1
|
Ebrahimi Samani S, Tatsukawa H, Hitomi K, Kaartinen MT. Transglutaminase 1: Emerging Functions beyond Skin. Int J Mol Sci 2024; 25:10306. [PMID: 39408635 PMCID: PMC11476513 DOI: 10.3390/ijms251910306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Transglutaminase enzymes catalyze Ca2+- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies. This review summarizes our current understanding of the structure, activation, expression and activity patterns of TG1 and discusses its putative novel role in other tissues, such as in vascular integrity, and in diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Mari T. Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Lee SJ, Shin JW, Kwon MA, Lee KB, Kim HJ, Lee JH, Kang HS, Jun JK, Cho SY, Kim IG. Transglutaminase 2 Prevents Premature Senescence and Promotes Osteoblastic Differentiation of Mesenchymal Stem Cells through NRF2 Activation. Stem Cells Int 2023; 2023:8815888. [PMID: 37900967 PMCID: PMC10611545 DOI: 10.1155/2023/8815888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During in vitro MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.
Collapse
Affiliation(s)
- Soo-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee-Ae Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heun-Soo Kang
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ebrahimi Samani S, Kaartinen MT. Increased Osteoclastogenesis in Absence of TG2 Is Reversed by Transglutaminase Inhibition-Evidence for the Role for TG1 in Osteoclast Formation. Cells 2023; 12:2139. [PMID: 37681871 PMCID: PMC10487146 DOI: 10.3390/cells12172139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoclasts are multinucleated, bone-resorbing giant cells derived from monocyte-macrophage cell lines. Increased bone resorption results in loss of bone mass and osteoporosis. Osteoclast and bone marrow macrophages have been shown to express three TG enzymes (TG2, Factor XIII-A, and TG1) and TG activity to regulate osteoclast differentiation from bone marrow macrophages in vitro. In vivo and in vitro studies have demonstrated that the deletion of TG2 causes increased osteoclastogenesis and a significant loss of bone mass in mice (Tgm2-/- mice). Here, we confirm that TG2 deficiency results in increased osteoclastogenesis in vitro and show that this increase can be reversed by a TG inhibitor, NC9, suggesting that other TGs are responsible for driving osteoclastogenesis in the absence of TG2. An assessment of total TG activity with 5-(biotinamido)-pentylamine, as well as TG1 and FXIII-A activities using TG-specific Hitomi peptides (bK5 and bF11) in Tgm2-/- bone marrow flushes, bone marrow macrophages, and osteoclasts, showed a significant increase in total TG activity and TG1 activity. Factor XIII-A activity was unchanged. Aspartate proteases, such as cathepsins, are involved in the degradation of organic bone matrix and can be produced by osteoclasts. Moreover, Cathepsin D was shown in previous work to be increased in TG2-null cells and is known to activate TG1. We show that Pepstatin A, an aspartate protease inhibitor, blocks osteoclastogenesis in wild-type and Tgm2-/- cells and decreases TG1 activity in Tgm2-/- osteoclasts. Cathepsin D protein levels were unaltered in Tgm2-/-cells and its activity moderately but significantly increased. Tgm2-/- and Tgm2+/+ bone marrow macrophages and osteoclasts also expressed Cathepsin E, and Renin of the aspartate protease family, suggesting their potential involvement in this process. Our study brings further support to the observation that TGs are significant regulators of osteoclastogenesis and that the absence of TG2 can cause increased activity of other TGs, such as TG1.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Faculty of Medicine and Health Sciences (Division of Experimental Medicine), McGill University, Montreal, QC H3A 0C7, Canada
| | - Mari T. Kaartinen
- Faculty of Medicine and Health Sciences (Division of Experimental Medicine), McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences), McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
4
|
