1
|
Rylott EL, van der Ent A. Harnessing hyperaccumulator plants to recover technology-critical metals: where are we at? THE NEW PHYTOLOGIST 2025; 246:859-866. [PMID: 40066815 PMCID: PMC11982783 DOI: 10.1111/nph.20449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/02/2025] [Indexed: 04/11/2025]
Abstract
Since its inception over three decades ago, phytomining has finally reached the stage of commercial-scale implementation, at least for nickel. Much potential remains to be realised for other elements, notably cobalt, selenium, and thallium, but this requires scientific impetus leveraging recent advances in insights garnered from molecular mechanisms of hyperaccumulation, domestication and agronomic development. These advances will also enable us to (genetically) improve hyperaccumulators for use in phytomining by targeted breeding, as well as synthetic biology approaches.
Collapse
Affiliation(s)
- Elizabeth L. Rylott
- Centre for Novel Agricultural Products, Department of BiologyUniversity of YorkYorkYO10 5DDUK
| | - Antony van der Ent
- Laboratory of GeneticsWageningen University and ResearchWageningen6708 PBthe Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandBrisbaneQLD4072Australia
- Laboratoire Sols et EnvironnementUniversité de Lorraine, INRAE, LSENancyF‐54000France
| |
Collapse
|
2
|
Huang WL, Huang WT, Chen XF, Wu T, Tong LY, Xia TT, Wu BS, Lu F, Lai NW, Yang LT, Chen LS. Exogenous coumarin improves cell wall and plasma membrane stability and function by maintaining copper and calcium homeostasis in citrus roots under copper excess. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109949. [PMID: 40319587 DOI: 10.1016/j.plaphy.2025.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Most citrus trees are planted in acidic soil with high availability of copper (Cu). Little is known about the mechanisms by which coumarin (COU) reduces Cu excess in plants. 'Xuegan' (Citrus sinensis) seedlings were treated with 0.5 (Cu0.5) or 400 (Cu excess or Cu400) CuCl2 and 0 (COU0) or 100 (COU100) μM COU for 24 weeks. COU100 alleviated Cu400-induced alterations in gene expression and metabolite profiles, cell wall (CW) materials (CWMs), CW components (CWCs), and Fourier transform infrared (FTIR) spectra of CWMs in roots; increase in Cu concentration in roots, root CWMs (RCWMs), root CWCs (RCWCs), Cu and Ca fractions in RCWMs, and Cu fraction in CW pectin; and decrease in Ca concentrations in roots, RCWMs, and RCWCs. In addition, COU100 mitigated Cu400-induced increase in electrolyte leakage and concentrations of total coumarins, total phenolics, total falvonoids, and nonstructural carbohydrates (NCs) and decrease in total free amino acid concentration in roots, as well as impairment in root system architecture (RSA) and root growth. Our results corroborated the hypothesis that the alleviation of root Cu excess by COU was caused by the combination of following several aspects: (a) reduced impairment to root growth and RSA; (b) upregulated ability to maintain CW and plasma membrane stability and function by maintaining Cu and calcium homeostasis; (c) elevated adaptability of primary metabolism to Cu excess; and (d) upregulated biosynthesis and catabolism (turnover) of secondary metabolites (SMs) and less upregulation of SMs. COU0-treated roots underwent some physiological and molecular adaptations to Cu excess.
Collapse
Affiliation(s)
- Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei-Tao Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ti Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China.
| | - Liang-Yuan Tong
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Tian-Tian Xia
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Bi-Sha Wu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China.
| | - Fei Lu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ning-Wei Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Loskarn M, Harumain ZAS, Dobson JA, Hunt AJ, McElroy CR, Klumbys E, Johnston E, Sanchez Alponti J, Clark JH, Maathuis FJM, Bruce NC, Rylott EL. Controlling In Planta Gold Nanoparticle Synthesis and Size for Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9714-9722. [PMID: 38780409 PMCID: PMC11155235 DOI: 10.1021/acs.est.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Gold nanoparticles (Au-NPs) are used as catalysts for a diverse range of industrial applications. Currently, Au-NPs are synthesized chemically, but studies have shown that plants fed Au deposit, this element naturally as NPs within their tissues. The resulting plant material can be used to make biomass-derived catalysts. In vitro studies have shown that the addition of specific, short (∼10 amino acid) peptide/s to solutions can be used to control the NP size and shape, factors that can be used to optimize catalysts for different processes. Introducing these peptides into the model plant species, Arabidopsis thaliana (Arabidopsis), allows us to regulate the diameter of nanoparticles within the plant itself, consequently influencing the catalytic performance in the resulting pyrolyzed biomass. Furthermore, we show that overexpressing the copper and gold COPPER TRANSPORTER 2 (COPT2) in Arabidopsis increases the uptake of these metals. Adding value to the Au-rich biomass offers the potential to make plant-based remediation and stabilization of mine wastes financially feasible. Thus, this study represents a significant step toward engineering plants for the sustainable recovery of finite and valuable elements from our environment.
