1
|
Jiang B, Zhang Y, Li G, Quan Y, Shu J, Feng H, He Y. Research Progress on Immune Evasion of Mycoplasma hyopneumoniae. Microorganisms 2024; 12:1439. [PMID: 39065207 PMCID: PMC11279058 DOI: 10.3390/microorganisms12071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
As the main pathogen associated with enzootic pneumonia (EP), Mycoplasma hyopneumoniae (Mhp) is globally prevalent and inflicts huge financial losses on the worldwide swine industry each year. However, the pathogenicity of Mhp has not been fully explained to date. Mhp invasion usually leads to long-term chronic infection and persistent lung colonization, suggesting that Mhp has developed effective immune evasion strategies. In this review, we offer more detailed information than was previously available about its immune evasion mechanisms through a systematic summary of the extant findings. Genetic mutation and post-translational protein processing confer Mhp the ability to alter its surface antigens. With the help of adhesins, Mhp can achieve cell invasion. And Mhp can modulate the host immune system through the induction of inflammation, incomplete autophagy, apoptosis, and the suppression of immune cell or immune effector activity. Furthermore, we offer the latest views on how we may treat Mhp infections and develop novel vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.J.); (Y.Z.); (G.L.); (Y.Q.); (J.S.); (H.F.)
| |
Collapse
|
2
|
Zhra M, Qasem RJ, Aldossari F, Saleem R, Aljada A. A Comprehensive Exploration of Caspase Detection Methods: From Classical Approaches to Cutting-Edge Innovations. Int J Mol Sci 2024; 25:5460. [PMID: 38791499 PMCID: PMC11121653 DOI: 10.3390/ijms25105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Rani J. Qasem
- Department of Pharmacology and Pharmacy Practice, College of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fai Aldossari
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Rimah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
3
|
Souza dos Santos P, Paes JA, Del Prá Netto Machado L, Paludo GP, Zaha A, Ferreira HB. Differential domains and endoproteolytic processing in dominant surface proteins of unknown function from Mycoplasma hyopneumoniae and Mycoplasma flocculare. Heliyon 2023; 9:e16141. [PMID: 37251846 PMCID: PMC10213202 DOI: 10.1016/j.heliyon.2023.e16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Mycoplasma hyopneumoniae causes porcine enzootic pneumonia (PEP), a chronic respiratory disease that leads to severe economic losses in the pig industry. Swine infection and PEP development depend on the adhesion of the pathogen to the swine respiratory tract and the host immune response, but these and other disease determinants are not fully understood. For instance, M. hyopneumoniae has a large repertoire of proteins of unknown function (PUFs) and some of them are abundant in the cell surface, where they likely mediate so far unknown pathogen-host interactions. Moreover, these surface PUFs may undergo endoproteolytic processing to generate larger repertoires of proteoforms to further complicate this scenario. Here, we investigated the five PUFs more represented on the surface of M. hyopneumoniae pathogenic strain 7448 in comparison with their orthologs from the nonpathogenic M. hyopneumoniae J strain and the closely related commensal species Mycoplasma flocculare. Comparative in silico analyses of deduced amino acid sequences and proteomic data identified differential domains, disordered regions and repeated motifs. We also provide evidence of differential endoproteolytic processing and antigenicity. Phylogenetic analyses were also performed with ortholog sequences, showing higher conservation of three of the assessed PUFs among Mycoplasma species related to respiratory diseases. Overall, our data point out to M. hyopneumoniae surface-dominant PUFs likely associated with pathogenicity.
Collapse
Affiliation(s)
- Priscila Souza dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
4
|
Zhao G, Lu D, Wang S, Zhang H, Zhu X, Hao Z, Dawood A, Chen Y, Schieck E, Hu C, Chen X, Yang L, Guo A. Novel mycoplasma nucleomodulin MbovP475 decreased cell viability by regulating expression of CRYAB and MCF2L2. Virulence 2022; 13:1590-1613. [PMID: 36121023 PMCID: PMC9487752 DOI: 10.1080/21505594.2022.2117762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleomodulins are secreted bacterial proteins whose molecular targets are located in host cell nuclei. They are gaining attention as critical virulence factors that either modify the epigenetics of host cells or directly regulate host gene expression. Mycoplasma bovis is a major veterinary pathogen that secretes several potential virulence factors. The aim of this study was to determine whether any of their secreted proteins might function as nucleomodulins. After an initial in silico screening, the nuclear localization of the secreted putative lipoprotein MbovP475 of M. bovis was demonstrated in bovine macrophage cell line (BoMac) experimentally infected with M. bovis. Through combined application of ChIP-seq, Electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) analysis, MbovP475 was determined to bind the promoter regions of the cell cycle central regulatory genes CRYAB and MCF2L2. MbovP475 has similar secondary structures with the transcription activator-like effectors (TALEs). Screening of various mutants affecting the potential DNA binding sites indicated that the residues 242NI243 within MbovP475 loop region of the helix-loop-helix domain were essential to its DNA binding activity, thereby contributing to decrease in BoMac cell viability. In conclusion, this is the first report to confirm M. bovis secretes a conserved TALE-like nucleomodulin that binds the promoters of CRYAB and MCF2L2 genes, and subsequently down-regulates their expression and decreases BoMac cell viability. Therefore, this study offers a new understanding of mycoplasma pathogenesis.