Yang Z, Zhang X, Zhuo F, Liu T, Luo Q, Zheng Y, Li L, Yang H, Zhang Y, Wang Y, Liu D, Tu P, Zeng K. Allosteric Activation of Transglutaminase 2 via Inducing an "Open" Conformation for Osteoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206533. [PMID: 37088726 PMCID: PMC10288273 DOI: 10.1002/advs.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/04/2023] [Indexed: 05/03/2023]
Abstract
Osteoblasts play an important role in the regulation of bone homeostasis throughout life. Thus, the damage of osteoblasts can lead to serious skeletal diseases, highlighting the urgent need for novel pharmacological targets. This study introduces chemical genetics strategy by using small molecule forskolin (FSK) as a probe to explore the druggable targets for osteoporosis. Here, this work reveals that transglutaminase 2 (TGM2) served as a major cellular target of FSK to obviously induce osteoblast differentiation. Then, this work identifies a previously undisclosed allosteric site in the catalytic core of TGM2. In particular, FSK formed multiple hydrogen bonds in a saddle-like domain to induce an "open" conformation of the β-sandwich domain in TGM2, thereby promoting the substrate protein crosslinks by incorporating polyamine. Furthermore, this work finds that TGM2 interacted with several mitochondrial homeostasis-associated proteins to improve mitochondrial dynamics and ATP production for osteoblast differentiation. Finally, this work observes that FSK effectively ameliorated osteoporosis in the ovariectomy mice model. Taken together, these findings show a previously undescribed pharmacological allosteric site on TGM2 for osteoporosis treatment, and also provide an available chemical tool for interrogating TGM2 biology and developing bone anabolic agent.
Collapse
Affiliation(s)
- Zhuo Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Xiao‐Wen Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fang‐Fang Zhuo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ting‐Ting Liu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Qian‐Wei Luo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yong‐Zhe Zheng
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yi‐Chi Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yan‐Hang Wang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Dan Liu
- Proteomics LaboratoryMedical and Healthy Analytical CenterPeking University Health Science CenterBeijing100191China
| | - Peng‐Fei Tu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ke‐Wu Zeng
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
5
|
Hu Y, Huang J, Chen C, Wang Y, Hao Z, Chen T, Wang J, Li J. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J Funct Biomater 2022; 14:18. [PMID: 36662065 PMCID: PMC9864083 DOI: 10.3390/jfb14010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bone homeostasis (a healthy bone mass) is regulated by maintaining a delicate balance between bone resorption and bone formation. The regulation of physiological bone remodeling by a complex system that involves multiple cells in the skeleton is closely related to bone homeostasis. Loss of bone mass or repair of bone is always accompanied by changes in bone homeostasis. However, due to the complexity of bone homeostasis, we are currently unable to identify all the mechanisms that affect bone homeostasis. To date, bone macrophages have been considered a third cellular component in addition to osteogenic spectrum cells and osteoclasts. As confirmed by co-culture models or in vivo experiments, polarized or unpolarized macrophages interact with multiple components within the bone to ensure bone homeostasis. Different macrophage phenotypes are prone to resorption and formation of bone differently. This review comprehensively summarizes the mechanisms by which macrophages regulate bone homeostasis and concludes that macrophages can control bone homeostasis from osteoclasts, mesenchymal cells, osteoblasts, osteocytes, and the blood/vasculature system. The elaboration of these mechanisms in this narrative review facilitates the development of macrophage-based strategies for the treatment of bone metabolic diseases and bone defects.
