1
|
Kong W, Sun Z, Zhu J, Li L, Wang G, Shao X, Li X, Hu B. Alterations in temporal-spatial brain entropy in treatment-resistant depression treated with nitrous oxide: Evidence from resting-state EEG. Clin Neurophysiol 2025; 171:182-191. [PMID: 39929111 DOI: 10.1016/j.clinph.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/09/2024] [Accepted: 01/28/2025] [Indexed: 03/11/2025]
Abstract
OBJECTIVE Entropy analysis can quantify the dynamic states of the brain and reflect its information processing capacity. Nitrous oxide has shown rapid antidepressant effects in treatment-resistant depression (TRD) patients, but its biomarkers are not yet established. METHODS We recruited 44 TRD patients and randomly assigned them to two groups: one received a 1-hour nitrous oxide inhalation treatment, while the other received a placebo. Resting-state EEG (rs-EEG) scans were conducted at baseline and 24 h post-treatment. A novel approach based multivariate multiscale entropy (MMSE) was employed to analyze temporal-spatial brain entropy (ts-BEN) across four hierarchical brain regions. RESULTS TRD patients exhibited significant time-dependent increases in BEN in the frontal lobe region (sensor space: time scales 5-10; source space: time scales 1-5), changes not previously observed. Temporal-spatial BEN correlated with the severity of TRD symptoms and treatment efficacy, indicating adaptive adjustments in brain resting states. CONCLUSION MMSE offers a novel supplementary method for rs-EEG BEN analysis, quantifying the sensitivity of ts-BEN in monitoring nitrous oxide treatment effects. Changes in frontal region ts-BEN may serve as potential biomarkers for TRD and its treatment outcomes. SIGNIFICANCE Our findings enhance the understanding of the physiological mechanisms underlying nitrous oxide treatment for TRD, aiding in clinical diagnosis.
Collapse
Affiliation(s)
- Weizhuang Kong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhe Sun
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jing Zhu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guanru Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xuexiao Shao
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China; Department of Clinical Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China; Brain Health Engineering Laboratory, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
2
|
Lu Q, Lu S, Wang X, Huang Y, Liu J, Liang Z. Structural and functional changes of Post-Stroke Depression: A multimodal magnetic resonance imaging study. Neuroimage Clin 2025; 45:103743. [PMID: 39893709 PMCID: PMC11840514 DOI: 10.1016/j.nicl.2025.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
This study investigated changes in gray matter volume (GMV), white matter microstructure, and spontaneous brain activity in post-stroke depression (PSD) using multiple MRI techniques, including neurite orientation dispersion and density imaging (NODDI). Changes in GMV, neurite density index (NDI), orientation dispersion index (ODI), fraction of isotropic water (ISO), diffusion tensor imaging (DTI) parameters, and the amplitude of frequency fluctuations (ALFF) were assessed between PSD (n = 20), post-stroke without depression (n = 20), and normal control (n = 20) groups. Receiver operating characteristic (ROC) curve analysis was performed to test the classification performance of the variant parameters of each MRI modality, each single MRI modality and multiple MRI modality. Compared to patients with post-stroke without depression (non-PSD), those with PSD showed increased ODI and ISO in the widespread white matter, as well as increased ALFF in the left pallidum. No significant differences in the GMV or DTI parameters were observed between the two groups. Furthermore, the ODI of the right superior longitudinal fasciculus and NODDI showed the best classification performance for PSD at their respective comparison level (the areas under the ROC curves (AUC) = 0.917(0.000), 0.933(0.000)). The model of NODDI-derived parameters combined with non-diffusion MRI modality parameters (i.e., GMV and ALFF) showed better diagnostic performance than that of DTI-derived parameters. These findings suggest that PSD is associated with structural and functional abnormalities that may contribute to depressive symptoms. Additionally, NODDI showed its advantages in the description of structural alterations in emotion-related white matter pathways and classification performance in PSD.
Collapse
Affiliation(s)
- Qiuhong Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China; Department of Mental Health, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Shunzu Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xue Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yanlan Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
3
|
Tang WK, Hui E, Leung TWH. Irritability in stroke: a protocol for a prospective study. Front Neurol 2024; 15:1452491. [PMID: 39717686 PMCID: PMC11663718 DOI: 10.3389/fneur.2024.1452491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Background Poststroke irritability (PSI) is common among stroke survivors and can lead to a poor quality of life, difficulties in social interactions, criticism from caregivers, and caregiver stress. The planned study will evaluate the clinical, neuropsychological, and magnetic resonance imaging (MRI) correlates of PSI in a cohort of stroke survivors. In addition, the study will examine the 15-month progression of PSI. Methods This will be a prospective cohort study that will recruit 285 participants. Participants and their caregivers will undergo detailed assessments at a research clinic at 3, 9, and 15 months after stroke onset (T1/T2/T3). The irritability/lability subscale of the Chinese version of the Neuropsychiatric Inventory (CNPI) will be completed by caregivers. Potential covariates will also be measured. Patients will undergo MRI, including diffusion-weighted imaging, within 1 week of stroke onset. A stepwise logistic regression will be performed to evaluate the importance of lesions in the regions of interest (ROIs) along with other significant variables identified in univariate analyses. These analyses will be repeated for patients with and without PSI at T2 and T3. Repeated measures analysis of covariance (ANCOVA) will be used to assess changes in CNPI scores for the entire sample. In ANCOVA analyses, the frequency of infarcts in the ROIs will be treated as the predictor. Discussion This will be the first MRI study on PSI in stroke survivors. The findings will provide insights into the association of the orbitofrontal cortex, anterior cingulate cortex, anterior temporal lobe, insula, amygdala, thalamus, and basal ganglia lesions with the risk of PSI.
Collapse
Affiliation(s)
- Wai Kwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Edward Hui
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Thomas Wai Hong Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Lu J, Xing X, Qu J, Wu J, Zheng M, Hua X, Xu J. Alterations of contralesional hippocampal subfield volumes and relations to cognitive functions in patients with unilateral stroke. Brain Behav 2024; 14:e3645. [PMID: 39135280 PMCID: PMC11319231 DOI: 10.1002/brb3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The volumes of the hippocampal subfields are related to poststroke cognitive dysfunctions. However, it remains unclear whether contralesional hippocampal subfield volume contributes to cognitive impairment. This study aimed to investigate the volumetric differences in the contralesional hippocampal subfields between patients with left and right hemisphere strokes (LHS/RHS). Additionally, correlations between contralesional hippocampal subfield volumes and clinical outcomes were explored. METHODS Fourteen LHS (13 males, 52.57 ± 7.10 years), 13 RHS (11 males, 51.23 ± 15.23 years), and 18 healthy controls (11 males, 46.94 ± 12.74 years) were enrolled. Contralesional global and regional hippocampal volumes were obtained with T1-weighted images. Correlations between contralesional hippocampal subfield volumes and clinical outcomes, including the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE), were analyzed. Bonferroni correction was applied for multiple comparisons. RESULTS Significant reductions were found in contralesional hippocampal as a whole (adjusted p = .011) and its subfield volumes, including the hippocampal tail (adjusted p = .005), cornu ammonis 1 (CA1) (adjusted p = .002), molecular layer (ML) (adjusted p = .004), granule cell and ML of the dentate gyrus (GC-ML-DG) (adjusted p = .015), CA3 (adjusted p = .009), and CA4 (adjusted p = .014) in the RHS group compared to the LHS group. MoCA and MMSE had positive correlations with volumes of contralesional hippocampal tail (p = .015, r = .771; p = .017, r = .763) and fimbria (p = .020, r = .750; p = .019, r = .753) in the LHS group, and CA3 (p = .007, r = .857; p = .009, r = .838) in the RHS group, respectively. CONCLUSION Unilateral stroke caused volumetric differences in different hippocampal subfields contralesionally, which correlated to cognitive impairment. RHS leads to greater volumetric reduction in the whole contralesional hippocampus and specific subfields (hippocampal tail, CA1, ML, GC-ML-DG, CA3, and CA4) compared to LHS. These changes are correlated with cognitive impairments, potentially due to disrupted neural pathways and interhemispheric communication.