Collapse
Affiliation(s)
- Gang Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shujuan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ali Dawood
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China.,International Livestock Research Institute, Nairobi, Kenya
| | - Elise Schieck
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Pan Q, Xu Q, Liu T, Zhang Y, Xin J. Mycoplasma hyopneumoniae
membrane protein Mhp271 interacts with host
UPR
protein
GRP78
to facilitate infection. Mol Microbiol 2022; 118:208-222. [PMID: 35791781 PMCID: PMC9542919 DOI: 10.1111/mmi.14963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/03/2022]
Abstract
The unfolded protein response (UPR) plays a crucial role in Mycoplasma hyopneumoniae (M. hyopneumoniae) pathogenesis. We previously demonstrated that M. hyopneumoniae interferes with the host UPR to foster bacterial adhesion and infection. However, the underlying molecular mechanism of this UPR modulation is unclear. Here, we report that M. hyopneumoniae membrane protein Mhp271 interacts with host GRP78, a master regulator of UPR localized to the porcine tracheal epithelial cells (PTECs) surface. The interaction of Mhp271 with GRP78 reduces the porcine beta‐defensin 2 (PBD‐2) production, thereby facilitating M. hyopneumoniae adherence and infection. Furthermore, the R1‐2 repeat region of Mhp271 is crucial for GRP78 binding and the regulation of PBD‐2 expression. Intriguingly, a coimmunoprecipitation (Co‐IP) assay and molecular docking prediction indicated that the ATP, rather than the substrate‐binding domain of GRP78, is targeted by Mhp271 R1‐2. Overall, our findings identify host GRP78 as a target for M. hyopneumoniae Mhp271 modulating the host UPR to facilitate M. hyopneumoniae adherence and infection.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Qingyuan Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Tong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yujuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| |
Collapse
|
6
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. PLANT PHYSIOLOGY 2022; 189:152-164. [PMID: 35043947 PMCID: PMC9070848 DOI: 10.1093/plphys/kiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N-termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both NE and chromatophore-encoded (CE) fractions of the chromatophore proteome. Mature N-termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 aa (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived posttranslationally acting factors involved in regulation of the CE chromatophore proteome.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
8
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
9
|
Hao F, Xie X, Feng Z, Chen R, Wei Y, Liu J, Xiong Q, Shao G, Lin J. NADH oxidase of Mycoplasma hyopneumoniae functions as a potential mediator of virulence. BMC Vet Res 2022; 18:126. [PMID: 35366872 PMCID: PMC8976378 DOI: 10.1186/s12917-022-03230-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Mycoplasma hyopneumoniae (M. hyopneumoniae) is the etiological agent of enzootic pneumonia, a highly infectious swine respiratory disease that distributed worldwide. The pathogenesis and virulence factors of M. hyopneumoniae are not fully clarified. As an important virulence factor of bacteria, nicotinamide adenine dinucleotide (NADH) oxidase (NOX) participates in host-pathogen interaction, however, the function of NOX involved in the pathogenesis of M. hyopneumoniae is not clear. Results In this study, significant differences in NOX transcription expression levels among different strains of M. hyopneumoniae differed in virulence were identified, suggesting that NOX may be correlated with M. hyopneumoniae virulence. The nox gene of M. hyopneumoniae was cloned and expressed in Escherichia coli, and polyclonal antibodies against recombinant NOX (rNOX) were prepared. We confirmed the enzymatic activity of rNOX based on its capacity to oxidize NADH to NAD+. Flow cytometry analysis demonstrated the surface localization of NOX, and subcellular localization analysis further demonstrated that NOX exists in both the cytoplasm and cell membrane. rNOX was depicted to mediate adhesion to immortalized porcine bronchial epithelial cells (hTERT-PBECs). Pre-neutralizing M. hyopneumoniae with anti-rNOX antibody resulted in a more than 55% reduction in the adhesion rate of high- and low-virulence M. hyopneumoniae strains to hTERT-PBECs. Moreover, a significant difference appeared in the decline in CCU50 titer between virulent (168) and virulence-attenuated (168L) strains. NOX not only recognized and interacted with host fibronectin but also induced cellular oxidative stress and apoptosis in hTERT-PBECs. The release of lactate dehydrogenase by NOX in hTERT-PBECs was positively correlated with the virulence of M. hyopneumoniae strains. Conclusions NOX is considered to be a potential virulence factor of M. hyopneumoniae and may play a significant role in mediating its pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03230-7.