Collapse
Affiliation(s)
- Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200000, China
| | - Chunying Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
6
|
Chen J, Song D, Xu Y, Wu L, Tang L, Su Y, Xie X, Zhao J, Xu J, Liu Q. Anti-Osteoclast Effect of Exportin-1 Inhibitor Eltanexor on Osteoporosis Depends on Nuclear Accumulation of IκBα–NF-κB p65 Complex. Front Pharmacol 2022; 13:896108. [PMID: 36110547 PMCID: PMC9468713 DOI: 10.3389/fphar.2022.896108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis affects around 200 million people globally, with menopausal women accounting for the bulk of cases. In the occurrence and development of osteoporosis, a key role is played by osteoclasts. Excessive osteoclast-mediated bone resorption activity reduces bone mass and increases bone fragility, resulting in osteoporosis. Thus, considerable demand exists for designing effective osteoporosis treatments based on targeting osteoclasts. Eltanexor (Elt; KPT-8602) is a selective nuclear-export inhibitor that covalently binds to and blocks the function of the nuclear-export protein exportin-1 (XPO1), which controls the nucleus-to-cytoplasm transfer of certain critical proteins related to growth regulation and tumor suppression, such as p53, IκBα [nuclear factor-κB (NF-κB) inhibitor α] and FOXO1; among these proteins, IκBα, a critical component of the NF-κB signaling pathway that primarily governs NF-κB activation and transcription. How Elt treatment affects osteoclasts remains poorly elucidated. Elt inhibited the growth and activity of RANKL-induced osteoclasts in vitro in a dose-dependent manner, and Elt exerted no cell-killing effect within the effective inhibitory concentration. Mechanistically, Elt was found to trap IκBα in the nucleus and thus protect IκBα from proteasome degradation, which resulted in the blocking of the translocation of IκBα and NF-κB p65 and the consequent inhibition of NF-κB activity. The suppression of NF-κB activity, in turn, inhibited the activity of two transcription factors (NFATc1 and c-Fos) essential for osteoclast formation and led to the downregulation of genes and proteins related to bone resorption. Our study thus provides a newly identified mechanism for targeting in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Junchun Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - YuanGang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoxiao Xie
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Qian Liu, ; Jiake Xu,
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Qian Liu, ; Jiake Xu,
| |
Collapse
|
7
|
Tereticornate A suppresses RANKL-induced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways. Biomed Pharmacother 2022; 151:113140. [PMID: 35605290 DOI: 10.1016/j.biopha.2022.113140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Excessive osteoclast differentiation and activation are closely associated with the development and progression of osteoporosis. Natural plant-derived compounds that can inhibit osteoclastogenesis are an efficient strategy for the prevention and treatment of osteoporosis. Tereticornate A (TA) is a natural terpene ester compound extracted from the leaves and branches of Eucalyptus gracilis, with antiviral, antibacterial, and anti-inflammatory activities. However, the effect of TA on osteoclastogenesis and the underlying molecular mechanism remain unclear. Based on the key role of the NF-κB pathway in the regulation of osteoclastogenesis and the observation that TA exhibits an anti-inflammatory effect by inhibiting NF-κB activity, we speculated that TA could exert anti-osteoclastogenesis activity. Herein, TA could inhibit the RANKL-induced osteoclast differentiation and formation of F-actin rings in RAW 264.7 cells. Mechanistically, TA downregulated the expression of c-Src and TRAF6, and also suppressed the RANKL-stimulated canonical RANK signaling pathways, including AKT, MAPK (p38, JNK, and ERK), and NF-κB; ultimately, downregulating the expression of NFATc1 and c-Fos, the key transcriptional factors required for the expression of genes (e.g., TRAP, cathepsin K, β-Integrin, MMP-9, ATP6V0D2, and DC-STAMP) that govern osteoclastogenesis. Our findings demonstrated that TA could effectively inhibit RANKL-induced osteoclastogenesis via the downregulation of c-Src and TRAF6 and the inhibition of RANK signaling pathways. Thus, TA could serve as a novel osteoclastogenesis inhibitor and might have beneficial effects on bone health.
Collapse
|
8
|
Abstract
Hemophilia is caused by a lack of antihemophilic factor(s), for example, factor VIII (FVIII; hemophilia A) and factor IX (FIX; hemophilia B). Low bone mass is widely reported in epidemiological studies of hemophilia, and patients with hemophilia are at an increased risk of fracture. The detailed etiology of bone homeostasis imbalance in hemophilia is unclear. Clinical and experimental studies show that FVIII and FIX are involved in bone remodeling. However, it is likely that antihemophilic factors affect bone biology through thrombin pathways rather than via their own intrinsic properties. In addition, among patients with hemophilia, there are pathophysiological processes in several systems that might contribute to bone loss. This review summarizes studies on the association between hemophilia and bone remodeling, and might shed light on the challenges facing the care and prevention of osteoporosis and fracture in patients with hemophilia.