Collapse
Affiliation(s)
- Juan‐Juan Lu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jiao Qu
- Department of RadiologyShanghai Songjiang District Central HospitalShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
5
|
Wu X, Xu K, Li T, Wang L, Fu Y, Ma Z, Wu X, Wang Y, Chen F, Song J, Song Y, Lv Y. Abnormal intrinsic functional hubs and connectivity in patients with post-stroke depression. Ann Clin Transl Neurol 2024; 11:1852-1867. [PMID: 38775214 PMCID: PMC11251479 DOI: 10.1002/acn3.52091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the specific alterations of brain networks in patients with post-stroke depression (PSD), and further assist in elucidating the brain mechanisms underlying the PSD which would provide supporting evidence for early diagnosis and interventions for the disease. METHODS Resting-state functional magnetic resonace imaging data were acquired from 82 nondepressed stroke patients (Stroke), 39 PSD patients, and 74 healthy controls (HC). Voxel-wise degree centrality (DC) conjoined with seed-based functional connectivity (FC) analyses were performed to investigate the PSD-related connectivity alterations. The relationship between these alterations and depression severity was further examined in PSD patients. RESULTS Relative to both Stroke and HC groups, (1) PSD showed increased centrality in regions within the default mode network (DMN), including contralesional angular gyrus (ANG), posterior cingulate cortex (PCC), and hippocampus (HIP). DC values in contralesional ANG positively correlated with the Patient Health Questionnaire-9 (PHQ-9) scores in PSD group. (2) PSD exhibited increased connectivity between these three seeds showing altered DC and regions within the DMN: bilateral medial prefrontal cortex and middle temporal gyrus and ipsilesional superior parietal gyrus, and regions outside the DMN: bilateral calcarine, ipsilesional inferior occipital gyrus and contralesional lingual gyrus, while decreased connectivity between contralesional ANG and contralesional supramarginal gyrus. Moreover, these FC alterations could predict PHQ-9 scores in PSD group. INTERPRETATION These findings highlight that PSD was related with increased functional connectivity strength in some areas within the DMN, which might be attribute to the specific alterations of connectivity between within DMN and outside DMN regions in PSD.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Kang Xu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Tongyue Li
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Luoyu Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Yanhui Fu
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Zhenqiang Ma
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Xiaoyan Wu
- Department of ImageAnshan Changda HospitalAnshanLiaoningChina
| | - Yiying Wang
- Department of UltrasonicsAnshan Changda HospitalAnshanLiaoningChina
| | - Fenyang Chen
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jinyi Song
- III Department of Clinic MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yulin Song
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Yating Lv
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| |
Collapse
|
6
|
Xu T, Dong F, Zhang M, Wang K, Xu T, Xia S, Feng C. Post-stroke arrhythmia could be a potential predictor for post-stroke depression. Sci Rep 2024; 14:9093. [PMID: 38643303 PMCID: PMC11032346 DOI: 10.1038/s41598-024-59789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
Post-stroke depression (PSD) is regarded as the consequence of multiple contributors involving the process of cognition, mood and autonomic system, with the specific mechanism unclear yet. As a common type of stroke-heart syndromes, post-stroke arrhythmia shared some common pathogenesis with PSD. We presumed that post-stroke arrhythmia might be an early distinguishable marker for the presence of PSD and aimed to verity their association in this study. Patients with first-ever ischemic stroke were enrolled. The presence of post-stroke ectopic arrhythmia and the symptoms of arrhythmia were recorded with anti-arrhythmia drugs prescribed when necessary. Patients were followed up 3 months later to identify their presence and severity of PSD using Hamilton Depression Scale (HAMD) and also presence and severity of arrhythmia. Characteristics including the prevalence of various types of arrhythmias were compared between PSD and non-PSD groups. The HAMD scores were compared between patients with and without arrhythmia in PSD group. Logistic regression was used to identify the independent predictor of PSD. Patients with PSD had higher prevalence of post-stroke arrhythmia especially newly-detected arrhythmia, symptomatic arrhythmia and poor-controlled arrhythmia. In PSD group, patients of post-stroke arrhythmia had higher scores of HAMD than those without arrhythmia. Presence of newly-detected, symptomatic and poor-controlled arrhythmias were independent predictor of PSD. post-stroke arrhythmia especially newly-detected arrhythmia and symptomatic arrhythmia could be an early predictor of PSD. Successful control of arrhythmia was associated with reduced prevalence and severity of PSD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Fangying Dong
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
- The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Muhua Zhang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Kewu Wang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Tian Xu
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China.
| |
Collapse
|
7
|
Liu Y, Zhang B, Zhou Y, Li M, Gao Y, Qin W, Xie Y, Liu W, Jing Y, Li J. Plasma oxidative stress marker levels related to functional brain abnormalities in first-episode drug-naive major depressive disorder. Psychiatry Res 2024; 333:115742. [PMID: 38232568 DOI: 10.1016/j.psychres.2024.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
Major Depressive Disorder (MDD) is marked by abnormal brain function and elevated plasma oxidative stress markers. The specific relationship between these factors in MDD remains unclear. In this study, we conducted resting-state fMRI scans on fifty-seven first-episode, drug-naive MDD patients and sixty healthy controls. Plasma levels of oxidative stress markers (superoxide dismutase (SOD) and glutathione reductase (GSR)) were assessed using ELISA. Our results revealed a positive correlation between plasma SOD and GSR levels in MDD patients and the amplitude of low-frequency fluctuation (ALFF) values in key brain regions-thalamus, anterior cingulate gyrus, and superior frontal gyrus. Further analysis indicated positive correlations between plasma SOD and GSR levels and specific ALFF values in MDD patients without suicidal ideation, with these correlations not significant in MDD patients with suicidal ideation. Additionally, seed-based whole-brain functional connectivity analysis demonstrated a negative correlation between plasma GSR levels and connectivity between the thalamus and insula, while plasma SOD levels showed a positive correlation with connectivity between the thalamus and precuneus. These findings contribute to our understanding of MDD's pathophysiology and heterogeneity, highlighting the association between plasma oxidative stress markers and functional abnormalities in diverse brain regions.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yuwen Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weigang Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yifan Jing
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
8
|
Zhou H, Wei YJ, Xie GY. Research progress on post-stroke depression. Exp Neurol 2024; 373:114660. [PMID: 38141804 DOI: 10.1016/j.expneurol.2023.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Stroke is a highly prevalent and widely detrimental cardiovascular disease, frequently resulting in impairments of both motor function and neural psychological capabilities, such as post-stroke depression (PSD). PSD is the most prevalent neuropsychological disorder among stroke patients, characterized by persistent emotional lowness and diminished interest as its primary features. This article summarizes the mechanism research, animal models and related treatments of PSD. Further improvements are needed in the screening of research subjects and the construction of animal models in the study of PSD. At the same time, in the study of the mechanism of PSD, we need to consider the interaction between multiple systems. The treatment of PSD requires more careful consideration. This can help us to find something new in the study of the mechanism of complex PSD, which provides a new direction for us to develop new treatment delivery.
Collapse
Affiliation(s)
- Hui Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China
| | - Yu-Jiao Wei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China
| | - Guang-Yao Xie
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China; The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Krick S, Koob JL, Latarnik S, Volz LJ, Fink GR, Grefkes C, Rehme AK. Neuroanatomy of post-stroke depression: the association between symptom clusters and lesion location. Brain Commun 2023; 5:fcad275. [PMID: 37908237 PMCID: PMC10613857 DOI: 10.1093/braincomms/fcad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Post-stroke depression affects about 30% of stroke patients and often hampers functional recovery. The diagnosis of depression encompasses heterogeneous symptoms at emotional, motivational, cognitive, behavioural or somatic levels. Evidence indicates that depression is caused by disruption of bio-aminergic fibre tracts between prefrontal and limbic or striatal brain regions comprising different functional networks. Voxel-based lesion-symptom mapping studies reported discrepant findings regarding the association between infarct locations and depression. Inconsistencies may be due to the usage of sum scores, thereby mixing different symptoms of depression. In this cross-sectional study, we used multivariate support vector regression for lesion-symptom mapping to identify regions significantly involved in distinct depressive symptom domains and global depression. MRI lesion data were included from 200 patients with acute first-ever ischaemic stroke (mean 0.9 ± 1.5 days of post-stroke). The Montgomery-Åsberg Depression Rating interview assessed depression severity in five symptom domains encompassing motivational, emotional and cognitive symptoms deficits, anxiety and somatic symptoms and was examined 8.4 days of post-stroke (±4.3). We found that global depression severity, irrespective of individual symptom domains, was primarily linked to right hemispheric lesions in the dorsolateral prefrontal cortex and inferior frontal gyrus. In contrast, when considering distinct symptom domains individually, the analyses yielded much more sensitive results in regions where the correlations with the global depression score yielded no effects. Accordingly, motivational deficits were associated with lesions in orbitofrontal cortex, dorsolateral prefrontal cortex, pre- and post-central gyri and basal ganglia, including putamen and pallidum. Lesions affecting the dorsal thalamus, anterior insula and somatosensory cortex were significantly associated with emotional symptoms such as sadness. Damage to the dorsolateral prefrontal cortex was associated with concentration deficits, cognitive symptoms of guilt and self-reproach. Furthermore, somatic symptoms, including loss of appetite and sleep disturbances, were linked to the insula, parietal operculum and amygdala lesions. Likewise, anxiety was associated with lesions impacting the central operculum, insula and inferior frontal gyrus. Interestingly, symptoms of anxiety were exclusively left hemispheric, whereas the lesion-symptom associations of the other domains were lateralized to the right hemisphere. In conclusion, this large-scale study shows that in acute stroke patients, differential post-stroke depression symptom domains are associated with specific structural correlates. Our findings extend existing concepts on the neural underpinnings of depressive symptoms, indicating that differential lesion patterns lead to distinct depressive symptoms in the first weeks of post-stroke. These findings may facilitate the development of personalized treatments to improve post-stroke rehabilitation.