Collapse
Affiliation(s)
- Marc Loskarn
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Zakuan A. S. Harumain
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
- Department
of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan 25200, Malaysia
| | - Jessica A. Dobson
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| | - Andrew J. Hunt
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K.
- Materials
Chemistry Research Center (MCRC), Centre of Excellence for Innovation
in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Con Robert McElroy
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Evaldas Klumbys
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| | - Emily Johnston
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| | - Juliana Sanchez Alponti
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| | - James H. Clark
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Frans J. M. Maathuis
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| | - Neil C. Bruce
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| | - Elizabeth L. Rylott
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, U.K.
| |
Collapse
|
4
|
Chen X, Yang S, Ma J, Huang Y, Wang Y, Zeng J, Li J, Li S, Long D, Xiao X, Sha L, Wu D, Fan X, Kang H, Zhang H, Zhou Y, Cheng Y. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130998. [PMID: 36860063 DOI: 10.1016/j.jhazmat.2023.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of manganese (Mn) and copper (Cu) on dwarf Polish wheat under cadmium (Cd) stress by evaluating plant growth, Cd uptake, translocation, accumulation, subcellular distribution, and chemical forms, and the expression of genes participating in cell wall synthesis, metal chelation, and metal transport. Compared with the control, Mn deficiency and Cu deficiency increased Cd uptake and accumulation in roots, and Cd levels in root cell wall and soluble fractions, but inhibited Cd translocation to shoots. Mn addition reduced Cd uptake and accumulation in roots, and Cd level in root soluble fraction. Cu addition did not affect Cd uptake and accumulation in roots, while it caused a decrease and an increase of Cd levels in root cell wall and soluble fractions, respectively. The main Cd chemical forms (water-soluble Cd, pectates and protein integrated Cd, and undissolved Cd phosphate) in roots were differently changed. Furthermore, all treatments distinctly regulated several core genes that control the main component of root cell walls. Several Cd absorber (COPT, HIPP, NRAMP, and IRT) and exporter genes (ABCB, ABCG, ZIP, CAX, OPT, and YSL) were differently regulated to mediate Cd uptake, translocation, and accumulation. Overall, Mn and Cu differently influenced Cd uptake and accumulation; Mn addition is an effective treatment for reducing Cd accumulation in wheat.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Jinjiang 610066, Sichuan, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
5
|
Liu X, Wang H, He F, Du X, Ren M, Bao Y. The TaWRKY22–TaCOPT3D Pathway Governs Cadmium Uptake in Wheat. Int J Mol Sci 2022; 23:ijms231810379. [PMID: 36142291 PMCID: PMC9499326 DOI: 10.3390/ijms231810379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) is a heavy metal nonessential for plants; this toxic metal accumulation in crops has significant adverse effects on human health. The crosstalk between copper (Cu) and Cd has been reported; however, the molecular mechanisms remain unknown. The present study investigated the function of wheat Cu transporter 3D (TaCOPT3D) in Cd tolerance. The TaCOPT3D transcripts significantly accumulated in wheat roots under Cd stress. Furthermore, TaCOPT3D-overexpressing lines were compared to wildtype (WT) plants to test the role of TaCOPT3D in Cd stress response. Under 20 mM Cd treatment, TaCOPT3D-overexpressing lines exhibited more biomass and lower root, shoot, and grain Cd accumulation than the WT plants. In addition, overexpression of TaCOPT3D decreased the reactive oxygen species (ROS) levels and increased the active antioxidant enzymes under Cd conditions. Moreover, the transcription factor (TF) TaWRKY22, which targeted the TaCOPT3D promoter, was identified in the regulatory pathway of TaCOPT3D under Cd stress. Taken together, these results show that TaCOPT3D plays an important role in regulating plant adaptation to cadmium stress through bound by TaWRKY22. These findings suggest that TaCOPT3D is a potential candidate for decreasing Cd accumulation in wheat through genetic engineering.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Agriculture, Guizhou University, Guiyang 550004, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Fang He
- College of Agriculture, Guizhou University, Guiyang 550004, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang 550004, China
- Correspondence: (M.R.); (Y.B.)