Collapse
Affiliation(s)
- Hanshi Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
9
|
Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21:ijms21165685. [PMID: 32784443 PMCID: PMC7461040 DOI: 10.3390/ijms21165685] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multinucleation is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable bone resorption. Our understanding of the molecular mechanisms underlying osteoclast multinucleation has advanced considerably in this century, especially since the identification of DC-STAMP and OC-STAMP as “master fusogens”. Regarding the molecules and pathways surrounding these STAMPs, however, only limited progress has been made due to the absence of their ligands. Various molecules and mechanisms other than the STAMPs are involved in osteoclast multinucleation. In addition, several preclinical studies have explored chemicals that may be able to target osteoclast multinucleation, which could enable us to control pathogenic bone metabolism more precisely. In this review, we will focus on recent discoveries regarding the STAMPs and other molecules involved in osteoclast multinucleation.
Collapse
|
10
|
Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. J Oral Biosci 2020; 62:123-130. [PMID: 32081710 DOI: 10.1016/j.job.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Periodontitis is the inflammation of the tooth-supporting structures and is one of the most common diseases of the oral cavity. The outcome of periodontal infections is tooth loss due to a lack of alveolar bone support. Osteoclasts are giant, multi-nucleated, and bone-resorbing cells that are central for many osteolytic diseases, including periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) is the principal factor involved in osteoclast differentiation, activation, and survival. However, under pathological conditions, a variety of pro-inflammatory cytokines secreted by activated immune cells also contribute to osteoclast differentiation and activity. Lipopolysaccharide (LPS) is a vital component of the outer membrane of the Gram-negative bacteria. It binds to the Toll-like receptors (TLRs) expressed in many cells and elicits an immune response. HIGHLIGHTS The presence of bacterial LPS in the periodontal area stimulates the secretion of RANKL as well as other inflammatory mediators, activating the process of osteoclastogenesis. RANKL, either independently or synergistically with LPS, can regulate osteoclastogenesis, while LPS alone cannot. MicroRNA, IL-22, M1/M2 macrophages, and memory B cells have recently been shown to modulate osteoclastogenesis in periodontal diseases. CONCLUSION In this review, we summarize the mechanism of osteoclastogenesis accompanying periodontal diseases at the cellular level. We discuss a) the effects of LPS/TLR signaling and other cytokines on RANKL-dependent and -independent mechanisms involved in osteoclastogenesis; b) the recently identified role of several endogenous factors such as miRNA, IL-22, M1/M2 macrophages, and memory B cells in regulating osteoclastogenesis during periodontal pathogenesis.
Collapse
|
11
|
AlQranei MS, Aljohani H, Majumdar S, Senbanjo LT, Chellaiah MA. C-phycocyanin attenuates RANKL-induced osteoclastogenesis and bone resorption in vitro through inhibiting ROS levels, NFATc1 and NF-κB activation. Sci Rep 2020; 10:2513. [PMID: 32054921 PMCID: PMC7018981 DOI: 10.1038/s41598-020-59363-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone loss occurs in inflammatory disorders such as periodontitis and osteoporosis. The underlying mechanism is related to the differentiation of macrophages into multinucleated giant osteoclasts and their bone resorptive activity. C-Phycocyanin (C-PC) is a phycobiliprotein extracted from the blue-green algae, which has been shown to have various pharmacological effects. The role of C-PC on bone metabolism needs revelation. In this study, we determined the effectiveness of C-PC as an inhibitor of osteoclast differentiation, activity, and survival in vitro. We found that C-PC strongly inhibited the differentiation of macrophages to TRAP-positive osteoclasts, distinctive osteoclast specific podosomal organization, and dentine matrix resorption without any cytotoxicity. Also, it suppressed the expression of osteoclast specific markers, such as cathepsin K and integrin β3 at mRNA and protein levels. RANKL mediated signaling utilizes reactive oxygen species (ROS) for the differentiation of osteoclasts. C-PC attenuated RANKL stimulated ROS. Mechanistic studies indicate that C-PC has the potential to reduce osteoclast formation via blocking the degradation of cytosolic IκB-α and hence, the activation of downstream markers such as c-Fos and NFATc1. However, it does not have any effect on osteoblast-mediated bone formation in vitro. Collectively, our data suggest that C-PC may be utilized as a therapeutic agent that can target bone loss mediated by excessive osteoclastic bone resorption without affecting osteoblastic activity in bone.