Collapse
|
10
|
Wang J, Yu Y, Li Y, Li S, Wang L, Wei Y, Wu Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. A multifunctional enolase mediates cytoadhesion and interaction with host plasminogen and fibronectin in Mycoplasma hyorhinis. Vet Res 2022; 53:26. [PMID: 35337383 PMCID: PMC8951703 DOI: 10.1186/s13567-022-01041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma hyorhinis may cause systemic inflammation of pigs, typically polyserositis and arthritis, and is also associated with several types of human cancer. However, the pathogenesis of M. hyorhinis colonizing and breaching the respiratory barrier to establish systemic infection is poorly understood. Glycolytic enzymes are important moonlighting proteins and virulence-related factors in various bacteria. In this study, we investigated the functions of a glycolytic critical enzyme, enolase in the infection and systemic spread of M. hyorhinis. Bacterial surface localization of enolase was confirmed by flow cytometry and colony hybridization assay. Recombinant M. hyorhinis enolase (rEno) was found to adhere to pig kidney (PK-15) cells, and anti-rEno serum significantly decreased adherence. The enzyme was also found to bind host plasminogen and fibronectin, and interactions were specific and strong, with dissociation constant (KD) values of 1.4 nM and 14.3 nM, respectively, from surface plasmon resonance analysis. Activation of rEno-bound plasminogen was confirmed by its ability to hydrolyze plasmin-specific substrates and to degrade a reconstituted extracellular matrix. To explore key sites during these interactions, C-terminal lysine residues of enolase were replaced with leucine, and the resulting single-site and double-site mutants show significantly reduced interaction with plasminogen in far-Western blotting and surface plasmon resonance tests. The binding affinities of all mutants to fibronectin were reduced as well. Collectively, these results imply that enolase moonlights as an important adhesin of M. hyorhinis, and interacts with plasminogen and fibronectin. The two lysine residues in the C-terminus are important binding sites for its multiple binding activities.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shiyang Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Li Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yuzi Wu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
11
|
Li J, Wang J, Shao J, Li Y, Yu Y, Shao G, Feng Z, Xiong Q. The variable lipoprotein family participates in the interaction of Mycoplasma hyorhinis with host extracellular matrix and plasminogen. Vet Microbiol 2021; 265:109310. [PMID: 34954543 DOI: 10.1016/j.vetmic.2021.109310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/27/2022]
Abstract
Mycoplasma hyorhinis (Mhr) infects pigs, typically causing polyserositis and polyarthritis. It has also been reported in various human tumors. The variable lipoprotein (Vlp) family is a vital surface component mediating the immune evasion of Mhr. We have previously reported its functions in the adherence of Mhr to pig cells. Herein, we further evaluated its role in interacting with host extracellular matrix (ECM) components (fibronectin, collagen type Ⅳ and laminin) and plasminogen. Consequently, the recombinant Vlp proteins of all the seven members (VlpA-VlpG) were able to bind most of the tested host molecules. Further experiment showed that region Ⅱ of all Vlp members has a strong binding ability, while the binding ability of region Ⅲ of each member varied between different host molecules. Comparing the Vlps containing short (rVlpX3) or long (rVlpX12) region Ⅲ, we found that the ability of most Vlps binding NCI-H292 cell membrane proteins became weaker as the molecule grows, except VlpG. However, the binding of VlpA, VlpB, VlpC and VlpG to tested ECM components and plasminogen tended to increase as Vlps became longer, and those of VlpE and VlpF decreased, and that of VlpD did not change. Furthermore, the activation of Vlp-bound plasminogen was proved. In summary, the Vlp family participates in the interaction of Mhr with host ECM and plasminogen in addition to cytoadhesion. The size variation of Vlps is likely to further regulate these interactions. The results may help to elucidate the roles of Vlps in the persistent infection of Mhr.
Collapse
Affiliation(s)
- Jun Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| | - Jia Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Yao Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Life Sciences, Jiangsu University, Zhenjiang, China.
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Life Sciences, Jiangsu University, Zhenjiang, China.
