1
|
Luo J, Xu Q, Xu S, Zhai L, Yuan CS, Bian Z. Decoding Abdominal Pain in Constipation-predominant Irritable Bowel Syndrome and Functional Constipation: Mechanisms and Managements. Curr Gastroenterol Rep 2025; 27:22. [PMID: 40095229 PMCID: PMC11914341 DOI: 10.1007/s11894-025-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Abdominal pain in constipation-predominant irritable bowel syndrome (IBS-C) and functional constipation (FC) remains a difficult clinical challenge due to unclear pathophysiological mechanisms and limited pain-targeted treatments. This review critically evaluates the evidence on the underlying pain mechanisms in IBS-C and/or FC and explores management strategies, their limitations, and future directions. RECENT FINDINGS Most research on constipation-related pain is based on IBS-C patients or animal models, with limited studies focusing on FC. Visceral hypersensitivity, serotonin dysregulation, gut-brain axis dysfunction, and central/peripheral nervous system alterations are implicated in IBS-C pain, while FC pain is less studied and may be primarily linked to colonic distension and motility dysfunction. Management strategies include 5-HT4 agonists, GC-C agonists, chloride channel activators, psychological therapies, probiotics and complementary medicine. Despite available treatment options, managing abdominal pain in IBS-C and FC remains challenging due to heterogeneous pathophysiology and limited targeted therapies. While some interventions provide symptomatic relief, there is no universally effective treatment for abdominal pain across all patients. Future research should focus on identifying pain-specific biomarkers, refining diagnostic criteria, and integrating multi-omics data and neuroimaging techniques to better distinguish pain mechanisms in IBS-C versus FC and develop more precise, patient-centered interventions.
Collapse
Affiliation(s)
- Jingyuan Luo
- Vincent V.C. Woo Chinese Medicine Clinical Research Institute, School of Chinese Medicine, Hong Kong Baptist University, 3/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Hong Kong, SAR, China
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Qianqian Xu
- Vincent V.C. Woo Chinese Medicine Clinical Research Institute, School of Chinese Medicine, Hong Kong Baptist University, 3/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Hong Kong, SAR, China
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Shujun Xu
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lixiang Zhai
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA.
- Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Zhaoxiang Bian
- Vincent V.C. Woo Chinese Medicine Clinical Research Institute, School of Chinese Medicine, Hong Kong Baptist University, 3/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Hong Kong, SAR, China.
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Matar A, Damianos JA, Jencks KJ, Camilleri M. Intestinal Barrier Impairment, Preservation, and Repair: An Update. Nutrients 2024; 16:3494. [PMID: 39458489 PMCID: PMC11509958 DOI: 10.3390/nu16203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Our objective was to review published studies of the intestinal barrier and permeability, the deleterious effects of dietary components (particularly fat), the impact of altered intestinal permeability in disease models and human diseases, the role of the microbiome and epigenomics in control of barrier function, and the opportunities to restore normal barrier function with dietary interventions and products of the microbiota. METHODS We conducted a literature review including the following keywords alone or in combination: intestinal barrier, permeability, microbiome, epigenomics, diet, irritable bowel syndrome, inflammatory bowel disease, probiotics. RESULTS Intestinal permeability is modified by a diet including fat, which increases permeability, and nutrients such as fiber, glutamine, zinc, vitamin D, polyphenols, emulsifiers, and anthocyanins, which decrease permeability. There is significant interaction of the microbiome and barrier function, including the inflammatory of luminal/bacterial antigens, and anti-inflammatory effects of commensals or probiotics and their products, including short-chain fatty acids. Epigenomic modification of barrier functions are best illustrated by effects on junction proteins or inflammation. Detailed documentation of the protective effects of diet, probiotics, prebiotics, and microbiota is provided. CONCLUSION intestinal permeability is a critical factor in protection against gastrointestinal diseases and is impacted by nutrients that preserve or heal and repair the barrier and nurture anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.); (J.A.D.)