Collapse
Affiliation(s)
- Mohammed S AlQranei
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Preventive Dental Sciences Department, School of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Oral Medicine and Diagnostics Sciences, King Saud University, School of Dentistry, Riyadh, Saudi Arabia
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
12
|
Liu J, Tang Y, Yang W, Tao B, He Y, Shen X, Shen T, Lin C, Cai K. Functionalization of titanium substrate with multifunctional peptide OGP-NAC for the regulation of osteoimmunology. Biomater Sci 2019; 7:1463-1476. [PMID: 30666999 DOI: 10.1039/c8bm01611a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immune response to an orthopedic implant is closely related to the nearby bone metabolism balance. To modify titanium (Ti) substrates and accordingly regulate the balance between osteoclast activation and osteoblast differentiation, a multifunctional peptide OGP-NAC was synthesized via conjugating an osteogenic growth peptide (OGP) with N-acetylcysteine (NAC). Then, the synthesized peptide was employed to functionalize Ti substrates and the response of both osteoblasts and osteoclasts was investigated in vitro. The results showed that OGP-NAC was successfully prepared and immobilized onto Ti substrate surfaces. Thereafter, studies on introducing RAW 264.7 cells (one kind of monocyte macrophage responsible for immune responses) to osteoclasts demonstrated that the peptide modified Ti surface could inhibit RAW 264.7 cells from secreting important inflammatory cytokines (TNF-α and IL-1β), and suppress the activation of MAPK, NF-κB and NFAT c1, which are important transcription factors for osteoclastogenesis. Meanwhile, the modified surface promoted osteoblast spreading, proliferation and differentiation. The study offers a feasible strategy to mediate the balance between osteoclast activation and osteoblast differentiation, having great potential for improving osseointegration of an orthopedic implant.
Collapse
Affiliation(s)
- Ju Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sun H, Kaartinen MT. Transglutaminases in Monocytes and Macrophages. ACTA ACUST UNITED AC 2018; 6:medsci6040115. [PMID: 30545030 PMCID: PMC6313455 DOI: 10.3390/medsci6040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages. Transglutaminases (TGs) are a family of structurally and functionally related enzymes with Ca2+-dependent transamidation and deamidation activity. Numerous studies have shown that TGs, particularly TG2 and Factor XIII-A, are extensively involved in monocyte- and macrophage-mediated physiological and pathological processes. In the present review, we outline the current knowledge of the role of TGs in the adhesion and extravasation of monocytes, the expression of TGs during macrophage differentiation, and the regulation of TG2 expression by various pro- and anti-inflammatory mediators in macrophages. Furthermore, we summarize the role of TGs in macrophage phagocytosis and the understanding of the mechanisms involved. Finally, we review the roles of TGs in tissue-specific macrophages, including monocytes/macrophages in vasculature, alveolar and interstitial macrophages in lung, microglia and infiltrated monocytes/macrophages in central nervous system, and osteoclasts in bone. Based on the studies in this review, we conclude that monocyte- and macrophage-derived TGs are involved in inflammatory processes in these organs. However, more in vivo studies and clinical studies during different stages of these processes are required to determine the accurate roles of TGs, their substrates, and the mechanisms-of-action.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
14
|