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
12
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
13
|
Wang J, Li Y, Pan L, Li J, Yu Y, Liu B, Zubair M, Wei Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation. Vet Res 2021; 52:80. [PMID: 34082810 PMCID: PMC8173509 DOI: 10.1186/s13567-021-00952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma hyorhinis infects pigs causing polyserositis and polyarthritis, and has also been reported in a variety of human tumor tissues. The occurrence of disease is often linked with the systemic invasion of the pathogen. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), one of the key enzymes of glycolysis, was reported as a surface multifunctional molecule in several bacteria. Here, we investigated whether GAPDH could manifest binary functions; as an adhesin to promote colonization as well as a plasminogen receptor functioning in extracellular matrix (ECM) degradation to promote systemic invasion. The surface localization of GAPDH was observed in M. hyorhinis with flow cytometry and colony blot analysis. Recombinant GAPDH (rGAPDH) was found to be able to bind porcine-derived PK-15 and human-derived NCI-H292 cells. The incubation with anti-GAPDH antibody significantly decreased the adherence of M. hyorhinis to both cell lines. To investigate its function in recruiting plasminogen, firstly, the interaction between rGAPDH and plasminogen was demonstrated by ELISA and Far-Western blot assay. The activation of the rGAPDH-bound plasminogen into plasmin was proved by using a chromogenic substrate, and furtherly confirmed to degrade extracellular matrix by using a reconstituted ECM. Finally, the ability of rGAPDH to bind different ECM components was demonstrated, including fibronectin, laminin, collagen type IV and vitronectin. Collectively, our data imply GAPDH as an important adhesion factor of M. hyrohinis and a receptor for hijacking host plasminogen to degrade ECM. The multifunction of GAPDH to bind both plasminogen and ECM components is believed to increase the targeting of proteolysis and facilitate the dissemination of M. hyorhinis.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Longji Pan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Muhammad Zubair
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
14
|
Frey AM, Chaput D, Shaw LN. Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. Cell Rep 2021; 35:108930. [PMID: 33826899 PMCID: PMC8054439 DOI: 10.1016/j.celrep.2021.108930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus possesses ten extracellular proteases with mostly unknown targets in the human proteome. To assist with bacterial protease target discovery, we have applied and compared two N-terminomics methods to investigate cleavage of human serum proteins by S. aureus V8 protease, discovering 85 host-protein targets. Among these are virulence-relevant complement, iron sequestration, clotting cascade, and host protease inhibitor proteins. Protein cleavage sites have been identified, providing insight into the disruption of host protein function by V8. Complement proteins are cleaved within peptidase and sushi domains, and host protease inhibitors are cleaved outside their protease-trapping motifs. Our data highlight the potential for further application of N-terminomics in discovery of bacterial protease substrates in other host niches and provide omics-scale insight into the role of the V8 protease in S. aureus pathogenesis. S. aureus-secreted proteases are central to disease causation, but the discovery of their host substrates has been limited. Frey et al. use N-terminomic approaches to uncover human serum targets of the V8 protease that are from virulence-relevant processes such as the host inflammatory network and nutrient sequestration.
Collapse
Affiliation(s)
- Andrew Michael Frey
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey Neil Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
15
|
Protein cleavage influences surface protein presentation in Mycoplasma pneumoniae. Sci Rep 2021; 11:6743. [PMID: 33762641 PMCID: PMC7990945 DOI: 10.1038/s41598-021-86217-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma pneumoniae is a significant cause of pneumonia and post infection sequelae affecting organ sites distant to the respiratory tract are common. It is also a model organism where extensive 'omics' studies have been conducted to gain insight into how minimal genome self-replicating organisms function. An N-terminome study undertaken here identified 4898 unique N-terminal peptides that mapped to 391 (56%) predicted M. pneumoniae proteins. True N-terminal sequences beginning with the initiating methionine (iMet) residue from the predicted Open Reading Frame (ORF) were identified for 163 proteins. Notably, almost half (317; 46%) of the ORFS derived from M. pneumoniae strain M129 are post-translationally modified, presumably by proteolytic processing, because dimethyl labelled neo-N-termini were characterised that mapped beyond the predicted N-terminus. An analysis of the N-terminome describes endoproteolytic processing events predominately targeting tryptic-like sites, though cleavages at negatively charged residues in P1' (D and E) with lysine or serine/alanine in P2' and P3' positions also occurred frequently. Surfaceome studies identified 160 proteins (23% of the proteome) to be exposed on the extracellular surface of M. pneumoniae. The two orthogonal methodologies used to characterise the surfaceome each identified the same 116 proteins, a 72% (116/160) overlap. Apart from lipoproteins, transporters, and adhesins, 93/160 (58%) of the surface proteins lack signal peptides and have well characterised, canonical functions in the cell. Of the 160 surface proteins identified, 134 were also targets of endo-proteolytic processing. These processing events are likely to have profound implications for how the host immune system recognises and responds to M. pneumoniae.