Collapse
Affiliation(s)
- Sebastian Krick
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Janusz L Koob
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Sylvia Latarnik
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Forschungszentrum Jülich, Jülich 52425, Germany
- Department of Neurology, Goethe University Hospital Frankfurt, Frankfurt am Main 60528, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| |
Collapse
|
10
|
Lu JJ, Xing XX, Qu J, Wu JJ, Hua XY, Zheng MX, Xu JG. Morphological alterations of contralesional hemisphere relate to functional outcomes after stroke. Eur J Neurosci 2023; 58:3347-3361. [PMID: 37489657 DOI: 10.1111/ejn.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The present study aimed to investigate poststroke morphological alterations contralesionally and correlations with functional outcomes. Structural magnetic resonance images were obtained from 27 poststroke patients (24 males, 50.21 ± 10.97 years) and 20 healthy controls (13 males, 46.63 ± 12.18 years). Voxel-based and surface-based morphometry analysis were conducted to detect alterations of contralesional grey matter volume (GMV), cortical thickness (CT), gyrification index (GI), sulcus depth (SD), and fractal dimension (FD) in poststroke patients. Partial correlation analysis was used to explore the relationship between regions with significant structural differences and scores of clinical assessments, including Modified Barthel Index (MBI), Berg Balance Scale (BBS), Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). Correction for multiplicity was conducted within each parameter and for all tests. GMV significantly decreased in the contralesional motor-related, occipital and temporal cortex, limbic system, and cerebellum lobe (P < 0.01, family-wise error [FWE] correction). Lower CT was found in the contralesional precentral and lingual gyrus (P < 0.01, FWE correction), while lower GI found in the contralesional superior temporal gyrus and insula (P < 0.01, FWE correction). There were significant correlations between GMV of contralesional lingual gyrus and MBI (P = 0.031, r = 0.441), and BBS (P = 0.047, r = 0.409) scores, and GMV of contralesional hippocampus and FMA-UE scores (P = 0.048, r = 0.408). In conclusion, stroke patients exhibited wide grey matter loss and cortical morphological changes in the contralesional hemisphere, which correlated with sensorimotor functions and the ability of daily living.
Collapse
Affiliation(s)
- Juan-Juan Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Qu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
11
|
Peng Y, Zheng Y, Yuan Z, Guo J, Fan C, Li C, Deng J, Song S, Qiao J, Wang J. The characteristics of brain network in patient with post-stroke depression under cognitive task condition. Front Neurosci 2023; 17:1242543. [PMID: 37655007 PMCID: PMC10467271 DOI: 10.3389/fnins.2023.1242543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Objectives Post-stroke depression (PSD) may be associated with the altered brain network property. This study aimed at exploring the brain network characteristics of PSD under the classic cognitive task, i.e., the oddball task, in order to promote our understanding of the pathogenesis and the diagnosis of PSD. Methods Nineteen stroke survivors with PSD and 18 stroke survivors with no PSD (non-PSD) were recruited. The functional near-infrared spectroscopy (fNIRS) covering the dorsolateral prefrontal cortex was recorded during the oddball task state and the resting state. The brain network characteristics were extracted using the graph theory and compared between the PSD and the non-PSD subjects. In addition, the classification performance between the PSD and non-PSD subjects was evaluated using features in the resting and the task state, respectively. Results Compared with the resting state, more brain network characteristics in the task state showed significant differences between the PSD and non-PSD groups, resulting in better classification performance. In the task state, the assortativity, clustering coefficient, characteristic path length, and local efficiency of the PSD subjects was larger compared with the non-PSD subjects while the global efficiency of the PSD subjects was smaller than that of the non-PSD subjects. Conclusion The altered brain network properties associated with PSD in the cognitive task state were more distinct compared with the resting state, and the ability of the brain network to resist attack and transmit information was reduced in PSD patients in the task state. Significance This study demonstrated the feasibility and superiority of investigating brain network properties in the task state for the exploration of the pathogenesis and new diagnosis methods for PSD.
Collapse
Affiliation(s)
- Yu Peng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Institute of Biomedical Engineering, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Zheng
- The State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Institute of Engineering and Medicine Interdisciplinary Studies, Xi’an Jiaotong University, Xi’an, China
| | - Ziwen Yuan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Institute of Biomedical Engineering, Xi’an Jiaotong University, Xi’an, China
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Guo
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chunyang Fan
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Jingyuan Deng
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siming Song
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Qiao
- Department of Rehabilitation, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Institute of Biomedical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Wu X, Wang L, Jiang H, Fu Y, Wang T, Ma Z, Wu X, Wang Y, Fan F, Song Y, Lv Y. Frequency-dependent and time-variant alterations of neural activity in post-stroke depression: A resting-state fMRI study. Neuroimage Clin 2023; 38:103445. [PMID: 37269698 PMCID: PMC10244813 DOI: 10.1016/j.nicl.2023.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) is one of the most frequent psychiatric disorders after stroke. However, the underlying brain mechanism of PSD remains unclarified. Using the amplitude of low-frequency fluctuation (ALFF) approach, we aimed to investigate the abnormalities of neural activity in PSD patients, and further explored the frequency and time properties of ALFF changes in PSD. METHODS Resting-state fMRI data and clinical data were collected from 39 PSD patients (PSD), 82 S patients without depression (Stroke), and 74 age- and sex-matched healthy controls (HC). ALFF across three frequency bands (ALFF-Classic: 0.01-0.08 Hz; ALFF-Slow4: 0.027-0.073 Hz; ALFF-Slow5: 0.01-0.027 Hz) and dynamic ALFF (dALFF) were computed and compared among three groups. Ridge regression analyses and spearman's correlation analyses were further applied to explore the relationship between PSD-specific alterations and depression severity in PSD. RESULTS We found that PSD-specific alterations of ALFF were frequency-dependent and time-variant. Specially, compared to both Stroke and HC groups, PSD exhibited increased ALFF in the contralesional dorsolateral prefrontal cortex (DLPFC) and insula in all three frequency bands. Increased ALFF in ipsilesional DLPFC were observed in both slow-4 and classic frequency bands which were positively correlated with depression scales in PSD, while increased ALFF in the bilateral hippocampus and contralesional rolandic operculum were only found in slow-5 frequency band. These PSD-specific alterations in different frequency bands could predict depression severity. Moreover, decreased dALFF in contralesional superior temporal gyrus were observed in PSD group. LIMITATIONS Longitudinal studies are required to explore the alterations of ALFF in PSD as the disease progress. CONCLUSIONS The frequency-dependent and time-variant properties of ALFF could reflect the PSD-specific alterations in complementary ways, which may assist to elucidate underlying neural mechanisms and be helpful for early diagnosis and interventions for the disease.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Tiantian Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Cao L, Wu H, Chen S, Dong Y, Zhu C, Jia J, Fan C. A Novel Deep Learning Method Based on an Overlapping Time Window Strategy for Brain-Computer Interface-Based Stroke Rehabilitation. Brain Sci 2022; 12:1502. [PMID: 36358428 PMCID: PMC9688819 DOI: 10.3390/brainsci12111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 09/22/2023] Open
Abstract
Globally, stroke is a leading cause of death and disability. The classification of motor intentions using brain activity is an important task in the rehabilitation of stroke patients using brain-computer interfaces (BCIs). This paper presents a new method for model training in EEG-based BCI rehabilitation by using overlapping time windows. For this aim, three different models, a convolutional neural network (CNN), graph isomorphism network (GIN), and long short-term memory (LSTM), are used for performing the classification task of motor attempt (MA). We conducted several experiments with different time window lengths, and the results showed that the deep learning approach based on overlapping time windows achieved improvements in classification accuracy, with the LSTM combined vote-counting strategy (VS) having achieved the highest average classification accuracy of 90.3% when the window size was 70. The results verified that the overlapping time window strategy is useful for increasing the efficiency of BCI rehabilitation.