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271000, China
- Correspondence: (M.R.); (Y.B.)
| |
Collapse
|
6
|
Dauda WP, Singh Rana V, Solanke AU, Krishnan G, Bashya BM, Aggarwal R, Shanmugam V. Metabolomic analysis of sheath blight disease of rice (Oryza sativa L.) induced by Rhizoctonia solani phytotoxin. J Appl Microbiol 2022; 133:3215-3227. [PMID: 35957552 DOI: 10.1111/jam.15776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
AIM To understand the mechanism of necrosis incited by a host-selective phytotoxin designated as Rhizoctonia solani toxin (RST) identified to be a potential pathogenic factor of Rhizoctonia solani AG1 IA, causing sheath blight (ShB) of rice. METHODS AND RESULTS The metabolomic changes induced by the phytotoxic metabolite in a ShB susceptible rice cultivar were elucidated by Gas Chromatography-Mass Spectrometry (GC-MS) analysis and compared with that of the pathogen to identify rice metabolites targeted by the phytotoxin. The profiles of about 29 metabolites with various physiological roles in rice plants have been identified worldwide. Unsupervised and supervised multivariate chemometrics (Principal Component Analysis, PCA and Partial Least Squares-Discriminant Analysis, PLS-DA) and cluster (Heat maps) analyses were used to compare the metabolites obtained from chemical profiles of the treatments with sterile distilled water (SDW) control. The results indicated that the rice plant expressed more metabolites in response to the pathogen than the phytotoxin and was lowest in SDW control. The key metabolites expressed in rice in response to the treatments were investigated by the Variable Importance in Projection (VIP) analysis using P< 0.05 VIP >15. The analysis identified 7 and 11 upregulating metabolites in the phytotoxin and the pathogen treatments, respectively, compared to the untreated control. Among the phytotoxin-treated and the pathogen inoculated samples, the phytotoxin treated sample recorded upregulation of 6 metabolites, whereas 9 metabolites were upregulated in the pathogen inoculated samples. These upregulating metabolites are speculated for the necrotic symptoms characteristic to both the phytotoxin and pathogen. In this analysis, hexadecanoic acid and dotriacontane were highly expressed metabolites specific to the phytotoxin and pathogen-treated samples, respectively. Besides upregulation, the metabolites also have a VIP score of >1.5 and hence fulfilled the criteria of classifying them as reliable potential biomarkers. In the pathway analysis, hexadecanoic acid and dotriacontane were identified to be involved in several important biosynthetic pathways of rice, such as the biosynthesis of saturated fatty acid and unsaturated fatty acids cutin, suberin, and wax. CONCLUSIONS The study concludes that though certain metabolites induced by the phytotoxin in the susceptible variety during necrosis shares with that of the pathogen, the identification of metabolites specific to the phytotoxin in comparison to the pathogenic and SDW controls indicated that the phytotoxin modulates the host metabolism differently and hence can be a potential pathogenicity factor of the ShB fungus. SIGNIFICANCE AND IMPACT OF THE STUDY Due to lack of knowledge on the pathway genes of RST and in the absence of an ShB resistant variety, understanding differentially expressed metabolic changes induced in the susceptible variety by the phytotoxin in comparison to that of the pathogenic and uninoculated controls enables us to identify the key metabolite changes during the ShB infection. Such metabolomic changes can further be used to infer gene functions for exploitation in ShB control.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- ICAR-Indian Agricultural Research Institute, New Delhi, India.,Crop Science Unit, Department of Agronomy, Federal University, Nigeria
| | | | | | - Gopala Krishnan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rashmi Aggarwal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
7
|
Yadav S, Yugandhar P, Alavilli H, Raliya R, Singh A, Sahi SV, Sarkar AK, Jain A. Potassium Chloroaurate-Mediated In Vitro Synthesis of Gold Nanoparticles Improved Root Growth by Crosstalk with Sucrose and Nutrient-Dependent Auxin Homeostasis in Arabidopsis thaliana. NANOMATERIALS 2022; 12:nano12122099. [PMID: 35745438 PMCID: PMC9230854 DOI: 10.3390/nano12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Shivendra V. Sahi
- Department of Biology, University City Campus, Saint Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA;
| | - Ananda K. Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
- Correspondence:
| |
Collapse
|
8
|
Wang K, Cai M, Yin D, Hu X, Peng H, Zhu R, Liu M, Xu Y, Qu C, Ni J, Yin X. IRMOF‐8‐encapsulated curcumin as a biocompatible, sustained‐release nano preparation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai‐Xin Wang
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Meng‐Ru Cai
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Dong‐Ge Yin
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Xue‐Ling Hu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Hulin‐Yue Peng
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Rong‐Yue Zhu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Man‐Ting Liu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Yu‐Chen Xu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Chang‐Hai Qu
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Jian Ni
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| | - Xing‐Bin Yin
- School of Chinese Material Medica Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
9
|
Su Y, Ni W, Zhang H, Jiang K, Wen F. One‐pot synthesis of ICG&Cur@ZIF‐8 nanocomposites with pH‐controlled drug delivery and good photothermal performance. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yifei Su