Collapse
|
16
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
17
|
Lavatelli F, Mazzini G, Ricagno S, Iavarone F, Rognoni P, Milani P, Nuvolone M, Swuec P, Caminito S, Tasaki M, Chaves-Sanjuan A, Urbani A, Merlini G, Palladini G. Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis. J Biol Chem 2020; 295:16572-16584. [PMID: 32952127 PMCID: PMC7864057 DOI: 10.1074/jbc.ra120.013461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/04/2020] [Indexed: 01/27/2023] Open
Abstract
Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy; Clinical Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Paolo Swuec
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Cryo-Electron Microscopy Facility, Human Technopole, Milan, Italy
| | - Serena Caminito
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Masayoshi Tasaki
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan; Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy; Clinical Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Li G, Obeng E, Shu J, Shu J, Chen J, Wu Y, He Y. Genomic Variability and Post-translational Protein Processing Enhance the Immune Evasion of Mycoplasma hyopneumoniae and Its Interaction With the Porcine Immune System. Front Immunol 2020; 11:510943. [PMID: 33117335 PMCID: PMC7575705 DOI: 10.3389/fimmu.2020.510943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is a geographically widespread and economically devastating pathogen that colonizes ciliated epithelium; the infection of Mhp can damnify the mucociliary functions as well as leading to Mycoplasma pneumonia of swine (MPS). MPS is a chronic respiratory infectious disease with high infectivity, and the mortality can be increased by secondary infections as the host immunity gets down-regulated during Mhp infection. The host immune responses are regarded as the main driving force for the disease development, while MPS is prone to attack repeatedly in farms even with vaccination or other treatments. As one of the smallest microorganisms with limited genome scale and metabolic pathways, Mhp can use several mechanisms to achieve immune evasion effect and derive enough nutrients from its host, indicating that there is a strong interaction between Mhp and porcine organism. In this review, we summarized the immune evasion mechanisms from genomic variability and post-translational protein processing. Besides, Mhp can induce the immune cells apoptosis by reactive oxygen species production, excessive nitric oxide (NO) release and caspase activation, and stimulate the release of cytokines to regulate inflammation. This article seeks to provide some new points to reveal the complicated interaction between the pathogen and host immune system with Mhp as a typical example, further providing some new strategies for the vaccine development against Mhp infection.
Collapse
Affiliation(s)
- Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Enoch Obeng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Hom-Sun Biosciences Co., Ltd., Shaoxing, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Guasch A, Montané J, Moros A, Piñol J, Sitjà M, González-González L, Fita I. Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:418-427. [PMID: 32355038 DOI: 10.1107/s2059798320003903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023]
Abstract
Mycoplasma hyopneumoniae is a prokaryotic pathogen that colonizes the respiratory ciliated epithelial cells in swine. Infected animals suffer respiratory lesions, causing major economic losses in the porcine industry. Characterization of the immunodominant membrane-associated proteins from M. hyopneumoniae may be instrumental in the development of new therapeutic approaches. Here, the crystal structure of P46, one of the main surface-antigen proteins, from M. hyopneumoniae is presented and shows N- and C-terminal α/β domains connected by a hinge. The structures solved in this work include a ligand-free open form of P46 (3.1 Å resolution) and two ligand-bound structures of P46 with maltose (2.5 Å resolution) and xylose (3.5 Å resolution) in open and closed conformations, respectively. The ligand-binding site is buried in the cleft between the domains at the hinge region. The two domains of P46 can rotate with respect to each other, giving open or closed alternative conformations. In agreement with this structural information, sequence analyses show similarities to substrate-binding members of the ABC transporter superfamily, with P46 facing the extracellular side as a functional subunit. In the structure with xylose, P46 was also bound to a high-affinity (Kd = 29 nM) Fab fragment from a monoclonal antibody, allowing the characterization of a structural epitope in P46 that exclusively involves residues from the C-terminal domain. The Fab structure in the complex with P46 shows only small conformational rearrangements in the six complementarity-determining regions (CDRs) with respect to the unbound Fab (the structure of which is also determined in this work at 1.95 Å resolution). The structural information that is now available should contribute to a better understanding of sugar nutrient intake by M. hyopneumoniae. This information will also allow the design of protocols and strategies for the generation of new vaccines against this important swine pathogen.
Collapse
Affiliation(s)
- Alicia Guasch
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Cientific, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | | | | - Jaume Piñol
- Departament de Bioquimica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universidad Autonoma de Bellaterra, 08193 Cerdanyola del Valles, Spain
| | | | | | - Ignasi Fita
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Cientific, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Widjaja M, Berry IJ, Jarocki VM, Padula MP, Dumke R, Djordjevic SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep 2020; 10:6384. [PMID: 32286369 PMCID: PMC7156367 DOI: 10.1038/s41598-020-63136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.
Collapse
Affiliation(s)
- Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Iain James Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica Maria Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Roger Dumke
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Steven Philip Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
21
|
Machado LDPN, Paes JA, Souza Dos Santos P, Ferreira HB. Evidences of differential endoproteolytic processing on the surfaces of Mycoplasma hyopneumoniae and Mycoplasma flocculare. Microb Pathog 2020; 140:103958. [PMID: 31899326 DOI: 10.1016/j.micpath.2019.103958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetic similar bacteria that colonize the swine respiratory tract. However, while M. hyopneumoniae is a pathogen that causes porcine enzootic pneumonia, M. flocculare is a commensal. Adhesion to the respiratory epithelium is mediated by surface-displayed adhesins, and at least some M. hyopneumoniae adhesins are post-translational proteolytically processed, producing differential proteoforms with differential adhesion properties. Based on LC-MS/MS data, we assessed differential proteolytic processing among orthologs of the five most abundant adhesins (p97 and p216) or adhesion-related surface proteins (DnaK, p46, and ABC transporter xylose-binding lipoprotein) from M. hyopneumoniae strains 7448 (pathogenic) and J (non-pathogenic), and M. flocculare. Both surface and cytoplasmic non-tryptic cleavage events were mapped and compared, and antigenicity predictions were performed for the resulting proteoforms. It was demonstrated that not only bona fide adhesins, but also adhesion-related proteins undergo proteolytical processing. Moreover, most of the detected cleavage events were differential among M. hyopneumoniae strains and M. flocculare, and also between cell surface and cytoplasm. Overall, our data provided evidences of a complex scenario of multiple antigenic proteoforms of adhesion-related proteins, that is differential among M. hyopneumoniae strains and M. flocculare, altering the surface architecture and likely contributing to virulence and pathogenicity.