| |
Collapse
|
3
|
Zhang X, Shi L, Chen C, Ma Y, Ma Y. The role of miRNA in IBS pathogenesis, diagnosis and therapy: The latest thought. Dig Liver Dis 2024; 56:1433-1441. [PMID: 38342744 DOI: 10.1016/j.dld.2024.01.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
IBS is a prevalent clinical condition affecting bowel function. There is a restricted comprehension of its pathogenesis, an absence of particular diagnostic tools, and an insufficiency of efficient pharmacological remedies. MiRNAs are a highly conserved class of non-coding small molecule RNAs, with a length of 20-24 nucleotides. Research has shown the presence of a number of differentially expressed miRNAs in the colonic tissue and peripheral blood of IBS patients. Meanwhile, miRNAs have a critical role in gene expression and the pathology of IBS as they act as significant mediators of post-transcriptional gene silencing. The investigation of miRNA molecular regulatory networks proves useful in examining the convoluted pathogenesis of IBS. This paper presents a review of recent literature on miRNAs associated with IBS, explains how miRNAs contribute to the development of IBS, and assesses the potential usefulness of miRNA analysis for diagnosing and treating IBS.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Raka F, Hoffman S, Nady A, Guan H, Zhang R, Wang H, Khan WI, Adeli K. Peripheral Serotonin Controls Dietary Fat Absorption and Chylomicron Secretion via 5-HT4 Receptor in Males. Endocrinology 2024; 165:bqae112. [PMID: 39248655 PMCID: PMC11417612 DOI: 10.1210/endocr/bqae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.
Collapse
Affiliation(s)
- Fitore Raka
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asal Nady
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Henry Guan
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rianna Zhang
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Huaqing Wang
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Waliul I Khan
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Khosrow Adeli
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Chen H, Xu Z, Zhao H, Cao J, Wang R, He J, Nie R, Jia J, Yuan S, Li Y, Liu Z, Zhang X, Ha L, Xu X, Li T. Global research states and trends of micro RNA in irritable bowel syndrome: a bibliometric analysis. Clin Exp Med 2024; 24:149. [PMID: 38967892 PMCID: PMC11226481 DOI: 10.1007/s10238-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.
Collapse
Affiliation(s)
- Hongxiu Chen
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhifang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Honggang Zhao
- Shenzhen Hospital of Integrated Chinese and Western Medicine, 528 Xinsha Road, Shajing Street, Baoan District, Shenzhen, People's Republic of China
| | - Jiazhen Cao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Rui Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Jing He
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Ru Nie
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Jialin Jia
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Shuting Yuan
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Yonghong Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhicheng Liu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Xinyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Lijuan Ha
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Xiaoru Xu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Tie Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| |
Collapse
|
6
|
Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023; 58:605-621. [PMID: 37160449 PMCID: PMC10307698 DOI: 10.1007/s00535-023-01997-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Irritable bowel syndrome (IBS) is a complex multifactorial condition including alterations of the gut-brain axis, intestinal permeability, mucosal neuro-immune interactions, and microbiota imbalance. Recent advances proposed epigenetic factors as possible regulators of several mechanisms involved in IBS pathophysiology. These epigenetic factors include biomolecular mechanisms inducing chromosome-related and heritable changes in gene expression regardless of DNA coding sequence. Accordingly, altered gut microbiota may increase the production of metabolites such as sodium butyrate, a prominent inhibitor of histone deacetylases. Patients with IBS showed an increased amount of butyrate-producing microbial phila as well as an altered profile of methylated genes and micro-RNAs (miRNAs). Importantly, gene acetylation as well as specific miRNA profiles are involved in different IBS mechanisms and may be applied for future diagnostic purposes, especially to detect increased gut permeability and visceromotor dysfunctions. In this review, we summarize current knowledge of the role of epigenetics in IBS pathophysiology.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Connect By Circular Lab SRL, Madrid, Spain
| | | | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Alemany S, Soler-Artigas M, Cabana-Domínguez J, Fakhreddine D, Llonga N, Vilar-Ribó L, Rodríguez-Urrutia A, Palacio J, González-Castro AM, Lobo B, Alonso-Cotoner C, Simrén M, Santos J, Ramos-Quiroga JA, Ribasés M. Genome-wide multi-trait analysis of irritable bowel syndrome and related mental conditions identifies 38 new independent variants. J Transl Med 2023; 21:272. [PMID: 37085903 PMCID: PMC10120121 DOI: 10.1186/s12967-023-04107-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a chronic disorder of gut-brain interaction frequently accompanied by mental conditions, including depression and anxiety. Despite showing substantial heritability and being partly determined by a genetic component, the genetic underpinnings explaining the high rates of comorbidity remain largely unclear and there are no conclusive data on the temporal relationship between them. Exploring the overlapping genetic architecture between IBS and mental conditions may help to identify novel genetic loci and biological mechanisms underlying IBS and causal relationships between them. METHODS We quantified the genetic overlap between IBS, neuroticism, depression and anxiety, conducted a multi-trait genome-wide association study (GWAS) considering these traits and investigated causal relationships between them by using the largest GWAS to date. RESULTS IBS showed to be a highly polygenic disorder with extensive genetic sharing with mental conditions. Multi-trait analysis of IBS and neuroticism, depression and anxiety identified 42 genome-wide significant variants for IBS, of which 38 are novel. Fine-mapping risk loci highlighted 289 genes enriched in genes upregulated during early embryonic brain development and gene-sets related with psychiatric, digestive and autoimmune disorders. IBS-associated genes were enriched for target genes of anti-inflammatory and antirheumatic drugs, anesthetics and opioid dependence pharmacological treatment. Mendelian-randomization analysis accounting for correlated pleiotropy identified bidirectional causal effects between IBS and neuroticism and depression and causal effects of the genetic liability of IBS on anxiety. CONCLUSIONS These findings provide evidence of the polygenic architecture of IBS, identify novel genome-wide significant variants for IBS and extend previous knowledge on the genetic overlap and relationship between gastrointestinal and mental disorders.
Collapse
Affiliation(s)
- Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Soler-Artigas
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dana Fakhreddine
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Rodríguez-Urrutia
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judit Palacio
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre On Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2023; 68:38-53. [PMID: 35507132 PMCID: PMC9066399 DOI: 10.1007/s10620-022-07516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
MicroRNAs (miRNAs) are tiny (20-24 nucleotides long), non-coding, highly conserved RNA molecules that play a crucial role within the post-transcriptional regulation of gene expression via sequence-specific mechanisms. Since the miRNA transcriptome is involved in multiple molecular processes needed for cellular homeostasis, its altered expression can trigger the development and progression of several human pathologies. In this context, over the last few years, several relevant studies have demonstrated that dysregulated miRNAs affect a wide range of molecular mechanisms associated with irritable bowel syndrome (IBS), a common gastrointestinal disorder. For instance, abnormal miRNA expression in IBS patients is related to the alteration of intestinal permeability, visceral hyperalgesia, inflammatory pathways, and pain sensitivity. Besides, specific miRNAs are differentially expressed in the different subtypes of IBS, and therefore, they might be used as biomarkers for precise diagnosis of these pathological conditions. Accordingly, miRNAs have noteworthy potential as theragnostic targets for IBS. Hence, in this current review, we present an overview of the recent discoveries regarding the clinical relevance of miRNAs in IBS, which might be useful in the future for the development of miRNA-based drugs against this disorder.
Collapse
|
9
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
10
|
MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea. J Biol Chem 2022; 298:102461. [PMID: 36067883 PMCID: PMC9647533 DOI: 10.1016/j.jbc.2022.102461] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a chronic and relapsing inflammatory disorder in which pathogenesis has been shown to be in part the result of miRNA-mediated signaling. Here, we investigated the alleviatory role of miR-16 in IBS-D. First, we established an IBS-D mouse model using colonic instillation of acetic acid and developed an IBS-D cell model using lipopolysaccharide exposure. The experimental data demonstrated that miR-16 was underexpressed in the serum of IBS-D patients, as well as in the colorectal tissues of IBS-D mouse models and lipopolysaccharide-exposed intestinal epithelial cells. Next, miR-16 and TLR4 were overexpressed or inhibited to characterize their roles in the viability and apoptosis of intestinal epithelial cells, inflammation, and epithelial tight junction. We found that miR-16 overexpression increased the viability of intestinal epithelial cells, maintained tight junction integrity, and inhibited cell apoptosis and inflammation. We showed that miR-16 targeted TLR4 and inhibited the TLR4/NF-κB signaling pathway. Additionally, inhibition of NF-κB suppressed the long noncoding RNA XIST, thereby promoting enterocyte viability, inhibiting apoptosis and cytokine production, and maintaining tight junction integrity. In vivo experiments further verified the alleviatory effect of miR-16 on IBS-D symptoms in mice. Taken together, we conclude that miR-16 downregulates XIST through the TLR4/NF-κB pathway, thereby relieving IBS-D. This study suggests that miR-16 may represent a potential target for therapeutic intervention against IBS-D.