Collapse
Affiliation(s)
- Lei Cao
- Department of Artificial Intelligence, Shanghai Maritime University, Shanghai 201306, China
| | - Hailiang Wu
- Department of Artificial Intelligence, Shanghai Maritime University, Shanghai 201306, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yilin Dong
- Department of Artificial Intelligence, Shanghai Maritime University, Shanghai 201306, China
| | - Changming Zhu
- Department of Artificial Intelligence, Shanghai Maritime University, Shanghai 201306, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chunjiang Fan
- Department of Rehabilitation Medicine, Wuxi Rehabilitation Hospital, Wuxi 214001, China
| |
Collapse
|
14
|
Zavaliangos‐Petropulu A, Lo B, Donnelly MR, Schweighofer N, Lohse K, Jahanshad N, Barisano G, Banaj N, Borich MR, Boyd LA, Buetefisch CM, Byblow WD, Cassidy JM, Charalambous CC, Conforto AB, DiCarlo JA, Dula AN, Egorova‐Brumley N, Etherton MR, Feng W, Fercho KA, Geranmayeh F, Hanlon CA, Hayward KS, Hordacre B, Kautz SA, Khlif MS, Kim H, Kuceyeski A, Lin DJ, Liu J, Lotze M, MacIntosh BJ, Margetis JL, Mohamed FB, Piras F, Ramos‐Murguialday A, Revill KP, Roberts PS, Robertson AD, Schambra HM, Seo NJ, Shiroishi MS, Stinear CM, Soekadar SR, Spalletta G, Taga M, Tang WK, Thielman GT, Vecchio D, Ward NS, Westlye LT, Werden E, Winstein C, Wittenberg GF, Wolf SL, Wong KA, Yu C, Brodtmann A, Cramer SC, Thompson PM, Liew S. Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. J Am Heart Assoc 2022; 11:e025109. [PMID: 35574963 PMCID: PMC9238563 DOI: 10.1161/jaha.121.025109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; β=-0.26) and contralesional (P=0.006; β=-0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; β=-0.21) and extent of sensorimotor damage (P=0.003; β=-0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.
Collapse
Affiliation(s)
- Artemis Zavaliangos‐Petropulu
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCA
| | - Bethany Lo
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Miranda R. Donnelly
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Nicolas Schweighofer
- Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Keith Lohse
- Physical Therapy and NeurologyWashington University School of Medicine in Saint LouisMO
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Giuseppe Barisano
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCA
| | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Michael R. Borich
- Division of Physical TherapyDepartment of Rehabilitation MedicineEmory University School of MedicineAtlantaGA
| | - Lara A. Boyd
- Department of Physical TherapyUniversity of British ColumbiaVancouverCanada
| | | | - Winston D. Byblow
- Department of Exercise Sciences, and Centre for Brain ResearchUniversity of AucklandNew Zealand
| | - Jessica M. Cassidy
- Department of Allied Health SciencesUniversity of North Carolina at Chapel HillNC
| | - Charalambos C. Charalambous
- Department of Basic and Clinical SciencesUniversity of Nicosia Medical SchoolNicosiaCyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE)NicosiaCyprus
| | - Adriana B. Conforto
- Hospital das ClínicasSão Paulo UniversitySão PauloBrazil
- Hospital Israelita Albert EinsteinSão PauloBrazil
| | - Julie A. DiCarlo
- Center for Neurotechnology and Neurorecovery (CNTR)Massachusetts General HospitalBostonMA
| | - Adrienne N. Dula
- Department of NeurologyDell Medical SchoolUniversity of Texas at AustinTX
| | | | - Mark R. Etherton
- Department of NeurologyJ. Philip Kistler Stroke Research CenterMassachusetts General HospitalBostonMA
| | - Wuwei Feng
- Department of NeurologyDuke University School of MedicineDurhamNC
| | - Kelene A. Fercho
- Basic Biomedical SciencesUniversity of South DakotaVermillionSD
- Federal Aviation AdministrationCivil Aerospace Medical InstituteOklahoma CityOK
| | | | | | - Kathryn S. Hayward
- Departments of Physiotherapy and Medicine, University of MelbourneHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in HealthAllied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Steven A. Kautz
- Ralph H Johnson Veterans Affairs Medical CenterCharlestonSC
- Department of Health Sciences & ResearchMedical University of South CarolinaCharlestonSC
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Hosung Kim
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNY
| | - David J. Lin
- Center for Neurotechnology and Neurorecovery (CNTR)Massachusetts General HospitalBostonMA
| | - Jingchun Liu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Martin Lotze
- Functional ImagingInstitute for Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGermany
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - John L. Margetis
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - Feroze B. Mohamed
- Department of RadiologyJefferson Integrated MR CenterThomas Jefferson UniversityPhiladelphiaPA
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Ander Ramos‐Murguialday
- Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TübingenGermany
- Health DivisionTECNALIASan SebastianSpain
| | | | - Pamela S. Roberts
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
- Department of Physical Medicine and RehabilitationCedars‐SinaiLos AngelesCA
| | - Andrew D. Robertson
- Department of Kinesiology and Health SciencesUniversity of WaterlooOntarioCanada
| | - Heidi M. Schambra
- Departments of Neurology & Rehabilitation MedicineNYU LangoneNew YorkNY
| | - Na Jin Seo
- Ralph H Johnson Veterans Affairs Medical CenterCharlestonSC
- Department of Rehabilitation SciencesDepartment of Health Science and ResearchMedical University of South CarolinaCharlestonSC
| | - Mark S. Shiroishi
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of RadiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | | | - Surjo R. Soekadar
- Clinical Neurotechnology LaboratoryDepartment of Psychiatry and Neurosciences (CCM)Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Myriam Taga
- NYU Langone Department of NeurologyNew YorkNY
| | - Wai Kwong Tang
- Department of PsychiatryThe Chinese University of Hong KongChina
| | - Gregory T. Thielman
- Department of Physical Therapy and NeuroscienceUniversity of the SciencesPhiladelphiaPA
| | - Daniela Vecchio
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Nick S. Ward
- University College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloNorway
- Department of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
- Melbourne Dementia Research CenterUniversity of MelbourneVictoriaAustralia
| | - Carolee Winstein
- Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCA
| | - George F. Wittenberg
- Department of NeurologyUniversity of PittsburghPA
- Department of Veterans AffairsGeriatrics Research Educational & Clinical CenterVeterans Affairs Pittsburgh Healthcare System (VAPHS)PittsburghPA
| | - Steven L. Wolf
- Division of Physical TherapyDepartment of Rehabilitation MedicineEmory University School of MedicineAtlantaGA
- Department of MedicineEmory University School of MedicineAtlantaGA
| | - Kristin A. Wong
- Department of Physical Medicine & RehabilitationDell Medical SchoolUniversity of Texas at AustinTX
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Steven C. Cramer
- Department of NeurologyUniversity of California Los AngelesDavid Geffen School of MedicineLos AngelesCA
- California Rehabilitation HospitalLos AngelesCA
| | - Paul M. Thompson
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Sook‐Lei Liew
- Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Chan Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCA
- Biokinesiology and Physical TherapyUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
15
|
Yao G, Zhang X, Li J, Liu S, Li X, Liu P, Xu Y. Improving Depressive Symptoms of Post-stroke Depression Using the Shugan Jieyu Capsule: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurol 2022; 13:860290. [PMID: 35493835 PMCID: PMC9047823 DOI: 10.3389/fneur.2022.860290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF) were used to detect the neuroimaging mechanism of Shugan Jieyu Capsule (SG) in ameliorating depression of post-stroke depression (PSD) patients. Fifteen PSD patients took SG for 8 weeks, completed the 24-item Hamilton Depression Scale (HAMD) assessment at the baseline and 8 weeks later, and underwent functional magnetic resonance imaging (fMRI) scanning. Twenty-one healthy controls (HCs) underwent these assessments at the baseline. We found that SG improved depression of PSD patients, in which ReHo values decreased in the left calcarine sulcus (CAL.L) and increased in the left superior frontal gyrus (SFG.L) of PSD patients at the baseline. The fALFF values of the left inferior parietal cortex (IPL.L) decreased in PSD patients at the baseline. Abnormal functional activities in the brain regions were reversed to normal levels after the administration of SG for 8 weeks. Receiver operating characteristic (ROC) analysis found that the changes in three altered brain regions could be used to differentiate PSD patients at the baseline and HCs. Average signal values of altered regions were related to depression in all subjects at the baseline. Our results suggest that SG may ameliorate depression of PSD patients by affecting brain region activity and local synchronization.