Collapse
Affiliation(s)
- Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Souza Dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
22
|
Niedermaier S, Huesgen PF. Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140138. [DOI: 10.1016/j.bbapap.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
|
23
|
Proteases as Secreted Exoproteins in Mycoplasmas from Ruminant Lungs and Their Impact on Surface-Exposed Proteins. Appl Environ Microbiol 2019; 85:AEM.01439-19. [PMID: 31540994 DOI: 10.1128/aem.01439-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Many mycoplasma species are isolated from the ruminant lungs as either saprophytes or true pathogens. These wall-less bacteria possess a minimal genome and reduced metabolic capabilities. Accordingly, they rely heavily on their hosts for the supply of essential metabolites and, notably, peptides. Seven of 13 ruminant lung-associated Mycoplasma (sub)species were shown to possess caseinolytic activity when grown in rich media and assessed with a quantitative fluorescence test. For some species, this activity was detected in spent medium, an indication that proteases were secreted outside the mycoplasma cells. To identify these proteases, we incubated concentrated washed cell pellets in a defined medium and analyzed the supernatants by tandem mass spectrometry. Secreted-protease activity was detected mostly in the species belonging to the Mycoplasma mycoides cluster (MMC) and, to a lesser extent, in Mycoplasma bovirhinis Analyzing a Mycoplasma mycoides subsp. capri strain, chosen as a model, we identified 35 expressed proteases among 55 predicted coding genes, of which 5 were preferentially found in the supernatant. Serine protease S41, acquired by horizontal gene transfer, was responsible for the caseinolytic activity, as demonstrated by zymography and mutant analysis. In an M. capricolum mutant, inactivation of the S41 protease resulted in marked modification of the expression or secretion of 17 predicted surface-exposed proteins. This is an indication that the S41 protease could have a role in posttranslational cleavage of surface-exposed proteins and ectodomain shedding, whose physiological impacts still need to be explored.IMPORTANCE Few studies pertaining to proteases in ruminant mycoplasmas have been reported. Here, we focus on proteases that are secreted outside the mycoplasma cell using a mass spectrometry approach. The most striking result is the identification, within the Mycoplasma mycoides cluster, of a serine protease that is exclusively detected outside the mycoplasma cells and is responsible for casein digestion. This protease may also be involved in the posttranslational processing of surface proteins, as suggested by analysis of mutants showing a marked reduction in the secretion of extracellular proteins. By analogy, this finding may help increase understanding of the mechanisms underlying this ectodomain shedding in other mycoplasma species. The gene encoding this protease is likely to have been acquired via horizontal gene transfer from Gram-positive bacteria and sortase-associated surface proteases. Whether this protease and the associated ectodomain shedding are related to virulence has yet to be ascertained.
Collapse
|
24
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
25
|
Jarocki VM, Raymond BBA, Tacchi JL, Padula MP, Djordjevic SP. Mycoplasma hyopneumoniae surface-associated proteases cleave bradykinin, substance P, neurokinin A and neuropeptide Y. Sci Rep 2019; 9:14585. [PMID: 31601981 PMCID: PMC6787215 DOI: 10.1038/s41598-019-51116-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/25/2019] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically-devastating and geographically-widespread pathogen that colonises ciliated epithelium, and destroys mucociliary function. M. hyopneumoniae devotes ~5% of its reduced genome to encode members of the P97 and P102 adhesin families that are critical for colonising epithelial cilia, but mechanisms to impair mucociliary clearance and manipulate host immune response to induce a chronic infectious state have remained elusive. Here we identified two surface exposed M. hyopneumoniae proteases, a putative Xaa-Pro aminopeptidase (MHJ_0659; PepP) and a putative oligoendopeptidase F (MHJ_0522; PepF), using immunofluorescence microscopy and two orthogonal proteomic methodologies. MHJ_0659 and MHJ_0522 were purified as polyhistidine fusion proteins and shown, using a novel MALDI-TOF MS assay, to degrade four pro-inflammatory peptides that regulate lung homeostasis; bradykinin (BK), substance P (SP), neurokinin A (NKA) and neuropeptide Y (NPY). These findings provide insight into the mechanisms used by M. hyopneumoniae to influence ciliary beat frequency, impair mucociliary clearance, and initiate a chronic infectious disease state in swine, features that are a hallmark of disease caused by this pathogen.