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province School of Food Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Weishu Ni
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province School of Food Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Haiyan Zhang
- Key Laboratory of Modern Preparation of TCM. Ministry of Education Jiangxi University of Traditional Chinese Medicine Nanchang 330004 P. R. China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province School of Food Science and Engineering Hainan University Haikou 570228 P. R. China
- State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
| | - Feng Wen
- Key Lab of Advanced Material of Tropical Island Resources of Educational Ministry School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| |
Collapse
|
10
|
Cheng Y, Yang T, Xiang W, Li S, Fan X, Sha L, Kang H, Wu D, Zhang H, Zeng J, Zhou Y, Wang Y. Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117575. [PMID: 34130116 DOI: 10.1016/j.envpol.2021.117575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH4+-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH4+-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH4+-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH4+-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH4+-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH4+-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
Collapse
Affiliation(s)
- Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Tian Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Wenhui Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Siyu Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
11
|
Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. PHYSIOLOGIA PLANTARUM 2021; 173:259-275. [PMID: 33586164 DOI: 10.1111/ppl.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal toxicity is one of the major concerns for agriculture and health. Accumulation of toxic heavy metals at high concentrations in edible parts of crop plants is the primary cause of disease in humans and cattle. A dramatic increase in industrialization, urbanization, and other high anthropogenic activities has led to the accumulation of heavy metals in agricultural soil, which has consequently disrupted soil conditions and affected crop yield. By now, plants have developed several mechanisms to cope with heavy metal stress. However, not all plants are equally effective in dealing with the toxicity of high heavy metal concentrations. Plants have modified their anatomy, morphophysiology, and molecular networks to survive under changing environmental conditions. Heavy metal sequestration is one of the essential processes evolved by some plants to deal with heavy metals' toxic concentration. Some plants even have the ability to accumulate metals in high quantities in the shoots/organelles without toxic effects. For intercellular and interorganeller metal transport, plants harbor spatially distributed various transporters which mainly help in uptake, translocation, and redistribution of metals. This review discusses different heavy metal transporters in different organelles and their roles in metal sequestration and redistribution to help plants cope with heavy metal stress. A good understanding of the processes at stake helps in developing more tolerant crops without affecting their productivity.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
12
|
Cheng Y, Bao Y, Chen X, Yao Q, Wang C, Chai S, Zeng J, Fan X, Kang H, Sha L, Zhang H, Zhou Y, Wang Y. Different nitrogen forms differentially affect Cd uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123209. [PMID: 32947742 DOI: 10.1016/j.jhazmat.2020.123209] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
This study investigated the effects of different nitrogen (N) forms on Cadmium (Cd) uptake and accumulation in dwarf Polish wheat (DPW) seedlings, which were grown under Cd stress with N-Null, NH4+-N, NO3--N and NH4+-N + NO3--N. We measured plant growth and determined Cd uptake, translocation, accumulation, subcellular distribution and chemical forms in the roots and shoots of DPW seedlings. We also analyzed saccharide concentrations, and the transcript levels of genes encoding metal transporters in the roots of DPW seedlings. In the absence of NO3--N, addition of NH4+-N reduced roots Cd concentration, FCW (Cd in cell wall), FS (Cd in soluble fraction) and FE (inorganic Cd) concentrations, and induced the expression of four genes encoding metal transporters in roots, while it promoted Cd translocation to shoots. In the presence of NO3--N, addition of NH4+-N increased roots Cd concentration, FCW and FW concentrations, and induced the expression of 22 genes encoding metal transporters in roots. Regardless of NH4+-N level, addition of NO3--N increased roots Cd concentration, FCW, FS, FW (water-soluble Cd), FNaCl (pectates and protein Cd), FHAc (undissolved Cd phosphate) and lactose concentrations, and also induced the expression of genes encoding metal transporters in roots. Overall, NH4+-N differently regulated Cd uptake and accumulation in DPW seedlings in the absence or presence of NO3--N, while NO3--N greatly increased Cd uptake and accumulation in the presence of NH4+-N compared to the absence of NH4+-N. These patterns of Cd alteration likely arose due to different N forms altering Cd subcellular distribution and chemical forms, lactose concentration and the expression of metal transporter genes.
Collapse
Affiliation(s)
- Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yunjing Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
13
|
Belykh ES, Maystrenko TA, Velegzhaninov IO. Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming. Mol Biotechnol 2019; 61:725-741. [DOI: 10.1007/s12033-019-00202-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|