Zheng C, Shi X. Cysteinyl leukotriene receptor 1 (cysLT1R) regulates osteoclast differentiation and bone resorption. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S64-S70. [PMID: 30183378 DOI: 10.1080/21691401.2018.1489264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Excessive bone resorption induced by abnormal osteoclast differentiation has been associated with bone microstructure damage and bone-associated disorders, including osteoporosis. Here, we investigated the physiological roles of the type 1 cysteinyl leukotriene receptor (cysLTR-1) and the pharmacological functions of the specific cysLTR-1 antagonist montelukast on M-CSF- and RANKL-induced osteoclast differentiation. We showed that cysLTR-1 but not cysLTR-2 is expressed in osteoclast precursor cells: mouse bone marrow-derived macrophages (BMMs). We also found that treatment with M-CSF and RANKL significantly increased expression of cysLTR-1. Overexpression of cysLTR-1 promoted osteoclast differentiation of BMMs by increasing NFATc1 and TRAP. In contrast, treatment with montelukast prevented M-CSF- and RANKL-induced osteoclast differentiation of BMMs. Mechanically, our findings demonstrate that montelukast treatment attenuated activation of the ERK1/2, p38, JNK and NF-κB signalling pathways. Additionally, we reported that montelukast treatment ameliorated the generation of ROS and calcium signalling. Importantly, the co-immunoprecipitation assay displayed that montelukast treatment prevented the interaction of RANK and TRAF6. Finally, in vivo experiments indicated that montelukast rescued the reduction of bone volume as well as trabecular number in an ovariectomy mouse model.
Collapse
Affiliation(s)
- Chao Zheng
- a Department of Reparative and Reconstructive Surgery , Linyi People's Hospital , Linyi , Shandong , China
| | - Xiaoming Shi
- b Department of Stomatology , Linyi People's Hospital , Linyi , Shandong , China
| |
Collapse
|
15
|
Chaweewannakorn W, Ariyoshi W, Okinaga T, Fujita Y, Maki K, Nishihara T. Ameloblastin attenuates RANKL-mediated osteoclastogenesis by suppressing activation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1). J Cell Physiol 2018; 234:1745-1757. [PMID: 30105896 DOI: 10.1002/jcp.27045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023]
Abstract
Ameloblastin (Ambn) is an extracellular matrix protein and member of the family of enamel-related gene products. Like amelogenin, Ambn is mainly associated with tooth development, especially biomineralization of enamel. Previous studies have shown reductions in the skeletal dimensions of Ambn-deficient mice, suggesting that the protein also has effects on the differentiation of osteoblasts and/or osteoclasts. However, the specific pathways used by Ambn to influence osteoclast differentiation have yet to be identified. In the present study, two cellular models, one based on bone marrow cells and another on RAW264.7 cells, were used to examine the effects of Ambn on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The results showed that Ambn suppresses osteoclast differentiation, cytoskeletal organization, and osteoclast function by the downregulation of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, actin ring formation, and areas of pit resorption. The expression of the osteoclast-specific genes TRAP, MMP9, cathepsin K, and osteoclast stimulatory transmembrane protein (OC-STAMP) was abolished in the presence of Ambn, while that of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), the master regulatory factor of osteoclastogenesis, was also attenuated by the downregulation of c-Fos expression. In Ambn-induced RAW264.7 cells, phosphorylation of cAMP-response element-binding protein (CREB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was reduced. Calcium oscillation was also decreased in the presence of Ambn, suggesting its involvement in both RANKL-induced osteoclastogenesis and costimulatory signaling. B-lymphocyte-induced maturation protein-1 (Blimp1), a transcriptional repressor of negative regulators of osteoclastogenesis, was also downregulated by Ambn, resulting in the elevated expression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB), B-cell lymphoma 6 (Bcl6), and interferon regulatory factor-8 (Irf8). Taken together, these findings suggest that Ambn suppresses RANKL-induced osteoclastogenesis by modulating the NFATc1 axis.
