Shaniko Kaleci
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Chester
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica, Reggio Emilia, Italy
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria C Fargnoli
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
25
|
The interaction between SBA-15 derivative loaded with Ph 3Sn(CH 2) 6OH and human melanoma A375 cell line: uptake and stem phenotype loss. J Biol Inorg Chem 2019; 24:223-234. [PMID: 30759278 DOI: 10.1007/s00775-019-01640-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Extraordinary progress in medicinal inorganic chemistry in the past few years led to the rational design of novel platinum compounds, as well as nonplatinum metal-based antitumor agents, including organotin compounds, whose activity is not based on unrepairable interaction with DNA. To overcome poor solubility and toxicity problems that limited the application of these compounds numerous delivering systems were used (Lila et al. in Biol Pharm Bull 37:206-211, 2014; Yue and Cao in Curr Cancer Drug Targets 16:480-488, 2016; Duan et al. in WIREs Nanomed Nanobiotechnol 8:776-791, 2016). Regarding high drug loading capacity, mesoporous silica nanoparticles like SBA-15 became more important for targeted drug delivery. In this study, cellular uptake and biological activities responsible for organotin(IV) compound Ph3Sn(CH2)6OH (Sn6) grafted into (3-chloropropyl)triethoxysilane functionalized SBA-15 (SBA-15p → SBA-15p|Sn6) were evaluated in human melanoma A375 cell line. Moreover, the influence of SBA-15p grafted with organotin(IV) compound on the stemness of A375 cell was tested. Given the fact that SBA-15p|Sn6 nanoparticles are nonspherical and relatively large, their internalization efficiently started even after 15 min with stable adhesion to the cell membrane. After only 2 h of incubation of A375 cells with SBA-15p|Sn6 passive fluid-phase uptake and macropinocytosis were observed. Inside of the cell, treatment with SBA-15p loaded with Sn6 promoted caspase-dependent apoptosis in parallel with senescence development. The subpopulation of cells expressing Schwann-like phenotype arose upon the treatment, while the signaling pathway responsible for maintenance of pluripotency and invasiveness, Wnt, Notch1, and Oct3/4 were modulated towards less aggressive signature. In summary, SBA-15p enhances the efficacy of free Sn6 compound through efficient uptake and well profiled intracellular response followed with decreased stem characteristics of highly invasive A375 melanoma cells.
Collapse
|
26
|
Kasemeier-Kulesa JC, Kulesa PM. The convergent roles of CD271/p75 in neural crest-derived melanoma plasticity. Dev Biol 2018; 444 Suppl 1:S352-S355. [PMID: 29660313 PMCID: PMC6186201 DOI: 10.1016/j.ydbio.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
The embryonic microenvironment is an important source of signals that promote multipotent cells to adopt a specific fate and direct cells along distinct migratory pathways. Yet, the ability of the embryonic microenvironment to retain multipotent progenitors or reprogram de-differentiated cells is less clear. Mistakes in cell differentiation or migration often result in developmental defects and tumorigenesis, including aggressive cancers that share many characteristics with embryonic progenitor cells. This is a striking feature of the vertebrate neural crest, a multipotent and highly migratory cell population first identified by His (1868) with the potential to metamorphose into aggressive melanoma cancer. In this perspective, we address the roles of CD271/p75 in tumor initiation, phenotype switching and reprogramming of metastatic melanoma and discuss the convergence of these roles in melanoma plasticity.
Collapse
Affiliation(s)
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
27
|
Wang H, Zhang YG, Ma J, Li JC, Zhang J, Yu YQ. Invasiveness-triggered state transition in malignant melanoma cells. J Cell Physiol 2018; 234:5354-5361. [PMID: 30478974 DOI: 10.1002/jcp.27405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/21/2018] [Indexed: 11/05/2022]
Abstract
Cancer cells are considered to have high morphological heterogeneity in human melanoma tissue. Here, we report that epithelial cancer cells are dominant in different development stages of human melanoma tissues. The cellular and molecular mechanisms that maintain melanoma cells in the epithelial state are further investigated in the A2058 cell line. We find that micropore (8 µm) transwell invasion, but not superficial migration in the scratch assay, can induce remarkable morphological changes between epithelial and mesenchymal melanoma cells within 4 days. The morphological switch is associated with dynamic changes of epithelial-mesenchymal transition (EMT) hallmarks E-cadherin and vimentin. Further immunoflurencent staining and co-immunoprecipitation assay showed the uncoupling of the M3 muscarinic acetylcholine receptor (mAChR) and the p75 neurotrophin receptor (p75NTR) in epithelial melanoma cells. Specific knockdown of M3 mAChR by small interfering RNA (siRNA) significantly abrogates the transition of spindle-shaped mesenchymal cells to epithelial cells. Collectively, we report a cellular model of invasiveness-triggered state transition (ITST) in which melanoma cell invasion can induce morphological changes between epithelial and mesenchymal cells. ITST is one of the biological basis for maintaining metastatic melanoma cells in the epithelial state. Furthermore, M3 mAChR receptor-mediated ITST provides a novel therapeutic strategy to inhibit the development of malignant melanoma.