Collapse
|
11
|
Shao YS, Xie M, Lu R. Efficacy of cilansetron combined with pivirium bromide in treatment of elderly patients with irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:458-464. [DOI: 10.11569/wcjd.v30.i10.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Piveronium bromide and other symptomatic treatments are mainly used in the treatment of irritable bowel syndrome (IBS), which can block the volt-dependent calcium channel of gastrointestinal smooth muscle to promote the recovery of normal intestinal motility and control the symptoms of IBS. At present, there are few reports on the efficacy of piveronium bromide combined with cilansetron in the treatment of IBS.
AIM To evaluate the efficacy of cilansetron combined with pivirium bromide in the treatment of elderly patients with IBS.
METHODS From June 2017 to June 2019, 126 elderly IBS patients treated at our hospital were selected and randomly randomized into three groups with 42 cases each. Group A was given pinaverium bromide, group B was given cilansetron, and the combination group was given pinaverium bromide + cilansetron. The efficacy and adverse reactions of the three groups were recorded. Gastrointestinal symptoms, intestinal flora, and intestinal barrier function [D-lactic acid, diamine oxidase (DAO), and endotoxin], and gastrointestinal hormone indicators [5-hydroxytryptophan (5-HT), cholecystokinin (CCK), and vasoactive intestinal peptide (VIP)] were compared before and after treatment.
RESULTS The total effective rate of the combined group was 95.24%, which was higher than those of group A (69.05%) and group B (73.81%) (P < 0.05). After treatment, the scores of diarrhea, abdominal pain, nausea, and vomiting in the combined group were lower than those of groups A and B (P < 0.05). The number of enterococci in the combined group and group B was lower than that before treatment, and the number of bacteroides, lactobacillus, and bifidobacterium was higher than that before treatment (P < 0.05). The levels of D-lactic acid, DAO, and endotoxin in the combined group were lower than those in groups A and B (P < 0.05). The serum levels of 5-HT, CCK, and VIP in the combined group were lower than those of group A and group B (P < 0.05). The incidence of adverse reactions in the three groups was not significantly different (P > 0.05).
CONCLUSION Both cilansetron and pinaverium bromide can regulate the intestinal flora in elderly patients with IBS; however, cilansetron plus pinaverium bromide in the treatment of elderly IBS patients can further improve the efficacy, reduce gastrointestinal symptoms, repair damaged intestinal barrier function, and decrease gastrointestinal hormone levels.