Collapse
Affiliation(s)
- Veronica Maria Jarocki
- ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | | | - Jessica Leigh Tacchi
- ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia
| | - Steven Philip Djordjevic
- ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
- Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia.
| |
Collapse
|
26
|
Trueeb BS, Gerber S, Maes D, Gharib WH, Kuhnert P. Tn-sequencing of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis mutant libraries reveals non-essential genes of porcine mycoplasmas differing in pathogenicity. Vet Res 2019; 50:55. [PMID: 31324222 PMCID: PMC6642558 DOI: 10.1186/s13567-019-0674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma hyopneumoniae and Mycoplasma hyorhinis are two phylogenetically related species colonizing the respiratory tract of pigs but differing in pathogenicity, the basis of which is not well resolved. We hypothesize that genes belonging to the species-specific portion of the genome and being non-essential during ideal laboratory growth conditions encode possible virulent determinants and are the driver of interspecies differences. To investigate this, transposon mutant libraries were generated for both species and a transposon sequencing (Tn-seq) method for mycoplasmas was established to identify non-essential genes. Tn-seq datasets combined with bidirectional Blastp analysis revealed that 101 out of a total 678 coding sequences (CDS) are species-specific and non-essential CDS of M. hyopneumoniae strain F7.2C, while 96 out of a total 751 CDS are species-specific and non-essential CDS in the M. hyorhinis strain JF5820. Among these species-specific and non-essential CDS were genes involved in metabolic pathways. In particular, the myo-inositol and the sialic acid pathways were found to be non-essential and therefore could be considered important to the specific pathogenicity of M. hyopneumoniae and M. hyorhinis, respectively. Such pathways could enable the use of an alternative energy source providing an advantage in their specific niche and might be interesting targets to knock out in order to generate attenuated live vaccines.
Collapse
Affiliation(s)
- Bettina S Trueeb
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Simona Gerber
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominiek Maes
- Unit Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Walid H Gharib
- Interfaculty Bioinformatics Unit and Swiss, Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Formylated N-terminal methionine is absent from the Mycoplasma hyopneumoniae proteome: Implications for translation initiation. Int J Med Microbiol 2019; 309:288-298. [PMID: 31126750 DOI: 10.1016/j.ijmm.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022] Open
Abstract
N-terminal methionine excision (NME) is a proteolytic pathway that cleaves the N-termini of proteins, a process that influences where proteins localise in the cell and their turnover rates. In bacteria, protein biosynthesis is initiated by formylated methionine start tRNA (fMet-tRNAfMet). The formyl group is attached by formyltransferase (FMT) and is subsequently removed by peptide deformylase (PDF) in most but not all proteins. Methionine aminopeptidase then cleaves deformylated methionine to complete the process. Components of NME, particularly PDF, are promising therapeutic targets for bacterial pathogens. In Mycoplasma hyopneumoniae, a genome-reduced, major respiratory pathogen of swine, pdf and fmt are absent from its genome. Our bioinformatic analysis uncovered additional enzymes involved in formylated N-terminal methionine (fnMet) processing missing in fourteen mycoplasma species, including M. hyopneumoniae but not in Mycoplasma pneumoniae, a major respiratory pathogen of humans. Consistent with our bioinformatic studies, an analysis of in-house tryptic peptide libraries confirmed the absence of fnMet in M. hyopneumoniae proteins but, as expected fnMet peptides were detected in the proteome of M. pneumoniae. Additionally, computational molecular modelling of M. hyopneumoniae translation initiation factors reveal structural and sequence differences in areas known to interact with fMet-tRNAfMet. Our data suggests that some mycoplasmas have evolved a translation process that does not require fnMet.
Collapse
|
28
|
Paes JA, Machado LDPN, Dos Anjos Leal FM, De Moraes SN, Moura H, Barr JR, Ferreira HB. Comparative proteomics of two Mycoplasma hyopneumoniae strains and Mycoplasma flocculare identified potential porcine enzootic pneumonia determinants. Virulence 2019; 9:1230-1246. [PMID: 30027802 PMCID: PMC6104684 DOI: 10.1080/21505594.2018.1499379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar bacteria, which coinhabit the porcine respiratory tract. These mycoplasmas share most of the known virulence factors, but, while M. hyopneumoniae causes porcine enzootic pneumonia (PEP), M. flocculare is a commensal species. To identify potential PEP determinants and provide novel insights on mycoplasma-host interactions, the whole cell proteomes of two M. hyopneumoniae strains, one pathogenic (7448) and other non-pathogenic (J), and M. flocculare were compared. A cell fractioning approach combined with mass spectrometry (LC-MS/MS) proteomics was used to analyze cytoplasmic and surface-enriched protein fractions. Average detection of ~ 50% of the predicted proteomes of M. hyopneumoniae 7448 and J, and M. flocculare was achieved. Many of the identified proteins were differentially represented in M. hyopneumoniae 7448 in comparison to M. hyopneumoniae J and M. flocculare, including potential PEP determinants, such as adhesins, proteases, and redox-balancing proteins, among others. The LC-MS/MS data also provided experimental validation for several genes previously regarded as hypothetical for all analyzed mycoplasmas, including some coding for proteins bearing virulence-related functional domains. The comprehensive proteome profiling of two M. hyopneumoniae strains and M. flocculare provided tens of novel candidates to PEP determinants or virulence factors, beyond those classically described.