Collapse
Affiliation(s)
- Guanqun Yao
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xiaoqian Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Pozi Liu
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Pan C, Li G, Sun W, Miao J, Qiu X, Lan Y, Wang Y, Wang H, Zhu Z, Zhu S. Neural Substrates of Poststroke Depression: Current Opinions and Methodology Trends. Front Neurosci 2022; 16:812410. [PMID: 35464322 PMCID: PMC9019549 DOI: 10.3389/fnins.2022.812410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Poststroke depression (PSD), affecting about one-third of stroke survivors, exerts significant impact on patients’ functional outcome and mortality. Great efforts have been made since the 1970s to unravel the neuroanatomical substrate and the brain-behavior mechanism of PSD. Thanks to advances in neuroimaging and computational neuroscience in the past two decades, new techniques for uncovering the neural basis of symptoms or behavioral deficits caused by focal brain damage have been emerging. From the time of lesion analysis to the era of brain networks, our knowledge and understanding of the neural substrates for PSD are increasing. Pooled evidence from traditional lesion analysis, univariate or multivariate lesion-symptom mapping, regional structural and functional analyses, direct or indirect connectome analysis, and neuromodulation clinical trials for PSD, to some extent, echoes the frontal-limbic theory of depression. The neural substrates of PSD may be used for risk stratification and personalized therapeutic target identification in the future. In this review, we provide an update on the recent advances about the neural basis of PSD with the clinical implications and trends of methodology as the main features of interest.
Collapse
|
17
|
Bai Y, Diao Y, Gan L, Zhuo Z, Yin Z, Hu T, Cheng D, Xie H, Wu D, Fan H, Zhang Q, Duan Y, Meng F, Liu Y, Jiang Y, Zhang J. Deep Brain Stimulation Modulates Multiple Abnormal Resting-State Network Connectivity in Patients With Parkinson’s Disease. Front Aging Neurosci 2022; 14:794987. [PMID: 35386115 PMCID: PMC8978802 DOI: 10.3389/fnagi.2022.794987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Deep brain stimulation (DBS) improves motor and non-motor symptoms in patients with Parkinson’s disease (PD). Researchers mainly investigated the motor networks to reveal DBS mechanisms, with few studies extending to other networks. This study aimed to investigate multi-network modulation patterns using DBS in patients with PD. Methods Twenty-four patients with PD underwent 1.5 T functional MRI (fMRI) scans in both DBS-on and DBS-off states, with twenty-seven age-matched healthy controls (HCs). Default mode, sensorimotor, salience, and left and right frontoparietal networks were identified by using the independent component analysis. Power spectra and functional connectivity of these networks were calculated. In addition, multiregional connectivity was established from 15 selected regions extracted from the abovementioned networks. Comparisons were made among groups. Finally, correlation analyses were performed between the connectivity changes and symptom improvements. Results Compared with HCs, PD-off showed abnormal power spectra and functional connectivity both within and among these networks. Some of the abovementioned abnormalities could be corrected by DBS, including increasing the power spectra in the sensorimotor network and modulating the parts of the ipsilateral functional connectivity in different regions centered in the frontoparietal network. Moreover, the DBS-induced functional connectivity changes were correlated with motor and depression improvements in patients with PD. Conclusion DBS modulated the abnormalities in multi-networks. The functional connectivity alterations were associated with motor and psychiatric improvements in PD. This study lays the foundation for large-scale brain network research on multi-network DBS modulation.
Collapse
Affiliation(s)
- Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Diao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Gan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaou Liu,
| | - Yin Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Yin Jiang,
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Jianguo Zhang,
| |
Collapse
|
18
|
Mechanisms of Repetitive Transcranial Magnetic Stimulation on Post-stroke Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Brain Topogr 2022; 35:363-374. [PMID: 35286526 DOI: 10.1007/s10548-022-00894-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
Abstract
We aimed to identify neural mechanisms underlying clinical response to repetitive transcranial magnetic stimulation (rTMS) in post-stroke depression (PSD) by the Resting-state functional magnetic resonance imaging (rs-fMRI). Thirty-two depressed patients after ischemic stroke were randomized in a 1:1 ratio to receive 20 min of 5 Hz rTMS or sham over left dorsolateral prefrontal cortex (DLPFC) in addition to routine supportive treatments. The clinical outcome was measured by the 17-item Hamilton Depression Rating Scale (HDRS-17), while the imaging results were acquired from rs-fMRI, including regional homogeneity (ReHo), fractional amplitude of low-frequency fluctuation (fALFF) and seed-based dynamic functional connection (dFC). HRSD-17 scores were improved in the two groups after treatment (P < 0.01), while greater mood improvement was observed in the rTMS group (P < 0.05). Compared with the sham group, the rTMS group demonstrated regions with higher ReHo and fALFF values locating mainly in the left hemisphere and highly consistent with the default mode network (DMN) (p < 0.05). Using the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) as seeds, significant difference between the two groups in dFC within the DMN was found after treatment, including 10 connections with increased connectivity strength and 2 connections with reduced connectivity strength. The ReHo, fALFF and dFC values within DMN in the rTMS group were negatively correlated with the HDRS scores after treatment (P < 0.05). Our results indicated reductions in depressive symptoms following rTMS in PSD are associated with functional alterations of different depression-related areas within the DMN.
Collapse
|
19
|
Wang KW, Xu YM, Lou CB, Huang J, Feng C. The etiologies of post-stroke depression: Different between lacunar stroke and non-lacunar stroke. Clinics (Sao Paulo) 2022; 77:100095. [PMID: 36027756 PMCID: PMC9424932 DOI: 10.1016/j.clinsp.2022.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Depression is common after both lacunar stroke and non-lacunar stroke and might be associated with lesion locations as proven by some studies. This study aimed to identify whether lesion location was critical for depression after both lacunar and non-lacunar strokes. METHODS A cohort of ischemic stroke patients was assigned to either a lacunar stroke group or a non-lacunar stroke group after a brain MRI scan. Neurological deficits and treatment response was evaluated during hospitalization. The occurrence of depression was evaluated 3 months later. Logistic regressions were used to identify the independent risk factors for depression after lacunar and non-lacunar stroke respectively. RESULTS 83 of 246 patients with lacunar stroke and 71 of 185 patients with non-lacunar stroke developed depression. Infarctions in the frontal cortex, severe neurological deficits, and a high degree of handicap were identified as the independent risk factors for depression after non-lacunar stroke, while lesion location was not associated with depression after lacunar stroke. CONCLUSION The main determinants for depression after lacunar and non-lacunar stroke were different. Lesion location was critical only for depression after non-lacunar stroke.