Collapse
Affiliation(s)
- Yi-Shun Shao
- Department of Internal Medicine, Huazhong University of Science and Technology Hospital, Wuhan 430074, Hubei Province, China
| | - Min Xie
- Department of Internal Medicine, Huazhong University of Science and Technology Hospital, Wuhan 430074, Hubei Province, China
| | - Rong Lu
- Department of Internal Medicine, Huazhong University of Science and Technology Hospital, Wuhan 430074, Hubei Province, China
| |
Collapse
|
12
|
Wiley JW, Higgins GA, Hong S. Chronic psychological stress alters gene expression in rat colon epithelial cells promoting chromatin remodeling, barrier dysfunction and inflammation. PeerJ 2022; 10:e13287. [PMID: 35509963 PMCID: PMC9059753 DOI: 10.7717/peerj.13287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4 and down-regulated genes including Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network enrichment analysis were inflammation/immune response, tissue morphogenesis and development, and nucleosome/chromatin assembly. The most significantly down-regulated process was the digestive system development/function, whereas the most significantly up-regulated processes were inflammatory response, organismal injury, and chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation of stressed rats demonstrated very significantly altered gene expression and transcript isoforms, enriched for the differential expression of genes involved in the inflammatory response, including upregulation of cytokine and chemokine receptor gene expression coupled with downregulation of epithelial adherens and tight junction mRNAs. In summary, these findings support that chronic stress is associated with increased levels of cytokines and chemokines, their downstream signaling pathways coupled to dysregulation of intestinal cell development and function. Epigenetic regulation of chromatin remodeling likely plays a prominent role in this process. Results also suggest that super enhancers play a primary role in chronic stress-associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| |
Collapse
|
13
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
14
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lo TW, Figueroa-Romero C, Hur J, Pacut C, Stoll E, Spring C, Lewis R, Nair A, Goutman SA, Sakowski SA, Nagrath S, Feldman EL. Extracellular Vesicles in Serum and Central Nervous System Tissues Contain microRNA Signatures in Sporadic Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2021; 14:739016. [PMID: 34776863 PMCID: PMC8586523 DOI: 10.3389/fnmol.2021.739016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminalneurodegenerative disease. Clinical and molecular observations suggest that ALS pathology originates at a single site and spreads in an organized and prion-like manner, possibly driven by extracellular vesicles. Extracellular vesicles (EVs) transfer cargo molecules associated with ALS pathogenesis, such as misfolded and aggregated proteins and dysregulated microRNAs (miRNAs). However, it is poorly understood whether altered levels of circulating extracellular vesicles or their cargo components reflect pathological signatures of the disease. In this study, we used immuno-affinity-based microfluidic technology, electron microscopy, and NanoString miRNA profiling to isolate and characterize extracellular vesicles and their miRNA cargo from frontal cortex, spinal cord, and serum of sporadic ALS (n = 15) and healthy control (n = 16) participants. We found larger extracellular vesicles in ALS spinal cord versus controls and smaller sized vesicles in ALS serum. However, there were no changes in the number of extracellular vesicles between cases and controls across any tissues. Characterization of extracellular vesicle-derived miRNA cargo in ALS compared to controls identified significantly altered miRNA levels in all tissues; miRNAs were reduced in ALS frontal cortex and spinal cord and increased in serum. Two miRNAs were dysregulated in all three tissues: miR-342-3p was increased in ALS, and miR-1254 was reduced in ALS. Additional miRNAs overlapping across two tissues included miR-587, miR-298, miR-4443, and miR-450a-2-3p. Predicted targets and pathways associated with the dysregulated miRNAs across the ALS tissues were associated with common biological pathways altered in neurodegeneration, including axon guidance and long-term potentiation. A predicted target of one identified miRNA (N-deacetylase and N-sulfotransferase 4; NDST4) was likewise dysregulated in an in vitro model of ALS, verifying potential biological relevance. Together, these findings demonstrate that circulating extracellular vesicle miRNA cargo mirror those of the central nervous system disease state in ALS, and thereby offer insight into possible pathogenic factors and diagnostic opportunities.
Collapse
Affiliation(s)
- Ting-wen Lo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Evan Stoll
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Calvin Spring
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rose Lewis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Athul Nair
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Binterface Institute, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:1021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut-brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (R.S.); (H.Z.)
| |
Collapse
|
17
|
Mohr S, Fritz N, Hammer C, Martínez C, Berens S, Schmitteckert S, Wahl V, Schmidt M, Houghton LA, Goebel‐Stengel M, Kabisch M, Götze D, Milovač I, D’Amato M, Zheng T, Röth R, Mönnikes H, Engel F, Gauss A, Tesarz J, Raithel M, Andresen V, Frieling T, Keller J, Pehl C, Stein‐Thöringer C, Clarke G, Kennedy PJ, Cryan JF, Dinan TG, Quigley EMM, Spiller R, Beltrán C, Madrid AM, Torres V, Pérez de Arce E, Herzog W, Mayer EA, Sayuk G, Gazouli M, Karamanolis G, Kapur‐Pojskič L, Bustamante M, Rabionet R, Estivil X, Franke A, Lieb W, Boeckxstaens G, Wouters MM, Simrén M, Rappold GA, Vicario M, Santos J, Schaefert R, Lorenzo‐Bermejo J, Niesler B. The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome. J Cell Mol Med 2021; 25:8047-8061. [PMID: 34165249 PMCID: PMC8358858 DOI: 10.1111/jcmm.16736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis.