Collapse
Affiliation(s)
- Wichida Chaweewannakorn
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan.,Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Yuko Fujita
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Kenshi Maki
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
16
|
Mižíková I, Pfeffer T, Nardiello C, Surate Solaligue DE, Steenbock H, Tatsukawa H, Silva DM, Vadász I, Herold S, Pease RJ, Iismaa SE, Hitomi K, Seeger W, Brinckmann J, Morty RE. Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 2018; 285:3056-3076. [PMID: 29935061 DOI: 10.1111/febs.14596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
The generation, maturation and remodelling of the extracellular matrix (ECM) are essential for the formation of alveoli during lung development. Alveoli formation is disturbed in preterm infants that develop bronchopulmonary dysplasia (BPD), where collagen fibres are malformed, and perturbations to lung ECM structures may underlie BPD pathogenesis. Malformed ECM structures might result from abnormal protein cross-linking, in part attributable to the increased expression and activity of transglutaminase 2 (TGM2) that have been noted in affected patient lungs, as well as in hyperoxia-based BPD animal models. The objective of the present study was to assess whether TGM2 plays a causal role in normal and aberrant lung alveolarization. Targeted deletion of Tgm2 in C57BL/6J mice increased septal thickness and reduced gas-exchange surface area in otherwise normally developing lungs. During aberrant lung alveolarization that occurred under hyperoxic conditions, collagen structures in Tgm2-/- mice were partially protected from the impact of hyperoxia, where normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance was restored; however, the lung alveolar architecture remained abnormal. Inhibition of transglutaminases (including TGM2) with cysteamine appreciably reduced transglutaminase activity in vivo, as assessed by Nε -(γ-l-glutamyl)-l-lysine abundance and TGM catalytic activity, and restored normal dihydroxylysinonorleucine and hydroxylysylpiridinoline collagen cross-link abundance under pathological conditions. Furthermore, a moderate improvement in alveoli size and gas-exchange surface density was noted in cysteamine-treated mouse lungs in which BPD was modelled. These data indicate that TGM2 plays a role in normal lung alveolarization, and contributes to the formation of aberrant ECM structures during disordered lung alveolarization.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Diogo M Silva
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Richard J Pease
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Japan
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Germany.,Department of Dermatology, University of Lübeck, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Giessen, Germany, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
17
|
Sun H, Kaartinen MT. Transglutaminase activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics. J Cell Physiol 2018; 233:7497-7513. [PMID: 29663380 DOI: 10.1002/jcp.26603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Osteoclasts, bone resorbing cells, derive from monocyte/macrophage cell lineage. Increased osteoclast activity is responsible for bone destruction in diseases such as osteoporosis, periodontitis and rheumatoid arthritis. Transglutaminases (TGs), protein crosslinking enzymes, were recently found involved in osteoclastogenesis in vivo, however their mechanisms of action have remained unknown. In this study, we have investigated the role of TG activity in osteoclastogenesis in vitro using four TG inhibitors, NC9, Z006, T101, and monodansyl cadaverine. Our results showed that all TG inhibitors were capable of blocking the entire osteoclastogenesis process. The most potent of the inhibitors, NC9 when added to cultures at different phases of osteoclastogenesis, inhibited differentiation, migration, and fusion of pre-osteoclasts as well as resorption activity of mature osteoclasts. Further investigation into the mechanisms revealed that NC9 increased RhoA levels and blocked podosome belt formation suggesting that TG activity regulates actin dynamics in pre-osteoclasts. The inhibitory effect of NC9 on osteoclastogenesis as well as podosome belt formation was completely reversed with a Rho-family inhibitor Exoenzyme C3. Microtubule architecture, acetylation, and detyrosination of α-tubulin were not affected. Finally, we demonstrated that macrophages and osteoclasts expressed mRNA of three TGs:TG1, TG2, and Factor XIII-A which were all differentially regulated in these cells during differentiation. Immunofluoresence microscopic analysis showed that all three enzymes co-localized to podosomes in osteoclasts. Taken together, our data suggests that TG activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics and that this may involve contribution from all three TG enzymes.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|