Collapse
Affiliation(s)
- Ke-Wu Wang
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Yang-Miao Xu
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Chao-Bin Lou
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Jing Huang
- Shanghai Xuhui Central Hospital, Shanghai, China
| | - Chao Feng
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
20
|
Zhang X, Shi Y, Fan T, Wang K, Zhan H, Wu W. Analysis of Correlation Between White Matter Changes and Functional Responses in Post-stroke Depression. Front Aging Neurosci 2021; 13:728622. [PMID: 34707489 PMCID: PMC8542668 DOI: 10.3389/fnagi.2021.728622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
Objective: Post-stroke depression (PSD) is one of the most common neuropsychiatric symptoms with high prevalence, however, the mechanism of the brain network in PSD and the relationship between the structural and functional network remain unclear. This research applies graph theory to structural networks and explores the relationship between structural and functional networks. Methods: Forty-five patients with acute ischemic stroke were divided into the PSD group and post-stroke without depression (non-PSD) group respectively and underwent the magnetic resonance imaging scans. Network construction and Module analysis were used to explore the structural connectivity-functional connectivity (SC-FC) coupling of multi-scale brain networks in patients with PSD. Results: Compared with non-PSD, the structural network in PSD was related to the reduction of clustering and the increase of path length, but the degree of modularity was lower. Conclusions: The SC-FC coupling may serve as a biomarker for PSD. The similarity in SC and FC is associated with cognitive dysfunction, retardation, and desperation. Our findings highlighted the distinction in brain structural-functional networks in PSD. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT03256305, NCT03256305.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Fan
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangling Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Rehabilitation Medical School, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Tao J, Kong L, Fang M, Zhu Q, Zhang S, Zhang S, Wu J, Shan C, Feng L, Guo Q, Wu Z. The efficacy of Tuina with herbal ointment for patients with post-stroke depression: study protocol for a randomized controlled trial. Trials 2021; 22:504. [PMID: 34321056 PMCID: PMC8320029 DOI: 10.1186/s13063-021-05469-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is a common complication after stroke which hinders functional recovery and return to social participation of stroke patients. Efficacy of conventional drug therapies for patients with PSD is still uncertain. Therefore, many patients prefer to use complementary and alternative therapies for PSD. Tuina (traditional Chinese manual manipulation) with herbal ointment is an integration of manual therapy, and ointment is an important part of traditional Chinese medicine (TCM) therapy. Preliminary experiments have shown that the Tuina with herbal ointment can improve the mental state of patients with PSD. The purpose of this study is to observe and verify the efficacy of Tuina combined with herbal ointment for patients with post-stroke depression, and to lay a foundation for further research on its mechanism of action. METHODS/DESIGN In this study, a randomized controlled trial will be conducted in parallel, including two intervention groups: Tuina with herbal ointment group and herbal ointment for control group. A total of 84 eligible participants will be randomly assigned to the groups in a 1:1 ratio. All participants will receive conventional antidepressant venlafaxine treatment (75 mg QD), on which they received two different interventions. The interventions for both groups will be carried out 5 times each week for a period of 2 weeks. The primary outcome will be the Hamilton Rating Scale for Depression (HAMD). Secondary outcomes will include transcranial magnetic stimulation (TMS), as well as 36-item Short-Form Health Survey (SF-36) and Treatment Emergent Symptom Scale (TESS). They will be assessed at the baseline, at the end of the intervention (2 weeks), and during the 1 month and 3 months of follow-up by repeated measures analysis of variance. The significance level is 5%. Adverse events will be monitored at each visit to assess safety. All outcomes will be assessed and analyzed by researchers blinded to the treatment allocation. The purpose of this study will focus on observing the efficacy of Tuina with herbal ointment for patients with post-stroke depression, and to explore further the mechanisms of its effects. DISCUSSION This study may evaluate clinical application value and safety of Tuina with herbal ointment in PSD patients, which can provide basis for clinical research and mechanism exploration of PSD. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2000033887 . Registered on 15 June 2020. DISSEMINATION The results will be published in peer-reviewed journals and disseminated through the study's website and conferences.
Collapse
Affiliation(s)
- Jiming Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Min Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China. .,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China. .,School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Shuaipan Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Sicong Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Jiajia Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Chunlei Shan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Ling Feng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Qingjuan Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhiwei Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.,Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| |
Collapse
|
22
|
Wang X, Liu S, Ma J, Wang K, Wang Z, Li J, Chen J, Zhan H, Wu W. The Inhibitory Effect of Emotional Conflict Control on Memory Retrieval. Neuroscience 2021; 468:29-42. [PMID: 34102264 DOI: 10.1016/j.neuroscience.2021.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Evidence is mounting that emotional conflict is mainly resolved by the rostral anterior cingulate inhibiting the processing of emotional distractors. However, this theory has not been verified from the perspective of memory retrieval. This experiment aimed to explore the offline effect of emotional conflict processing on memory retrieval. We adopted a modified encoding-retrieval paradigm to explore this issue. Participants' electroencephalography (EEG) signal were also collected. A face-word Stroop task was used to create the congruency factor. In addition, an old/new judgment task was used to evaluate the recognition performance. During the retrieval phase, the response time of the incongruent condition was longer and the recognition accuracy was lower compared with congruent and neutral conditions in the behavioral data. For event-related potentials (ERP), we detected two well-established old/new effects related to memory retrieval under both neutral and emotional conditions: the frontal negativity (FN400) related to familiarity-driven recognition and the late posterior negativity (LPN) related to reconstructive processing or evaluation of retrieval outcomes. More importantly, the old/new effects were missing for incongruent condition during the early stage of FN400 (300-400 ms). Besides, for LPN (700-900 ms), the old/new effects of the incongruent condition are greater than the congruent condition. The results prove that the encoding phase's emotional congruency factor has a regulatory effect on the retrieval phase's early familiarity processing and evaluation of retrieval outcomes. Our data confirm the inhibitory effect of emotional conflict control on memory retrieval and support the emotional conflict control mechanism found in previous studies.
Collapse
Affiliation(s)
- Xianglong Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Sishi Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Junqin Ma
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Kangling Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Zhengtao Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jie Li
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jiali Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
23
|
Isuru A, Hapangama A, Ediriweera D, Samarasinghe L, Fonseka M, Ranawaka U. Prevalence and predictors of new onset depression in the acute phase of stroke. Asian J Psychiatr 2021; 59:102636. [PMID: 33848806 DOI: 10.1016/j.ajp.2021.102636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Post-stroke depression (PSD) is known to be associated with poor functional outcome and high mortality. There is limited data on the prevalence and associated factors of depression in the acute phase after stroke. OBJECTIVES To determine the prevalence of PSD in the acute phase and its correlates among patients with stroke in a tertiary care hospital in Sri Lanka. METHOD A cross sectional descriptive study was conducted among patients with stroke admitted to the stroke unit of a tertiary care hospital in Sri Lanka over a 3-year period. Demographic and clinical information was obtained using an interviewer administered questionnaire. Depression was diagnosed using the ICD-10 criteria. Group comparisons were performed using Pearson's Chi-square test and Mann-Whitney U test Multiple logistic regression was used to identify factors associated with PSD. RESULTS Of 374 patients, 106 patients experienced moderate to severe PSD, with a prevalence of 28.3 % (95 % CI: 23.8 %-32.9 %). Of them, 54.7 % were females, 49 % were above the age of 60 years, and 79.9 % had ischemic strokes. Female gender (OR-2.77, 95 % CI: 1.46-5.07, P = 0.002), a longer duration of hypertension (OR-1.31, 95 % CI: 1.01-1.721, P = 0.004), strokes involving the temporal lobe (OR-7.25, 95 % CI: 2.81-20.25, P < 0.001) and post-stroke functional disability (OR- O.98, 95 % CI:0.97-0.99, P = 0.001) were associated with PSD on multivariate analysis. CONCLUSION More than one fourth of the patients suffered from PSD in the acute phase of stroke. Female gender, longer history of hypertension, physical dependence and temporal lobe strokes were predictive of PSD.
Collapse
Affiliation(s)
- Amila Isuru
- Department of Psychiatry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka and University Psychiatry Unit, Colombo North Teaching Hospital, Ragama, Sri Lanka.
| | - Aruni Hapangama
- Department of Psychiatry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Dileepa Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | | | - Madhavi Fonseka
- University Psychiatry Unit, North Colombo Teaching Hospital, Ragama, Sri Lanka
| | - Udaya Ranawaka
- Department of Medicine, University of Sri Lanka, Sri Lanka
| |
Collapse
|
24
|
Wijeratne T, Sales C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. J Clin Med 2021; 10:jcm10081674. [PMID: 33919670 PMCID: PMC8069768 DOI: 10.3390/jcm10081674] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic Stroke precedes depression. Post-stroke depression (PSD) is a major driver for poor recovery, negative quality of life, poor rehabilitation outcomes and poor functional ability. In this systematic review, we analysed the inflammatory basis of post-stroke depression, which involves bioenergetic failure, deranged iron homeostasis (calcium influx, Na influx, potassium efflux etc), excitotoxicity, acidotoxicity, disruption of the blood brain barrier, cytokine-mediated cytotoxicity, reactive oxygen mediated toxicity, activation of cyclooxygenase pathway and generation of toxic products. This process subsequently results in cell death, maladapted, persistent neuro-inflammation and deranged neuronal networks in mood-related brain regions. Furthermore, an in-depth review likewise reveals that anatomic structures related to post-stroke depression may be localized to complex circuitries involving the cortical and subcortical regions.