Collapse
Affiliation(s)
- Jéssica Andrade Paes
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Lais Del Prá Netto Machado
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Fernanda Munhoz Dos Anjos Leal
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Sofia Nóbrega De Moraes
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Hercules Moura
- b Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences , National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - John R Barr
- b Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences , National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Henrique Bunselmeyer Ferreira
- a Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
29
|
Huang J, Zhu H, Wang J, Guo Y, Zhi Y, Wei H, Li H, Guo A, Liu D, Chen X. Fructose-1,6-bisphosphate aldolase is involved in Mycoplasma bovis colonization as a fibronectin-binding adhesin. Res Vet Sci 2019; 124:70-78. [PMID: 30852357 DOI: 10.1016/j.rvsc.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Mycoplasma bovis is a common pathogenic microorganism of cattle and represents an important hazard on the cattle industry. Adherence to host cells is a significant component of mycoplasma-pathogenesis research. Fibronectin (Fn), an extracellular matrix protein, is a common host cell factor that can interact with the adhesions of pathogens. The aims of this study were to investigate the Fn-binding properties of M. bovis fructose-1,6-bisphosphate aldolase (FBA) and evaluate its role as a cell adhesion factor during mycoplasma colonization. The fba (MBOV_RS00435) gene of M. bovis was cloned and expressed, with the resulting recombinant protein used to prepare rabbit polyclonal antibodies. The purified recombinant FBA (rFBA) was shown to have fructose bisphosphate aldolase activity. Western blot indicated that FBA was an antigenically conserved protein in several M. bovis strains. Western blot combined with immunofluorescent assay (IFA) revealed that FBA was dual-localized to both cytoplasm and membrane in M. bovis. IFA showed that rFBA was able to adhere to embryonic bovine lung (EBL) cells. Meanwhile, an adhesion inhibition assay demonstrated that anti-rFBA antibodies could significantly block the adhesion of M. bovis to EBL cells. Moreover, a dose-dependent binding of rFBA to Fn was found by dot blotting and enzyme-linked immunosorbent assays. Together these results provided evidence that FBA is a surface-localized and antigenic protein of M. bovis, suggesting that it may function as a virulence determinant through interacting with host Fn.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayao Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongpeng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Zhi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haohua Wei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxiong Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongming Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Organization of multi-binding to host proteins: The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Mycoplasma pneumoniae. Microbiol Res 2019; 218:22-31. [DOI: 10.1016/j.micres.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/29/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022]
|
31
|
Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci Rep 2018; 8:17697. [PMID: 30523267 PMCID: PMC6283846 DOI: 10.1038/s41598-018-36054-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin β1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin β1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin β1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.
Collapse
|
32
|
Yu Y, Liu M, Hua L, Qiu M, Zhang W, Wei Y, Gan Y, Feng Z, Shao G, Xiong Q. Fructose-1,6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion. Vet Res 2018; 49:114. [PMID: 30454073 PMCID: PMC6245935 DOI: 10.1186/s13567-018-0610-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen that causes great economic losses to the pig industry worldwide. Although some putative virulence factors have been reported, pathogenesis remains poorly understood. Herein, we evaluated the relative abundance of proteins in virulent 168 (F107) and attenuated 168L (F380) M. hyopneumoniae strains to identify virulence-associated factors by two-dimensional electrophoresis (2-DE). Seven proteins were found to be ≥ 1.5-fold more abundant in 168, and protein-protein interaction network analysis revealed that all seven interact with putative virulence factors. Unexpectedly, six of these virulence-associated proteins are encoded by core rather than accessory genomic elements. The most differentially abundant of the seven, fructose-1,6-bisphosphate aldolase (FBA), was successfully cloned, expressed and purified. Flow cytometry demonstrated the surface localisation of FBA, recombinant FBA (rFBA) mediated adhesion to swine tracheal epithelial cells (STEC), and anti-rFBA sera decreased adherence to STEC. Surface plasmon resonance showed that rFBA bound to fibronectin with a moderately strong KD of 469 nM. The results demonstrate that core gene expression contributes to adhesion and virulence in M. hyopneumoniae, and FBA moonlights as an important adhesin, mediating binding to host cells via fibronectin.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingjun Qiu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Animal Science and Technology, Shanxi Agricultural University, Taigu, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanna Wei
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
33
|
Raymond BBA, Madhkoor R, Schleicher I, Uphoff CC, Turnbull L, Whitchurch CB, Rohde M, Padula MP, Djordjevic SP. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2018. [PMID: 29535975 PMCID: PMC5835332 DOI: 10.3389/fcimb.2018.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ranya Madhkoor
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ina Schleicher
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Lynne Turnbull
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthew P Padula
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| |
Collapse
|