Collapse
|
18
|
Mahurkar-Joshi S, Rankin CR, Videlock EJ, Soroosh A, Verma A, Khandadash A, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling. Gastroenterology 2021; 160:2409-2422.e19. [PMID: 33617890 PMCID: PMC8169529 DOI: 10.1053/j.gastro.2021.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways. METHODS Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies. A nCounter array was used to assess biopsy specimen-associated miRNA levels. A false discovery rate (FDR) < 10% was considered significant. Real-time polymerase chain reaction (PCR) was used to validate differentially expressed genes. To assess barrier function, trans-epithelial electrical resistance (TEER) and dextran flux assays were performed on Caco-2 intestinal epithelial cells that were transfected with miRNA-inhibitors or control inhibitors. Protein expression of barrier function associated genes was confirmed using western blots. RESULTS Four out of 247 miRNAs tested were differentially expressed in IBS compared to HCs (FDR < 10%). Real-time PCR validation suggested decreased levels of miR-219a-5p and miR-338-3p in IBS (P = .026 and P = .004), and IBS-C (P = .02 and P = .06) vs. HCs as the strongest associations. Inhibition of miR-219a-5p resulted in altered expression of proteasome/barrier function genes. Functionally, miR-219a-5p inhibition enhanced the permeability of intestinal epithelial cells as TEER was reduced (25-50%, P < .05) and dextran flux was increased (P < .01). Additionally, inhibition of miR-338-3p in cells caused alterations in the mitogen-activated protein kinase (MAPK) signaling pathway genes. CONCLUSION Two microRNAs that potentially affect permeability and visceral nociception were identified to be altered in IBS patients. MiR-219a-5p and miR-338-3p potentially alter barrier function and visceral hypersensitivity via neuronal and MAPK signaling and could be therapeutic targets in IBS.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carl Robert Rankin
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth Jane Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Artin Soroosh
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Abhishek Verma
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ariela Khandadash
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
19
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
20
|
Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021; 78:4713-4733. [PMID: 33770200 PMCID: PMC8195951 DOI: 10.1007/s00018-021-03812-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Amy Marie Holland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ana Carina Bon-Frauches
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
21
|
Zhang L, Li X, Lu J, Qian Y, Qian T, Wu X, Xu Q. The EGFR Polymorphism Increased the Risk of Hepatocellular Carcinoma Through the miR-3196-Dependent Approach in Chinese Han Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:469-476. [PMID: 33935511 PMCID: PMC8079348 DOI: 10.2147/pgpm.s304524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Background Previous studies have shown that epidermal growth factor receptor (EGFR) promotes cell proliferation through the PI3K-Akt-mTOR signaling pathway and participates in the occurrence and development of hepatocellular carcinoma (HCC). Here, we focused on the functional polymorphism of EGFR in the 3ʹ-untranslated region (UTR), aiming to reveal the potential mechanisms by which functional polymorphism is associated with the risk and development of HCC in the Han Chinese population. Methods This study was a hospital-based case-control study. A total of 600 patients were enrolled, and another 600 healthy volunteers served as controls. The miR-associated SNPs in EGFR were screened, and genotyping was performed by TaqMan allele differential analysis. In this study, genotyping, real-time PCR, cell transfection and double luciferase reporter gene were used for subsequent analysis. Results HBV/HCV infection instead of alcohol exposure, smoking exposure, hypertension or diabetes mellitus was associated with an increased risk of HCC. Compared with TT genotypes, TG and GG genotypes of EGFR rs884225 were significantly associated with reduced HCC risk. The stratified analysis of association between rs884225 and HCC subgroup feature reveal a highly correlation with tumor size. Furthermore, qRT-PCR confirmed that EGFR rs884225, TG and GG genotypes were more likely to bind to miR-3196 and down-regulate EGFR level in cells, thereby inhibiting cell proliferation. Conclusion This study suggested that EGFR rs884225 is associated with a reduced risk of liver cancer and may be a developing biomarker.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Xiaoping Li
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Jiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Yi Qian
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Tao Qian
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Xing Wu
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| | - Qinghua Xu
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, LiYang, 213300, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Singh R, Wei L, Ghoshal UC. Micro-organic basis of functional gastrointestinal (GI) disorders: Role of microRNAs in GI pacemaking cells. Indian J Gastroenterol 2021; 40:102-110. [PMID: 33738768 DOI: 10.1007/s12664-021-01159-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India.