Collapse
Affiliation(s)
- Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne 3000, Australia
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
- Department of Medicine, Faculty of Medicine, University of Rajarata, Saliyapura, Anuradhapura 50000, Sri Lanka
- Correspondence:
| | - Carmela Sales
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
| |
Collapse
|
25
|
Tu XQ, Lai ZH, Zhang Y, Ding KQ, Ma FY, Yang GY, He JR, Zeng LL. Periventricular White Matter Hyperintensity in Males is Associated with Post-Stroke Depression Onset at 3 Months. Neuropsychiatr Dis Treat 2021; 17:1839-1857. [PMID: 34135586 PMCID: PMC8197583 DOI: 10.2147/ndt.s311207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This study aimed to explore the correlation between white matter hyperintensity (WMH) and post-stroke depression (PSD) at 3 months, and to further investigate sex differences in the pathogenesis of PSD. METHODS A total of 238 consecutive patients with acute cerebral infarction were recruited. PSD was assessed at 2 weeks and at 3 months after stroke onset. All stroke cases were divided into four subgroups according to the diagnosis of depression at two time nodes: continuous depression; depression remission; late-onset PSD; and continuous non-depression. The Fazekas and Scheltens visual rating scales were adopted to assess WMH. RESULTS Logistic regression revealed that the presence of periventricular white matter hyperintensity (PVWMH) at baseline in male patients was an independent risk factor for PSD at 3 months. Further subgroup analysis revealed that PVWMH was associated with late-onset PSD in males, but not with continuous depression 3 months after stroke. Male acute stroke patients with PVWMH at baseline were more likely to develop PSD at 3 months, especially late-onset PSD. CONCLUSION Our data suggest that sex differences may influence the pathogenesis of PSD.
Collapse
Affiliation(s)
- Xuan-Qiang Tu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ze-Hua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kai-Qi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Fei-Yue Ma
- Department of Neurology and Institute of Neurology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Guo-Yuan Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ji-Rong He
- Department of Neurology and Institute of Neurology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Li-Li Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Ren X, Wang S, Chen X, Wei X, Li G, Ren S, Zhang T, Zhang X, Lu Z, You Z, Wang Z, Song N, Qin C. Multiple Expression Assessments of ACE2 and TMPRSS2 SARS-CoV-2 Entry Molecules in the Urinary Tract and Their Associations with Clinical Manifestations of COVID-19. Infect Drug Resist 2020; 13:3977-3990. [PMID: 33177848 PMCID: PMC7650837 DOI: 10.2147/idr.s270543] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Background Since December 2019, the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first spread quickly in Wuhan, China, then globally. Based on previously published evidence, ACE2 and TMPRSS2 are both pivotal entry molecules that enable cellular infection by SARS-CoV-2. Also, increased expression of pro-inflammatory cytokines, or a “cytokine storm,” is associated with multiple organ dysfunction syndrome often observed in critically ill patients. Methods We investigated the expression pattern of ACE2 and TMPRSS2 in major organs in the human body, especially in specific disease conditions. Multiple sequence alignment of ACE2 in different species was used to explain animal susceptibility. Moreover, the cell-specific expression patterns of ACE2 and cytokine receptors in the urinary tract were assessed using single-cell RNA sequencing (scRNA-seq). Additional biological relevance was determined through Gene Set Enrichment Analysis (GSEA) using an ACE2-specific signature. Results Our results revealed that ACE2 and TMPRSS2 were highly expressed in genitourinary organs. ACE2 was highly and significantly expressed in the kidney among individuals with chronic kidney diseases or diabetic nephropathy. In single cells, ACE2 was primarily enriched in gametocytes in the testis and renal proximal tubules. The receptors for pro-inflammatory cytokines, especially IL6ST, were notably concentrated in endothelial cells, macrophages, spermatogonial stem cells in the testis, and renal endothelial cells, which suggested the occurrence of alternative damaging autoimmune mechanisms. Conclusion This study provided new insights into the pathogenic mechanisms of SARS-CoV-2 that underlie the clinical manifestations observed in the human testis and kidney. These observations might substantially facilitate the development of effective treatments for this rapidly spreading disease.
Collapse
Affiliation(s)
- Xiaohan Ren
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Shangqian Wang
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xinglin Chen
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiyi Wei
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Guangyao Li
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tongtong Zhang
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xu Zhang
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhongwen Lu
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zebing You
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zengjun Wang
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Ninghong Song
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chao Qin
- The State Key Laboratory of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
27
|
Hong W, Zhao Z, Wang D, Li M, Tang C, Li Z, Xu R, Chan CCH. Altered gray matter volumes in post-stroke depressive patients after subcortical stroke. NEUROIMAGE-CLINICAL 2020; 26:102224. [PMID: 32146322 PMCID: PMC7063237 DOI: 10.1016/j.nicl.2020.102224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Stroke survivors are known to suffer from post-stroke depression (PSD). However, the likelihood of structural changes in the brains of PSD patients has not been explored. This study aims to extract changes in the gray matter of these patients and test how these changes account for the PSD symptoms. High-resolution T1 weighted images were collected from 23 PSD patients diagnosed with subcortical stroke. Voxel-based morphometry and support vector machine analyses were used to analyze the data. The results were compared with those collected from 33 non-PSD patients. PSD group showed decreased gray matter volume (GMV) in the left middle frontal gyrus (MFG) when compared to the non-PSD patients. Together with the clinical and demographic variables, the MFG's GMV predictive model was able to distinguish PSD from the non-PSD patients (0•70 sensitivity and 0•88 specificity). The changes in the left inferior frontal gyrus (61%) and dorsolateral prefrontal cortex (39%) suggest that the somatic/affective symptoms in PSD is likely to be due to patients' problems with understanding and appraising negative emotional stimuli. The impact brought by the reduced prefrontal to limbic system connectivity needs further exploration. These findings indicate possible systemic involvement of the frontolimbic network resulting in PSD after brain lesions which is likely to be independent from the location of the lesion. The results inform specific clinical interventions to be provided for treating depressive symptoms in post-stroke patients.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Dongmei Wang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Chaozheng Tang
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China.
| | - Zheng Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
28
|
Zhong W, Yuan Y, Gu X, Kim SIY, Chin R, Loye M, Dix TA, Wei L, Yu SP. Neuropsychological Deficits Chronically Developed after Focal Ischemic Stroke and Beneficial Effects of Pharmacological Hypothermia in the Mouse. Aging Dis 2020; 11:1-16. [PMID: 32010477 PMCID: PMC6961763 DOI: 10.14336/ad.2019.0507] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of human death and disability, with around 30% of stroke patients develop neuropsychological/neuropsychiatric symptoms, such as post-stroke depression (PSD). Basic and translational research on post-stroke psychological disorders is limited. In a focal ischemic stroke mouse model with selective damage to the sensorimotor cortex, sensorimotor deficits develop soon after stroke and spontaneous recovery is observed in 2-4 weeks. We identified that mice subjected to a focal ischemic insult gradually developed depression/anxiety like behaviors 4 to 8 weeks after stroke. Psychological/psychiatric disorders were revealed in multiple behavioral examinations, including the forced swim, tail suspension, sucrose preference, and open field tests. Altered neuronal plasticity such as suppressed long-term potentiation (LTP), reduced BDNF and oxytocin signaling, and disturbed dopamine synthesis/uptake were detected in the prefrontal cortex (PFC) during the chronic phase after stroke. Pharmacological hypothermia induced by the neurotensin receptor 1 (NTR1) agonist HPI-363 was applied as an acute treatment after stroke. A six-hr hypothermia treatment applied 45 min after stroke prevented depression and anxiety like behaviors examined at 6 weeks after stroke, as well as restored BDNF expression and oxytocin signaling. Additionally, hypothermia induced by physical cooling also showed an anti-depression and anti-anxiety effect. The data suggested a delayed beneficial effect of acute hypothermia treatment on chronically developed post-stroke neuropsychological disorders, associated with regulation of synaptic plasticity, neurotrophic factors, dopaminergic activity, and oxytocin signaling in the PFC.