Collapse
Affiliation(s)
- Huan Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan-Guo Zhang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun-Chang Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Redmer T. Deciphering mechanisms of brain metastasis in melanoma - the gist of the matter. Mol Cancer 2018; 17:106. [PMID: 30053879 PMCID: PMC6064184 DOI: 10.1186/s12943-018-0854-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Metastasis to distant organs and particularly the brain still represents the most serious obstacle in melanoma therapies. Melanoma cells acquire a phenotype to metastasize to the brain and successfully grow there through complex mechanisms determined by microenvironmental than rather genetic cues. There do appear to be some prerequisites, including the presence of oncogenic BRAF or NRAS mutations and a loss of PTEN. Further mediators of the brain metastatic phenotype appear to be the high activation of the PI3K/AKT or STAT3 pathway or high levels of PLEKHA5 and MMP2 in metastatic cells. A yet undefined subset of brain metastases exhibit a high level of expression of CD271 that is associated with stemness, migration and survival. Hence, CD271 expression may determine specific properties of brain metastatic melanoma cells. Environmental cues - in particular those provided by brain parenchymal cells such as astrocytes - seem to help specifically guide melanoma cells that express CCR4 or CD271, potential "homing receptors". Upon entering the brain, these cells interact with brain parenchyma cells and are thereby reprogrammed to adopt a neurological phenotype. Several lines of evidence suggest that current therapies may have a negative effect by activating a program that drives tumor cells toward stemness and metastasis. Yet significant improvements have expanded the therapeutic options for treating brain metastases from melanoma, by combining potent BRAF inhibitors such as dabrafenib with checkpoint inhibitors or stereotactic surgery. Further progress toward developing new therapeutic strategies will require a more profound understanding of the mechanisms that underlie brain metastasis in melanoma.
Collapse
Affiliation(s)
- Torben Redmer
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany. .,Department of Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
29
|
Liang L, Coudière-Morrison L, Tatari N, Stromecki M, Fresnoza A, Porter CJ, Del Bigio MR, Hawkins C, Chan JA, Ryken TC, Taylor MD, Ramaswamy V, Werbowetski-Ogilvie TE. CD271 + Cells Are Diagnostic and Prognostic and Exhibit Elevated MAPK Activity in SHH Medulloblastoma. Cancer Res 2018; 78:4745-4759. [PMID: 29930101 DOI: 10.1158/0008-5472.can-18-0027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/10/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
The extensive heterogeneity both between and within the medulloblastoma subgroups underscores a critical need for variant-specific biomarkers and therapeutic strategies. We previously identified a role for the CD271/p75 neurotrophin receptor (p75NTR) in regulating stem/progenitor cells in the SHH medulloblastoma subgroup. Here, we demonstrate the utility of CD271 as a novel diagnostic and prognostic marker for SHH medulloblastoma using IHC analysis and transcriptome data across 763 primary tumors. RNA sequencing of CD271+ and CD271- cells revealed molecularly distinct, coexisting cellular subsets, both in vitro and in vivo MAPK/ERK signaling was upregulated in the CD271+ population, and inhibiting this pathway reduced endogenous CD271 levels, stem/progenitor cell proliferation, and cell survival as well as cell migration in vitro Treatment with the MEK inhibitor selumetinib extended survival and reduced CD271 levels in vivo, whereas, treatment with vismodegib, a well-known smoothened (SMO) inhibitor currently in clinical trials for the treatment of recurrent SHH medulloblastoma, had no significant effect in our models. Our study demonstrates the clinical utility of CD271 as both a diagnostic and prognostic tool for SHH medulloblastoma tumors and reveals a novel role for MEK inhibitors in targeting CD271+ SHH medulloblastoma cells.Significance: This study identifies CD271 as a specific and novel biomarker of SHH-type medulloblastoma and that targeting CD271+ cells through MEK inhibition represents a novel therapeutic strategy for the treatment of SHH medulloblastoma. Cancer Res; 78(16); 4745-59. ©2018 AACR.
Collapse
Affiliation(s)
- Lisa Liang
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ludivine Coudière-Morrison
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nazanin Tatari
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Margaret Stromecki
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Agnes Fresnoza
- Central Animal Care Services, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba and the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Cynthia Hawkins
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy C Ryken
- Department of Neurosurgery, University of Kansas, Kansas City, Kansas
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health and Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tamra E Werbowetski-Ogilvie
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
30
|
Testa U, Castelli G, Pelosi E. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Med Sci (Basel) 2017; 5:E28. [PMID: 29156643 PMCID: PMC5753657 DOI: 10.3390/medsci5040028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|