| |
Collapse
|
23
|
Hanning N, Edwinson AL, Ceuleers H, Peters SA, De Man JG, Hassett LC, De Winter BY, Grover M. Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Therap Adv Gastroenterol 2021; 14:1756284821993586. [PMID: 33717210 PMCID: PMC7925957 DOI: 10.1177/1756284821993586] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIM Irritable bowel syndrome (IBS) is a complex and heterogeneous disorder. Sensory, motor and barrier dysfunctions are the key physiological endophenotypes of IBS. Our aim is to review studies evaluating barrier dysfunction in adults and children with IBS, as well as to link those changes with IBS symptomatology and quality of life. METHODS A comprehensive and systematic review of multiple databases was performed up to March 2020 to identify studies comparing intestinal permeability in IBS patients with healthy controls. Both in vivo and in vitro studies were considered. RESULTS We identified 66 studies, of which 27 used intestinal probes to quantify barrier function. The prevalence of barrier dysfunction differed between PI-IBS (17-50%), IBS-D (37-62%) and IBS-C (4-25%). At a group level, permeability was increased compared with healthy controls in IBS-D (9/13 studies) and PI-IBS (4/4 studies), but only a minority of IBS-C (2/7 studies) and not in the only IBS-M study. All four studies in children with IBS demonstrated loss of barrier function. A heterogeneous set of tight junction genes were found to be altered in small and large intestines of adults with IBS, but these have not been evaluated in children. Positive associations were identified between barrier dysfunction and bowel disturbances (6/9 studies), abdominal pain (9/13 studies), overall symptom severity (1/6 studies), depression and anxiety (1/1 study) and quality of life (1/4 studies). Fecal slurry or supernatants of IBS patients were found to induce barrier disruption in animal models (5/6 studies). CONCLUSIONS Barrier dysfunction is present in a significant proportion of adult and all pediatric IBS studies, especially in the IBS-D and PI-IBS subtype. The majority of studies indicated a positive association between loss of barrier function and symptoms such as abdominal pain and changes in the bowel function.
Collapse
Affiliation(s)
- Nikita Hanning
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA,Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Adam L. Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Stephanie A. Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | | | - Benedicte Y. De Winter
- Division of Gastroenterology, Laboratory of Experimental Medicine and Pediatrics, Universiteitsplein 1, Antwerp, 2610, Belgium,Department of Gastroenterology and Hepatology, Antwerp University Hospital (UZA), Antwerp, Belgium
| | | |
Collapse
|
24
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
25
|
Zhu H, Xiao X, Shi Y, Wu Y, Huang Y, Li D, Xiong F, He G, Chai Y, Tang H. Inhibition of miRNA-29a regulates intestinal barrier function in diarrhea-predominant irritable bowel syndrome by upregulating ZO-1 and CLDN1. Exp Ther Med 2020; 20:155. [PMID: 33093893 PMCID: PMC7571313 DOI: 10.3892/etm.2020.9284] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common chronic functional gastrointestinal disorder. MicroRNAs (miRNAs) have been identified to be involved in different physiological and pathological processes. In this study, the role of miRNA-29a in the potential mechanism underlying the function of the intestinal mucosal barrier in IBS-D was analyzed. Human intestinal mucosal epithelia from patients with IBS-D (diagnosed as meeting the Rome IV criteria) and healthy volunteers were collected. An IBS-D mouse model was established via induction with trinitro-benzene-sulfonic acid (TNBS), and the mice were injected with miRNA-29a inhibitor. Using transmission electron microscopy (TEM), the epithelial ultrastructure of the human intestinal mucosa was examined. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, the expression level of miRNA-29a was assessed. ELISA was used to analyze the activity of D-lactate (D-LA) and diamine oxidase (DAO). Through immunohistochemistry, RT-qPCR and western blotting, the expression of tight junction protein ZO-1 (ZO-1) and claudin-1 (CLDN1) was examined. In the human intestinal mucosal epithelia from patients with IBS-D, miRNA-29a was upregulated, ZO-1 and CLDN1 were downregulated, and the junctional complex (JC) was faint and discontinuous. In the IBS-D mouse model, treatment with miRNA-29a inhibitor downregulated D-LA and DAO activity, and increased the expression of ZO-1 and CLDN1 in the intestinal mucosal epithelium. In conclusion, the present study revealed that miRNA-29a is involved in the pathogenesis of IBS-D, probably by downregulating ZO-1 and CLDN1 expression, suggesting that miRNA-29a is likely to be an important regulator of intestinal barrier function and could be a possible therapeutic target for IBS-D.