Collapse
Affiliation(s)
- Weiwei Zhong
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Yan Yuan
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,3College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohuan Gu
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Samuel In-Young Kim
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ryan Chin
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Modupe Loye
- 2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Thomas A Dix
- 4Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ling Wei
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
29
|
Jaywant A, Gunning FM. Depression and Neurovascular Disease. NEUROVASCULAR NEUROPSYCHOLOGY 2020:337-358. [DOI: 10.1007/978-3-030-49586-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Wong WW, Fang Y, Chu WCW, Shi L, Tong KY. What Kind of Brain Structural Connectivity Remodeling Can Relate to Residual Motor Function After Stroke? Front Neurol 2019; 10:1111. [PMID: 31708857 PMCID: PMC6819511 DOI: 10.3389/fneur.2019.01111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/04/2019] [Indexed: 01/19/2023] Open
Abstract
Recent findings showed that brain networks far away from a lesion could be altered to adapt changes after stroke. This study examined 13 chronic stroke patients with moderate to severe motor impairment and 13 age-comparable healthy controls using diffusion tensor imaging to investigate the stroke impact on the reorganization of structural connectivity. Each subject's brain was segmented into 68 cortical and 12 subcortical regions of interest (ROIs), and connectivity measures including fractional anisotropy (FA), regional FA (rFA), connection weight (CW) and connection strength (CS) were adopted to compare two subject groups. Correlations between these measures and clinical scores of motor functions (Action Research Arm Test and Fugl-Meyer Assessment for upper extremity) were done. Network-based statistic (NBS) was conducted to identify the connectivity differences between patients and controls from the perspective of whole-brain network. The results showed that both rFAs and CSs demonstrated significant differences between patients and controls in the ipsilesional sensory-motor areas and subcortical network, and bilateral attention and default mode networks. Significant positive correlations were found between the paretic motor functions and the rFAs/CSs of the contralesional medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), and remained significant even after removing the effect of the ipsilesional corticospinal tract. Additionally, all the connections linked with the contralesional mOFC and rACC showed significantly higher FA/CW values in the stroke patients compared to the healthy controls from the NBS results. These findings indicated that these contralesional prefrontal areas exhibited stronger connections after stroke and strongly related to the residual motor function of the stroke patients.
Collapse
Affiliation(s)
- Wan-Wa Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuqi Fang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
31
|
Shi Y, Liu W, Liu R, Zeng Y, Wu L, Huang S, Cai G, Yang J, Wu W. Investigation of the emotional network in depression after stroke: A study of multivariate Granger causality analysis of fMRI data. J Affect Disord 2019; 249:35-44. [PMID: 30743020 DOI: 10.1016/j.jad.2019.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Depression after stroke (DAS) is a serious complication of stroke that significantly restricts rehabilitation. Brain imaging technology is an important method for studying the emotional network of DAS. However, few studies have focused on dynamic interactions within the network. The aim of this study was to investigate the emotional network of frontal lobe DAS using the multivariate Granger causality analysis (GCA) method, a technique that can estimate the association among the brain areas to analyze functional magnetic resonance imaging (fMRI) data collected from DAS and no depression after stroke (NDAS). METHOD Thirty-six first-time ischemic right frontal lobe stroke patients underwent resting-state fMRI (rs-fMRI) scans. The clinical assessment scale used for screening subjects was as follows: the 24-item Hamilton Rating Scale for Depression (HAMD-24), the National Institutes of Health Stroke Scale (NIHSS), the Mini-Mental State Examination (MMSE), and the Barthel Index (BI). The multivariate GCA method was used to analyze fMRI data collected from DAS and NDAS. RESULTS The results showed positive regulations in the order from the ventromedial prefrontal cortex (VMPFC), the anterior cingulate cortex (ACC), and the amygdala (AMYG) to the thalamus, and when the interaction order is opposite, the moderating effect is negative. The thalamus could predict the negative activity of the insular (IC) via the ACC. The dorsolateral prefrontal cortex (DLPFC) could predict the activity of the ACC via the temporal pole (TP). CONCLUSION This study found a VMPFC-ACC-AMYG-thalamus emotional circuit to explain the network between different brain regions associated with DAS. The DLPFC and TP play an important role in the emotional regulation of DAS, and the function of the IC is regulated negatively by the thalamus. These findings advance the neural theory of DAS, which is based on the functional relationship between different brain areas.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wei Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ruifen Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shimin Huang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Guiyuan Cai
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianming Yang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
32
|
Wu P, Zhou YM, Liao CX, Tang YZ, Li YX, Qiu LH, Qin W, Zeng F, Liang FR. Structural Changes Induced by Acupuncture in the Recovering Brain after Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5179689. [PMID: 29951105 PMCID: PMC5989285 DOI: 10.1155/2018/5179689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 02/05/2023]
Abstract
The aim of this study was to observe the grey matter (GM) tissue changes of ischemic stroke patients, to explore the therapy responses and possible mechanism of acupuncture. 21 stroke patients were randomly assigned to receive either acupuncture plus conventional (Group A) or only conventional (Group B) treatments for 4 weeks. All patients in both groups accepted resting-state functional magnetic resonance (fMRI) scan before and after treatment, and the voxel-based morphometry (VBM) analysis was performed to detect the cerebral grey structure changes. The modified Barthel index (MBI) was used to evaluate the therapeutic effect. Compared with the patients in Group B, the patients in Group A exhibited a more significant enhancement of the changes degree of MBI from pre- to post-treatment intervention. VBM analyses found that after treatment the patients in Group A showed extensive changes in GMV. In Group A, the left frontal lobe, precentral gyrus, superior parietal gyrus, anterior cingulate cortex, and middle temporal gyrus significantly increased, and the right frontal gyrus, inferior parietal gyrus, and middle cingulate cortex decreased (P < 0.05, corrected). In addition, left anterior cingulate cortex and left middle temporal gyrus are positively related to the increase in MBI score (P < 0.05, corrected). In Group B, right precentral gyrus and right inferior frontal gyrus increased (P < 0.05, corrected). In conclusion, acupuncture can evoke pronounced structural reorganization in the frontal areas and the network of DMN areas, which may be the potential therapy target and the potential mechanism where acupuncture improved the motor and cognition recovery.
Collapse
Affiliation(s)
- Ping Wu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yu-mei Zhou
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chen-xi Liao
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yu-zhi Tang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yong-xin Li
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Li-hua Qiu
- Radiology Department, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Qin
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi Province, China
| | - Fang Zeng
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fan-rong Liang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
33
|
Han D, Li M, Mei M, Sun X. The functional and structural characteristics of the emotion network in alexithymia. Neuropsychiatr Dis Treat 2018; 14:991-998. [PMID: 29695908 PMCID: PMC5905825 DOI: 10.2147/ndt.s154601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alexithymia is a multifaceted personality trait characterized by emotional dysfunction. METHODS In this study, the functional and structural features of the emotion network in alexithymia were investigated using resting-state functional MRI (rsfMRI), voxel-based morphometry (VBM), functional connectivity (FC) analysis, and diffusion tensor imaging (DTI). Alexithymic and non-alexithymic students were recruited from the local university. The intrinsic neural activity and gray matter density of the brain regions in the emotion network were measured using rsfMRI and VBM; the FC and structural connectivity of the brain regions in the emotion network were measured using FC analysis and DTI. RESULTS The altered intrinsic neural activity in V1, rostral dorsal anterior cingulate cortex, and left amygdala, and the weak FC between V1 and left superior temporal gyrus and V1 and left paracentral lobule in alexithymia subjects were identified. However, no alteration of the structure and structural connectivity of the emotion network was identified. CONCLUSION The results indicated that the development of alexithymia might have been caused only by slight alteration of the neural activity. Furthermore, the results suggest that noninvasive treatment technologies for improving the brain activity are suitable for alexithymic individuals.
Collapse
Affiliation(s)
- Dai Han
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Mei Li
- Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Minjun Mei
- Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaofei Sun
- Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Fang Y, Li M, Mei M, Sun X, Han D. Characteristics of brain functional and structural connectivity in alexithymic students. Neuropsychiatr Dis Treat 2018; 14:2609-2615. [PMID: 30349259 PMCID: PMC6186308 DOI: 10.2147/ndt.s174015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Alexithymia is a multifaceted personality trait and a risk factor for several mental and physical diseases. METHODS In this study, 21 alexithymic students and 21 nonalexithymic students were recruited from the local university and assigned to the alexithymic group and the control group, respectively. Then, the functional connectivity and the structural connectivity among the brain regions of the students were investigated using resting-state functional magnetic resonance imaging (rsfMRI), function connection (FC) analysis, and diffusion tensor imaging (DTI). RESULTS The rsfMRI results revealed 14 brain regions showing significant differences in the amplitude of low-frequency fluctuations between the two groups. Comparative analysis of the FC and DTI data in these brain regions between the two groups identified altered levels of functional and structural connectivity between the following four pairs of regions in the alexithymic subjects: the right inferior temporal gyrus and the central posterior gyrus, the left temporal gyrus and the insula, and the bilateral superior frontal gyrus and the anterior cingulate gyrus. CONCLUSION Compared with single MRI analysis, the multiple MRI analysis identified more precisely the brain regions that could play a key role in the development of alexithymia.
Collapse
Affiliation(s)
- Yantong Fang
- Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China,
| | - Mei Li
- Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Minjun Mei
- Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaofei Sun
- Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Dai Han
- Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China, .,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China, .,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, People's Republic of China,
| |
Collapse
|