Collapse
Affiliation(s)
- He Zhu
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R China.,First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xi Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yuying Shi
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yingxiu Wu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yusheng Huang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Detang Li
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R China
| | - Fen Xiong
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R China
| | - Guodong He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yuna Chai
- Department of Pharmaceutical, First Affiliated Hospital of Zhengzhou University of Chinese Medicine, Zhengzhou, Henan 450052, P.R. China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R China
| |
Collapse
|
26
|
Martínez C, Lasitschka F, Thöni C, Wohlfarth C, Braun A, Granzow M, Röth R, Dizdar V, Rappold GA, Hausken T, Langeland N, Hanevik K, Niesler B. Comparative expression profiling in the intestine of patients with Giardia-induced postinfectious functional gastrointestinal disorders. Neurogastroenterol Motil 2020; 32:e13868. [PMID: 32391639 DOI: 10.1111/nmo.13868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND A Giardia outbreak in Bergen, Norway, caused postinfectious functional gastrointestinal disorders (PI-FGIDs). Despite the devastating effects of this outbreak, it presented a unique chance to investigate the implication on the dysregulation of genetic pathways in PI-FGID. METHODS We performed the first comparative expression profiling of miRNAs and their potential target genes in microdissected rectal biopsies from 20 Giardia-induced PI-FGID patients vs 18 healthy controls by nCounter analysis. Subsequently, candidates were validated on protein level by immunostaining. KEY RESULTS miRNA profiling on rectal biopsy samples from 5 diarrhea-predominant PI-IBS cases compared to 10 healthy controls revealed differential expression in the epithelial layer. The top five regulated miRNAs were implicated in GI disease, inflammatory response, and immunological disease. Subsequently, these miRNAs and 100 potential mRNA targets were examined in 20 PI-FGID cases and 18 healthy controls in both the mucosal epithelium and the lamina propria. Although deregulation of the selected miRNAs could not be verified in the larger sample set, mRNAs involved in barrier function were downregulated in the epithelium. Pro-inflammatory genes and genes implicated in epigenetic modifications were upregulated in the lamina propria. Immunostaining for selected candidates on 17 PI-FGID cases and 16 healthy controls revealed increased tryptase levels as well as a decreased and aberrant subcellular expression of occludin. CONCLUSIONS AND INFERENCES Genes relevant to immune and barrier function as well as stress response and epigenetic modulation are differentially expressed in PI-FGIDs and may contribute to disease manifestation.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Cornelia Thöni
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Carolin Wohlfarth
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Alexander Braun
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ralph Röth
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Vernesa Dizdar
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Trygve Hausken
- Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, National Advisory Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| |
Collapse
|
27
|
Tavares GA, Torres A, de Souza JA. Early Life Stress and the Onset of Obesity: Proof of MicroRNAs' Involvement Through Modulation of Serotonin and Dopamine Systems' Homeostasis. Front Physiol 2020; 11:925. [PMID: 32848865 PMCID: PMC7399177 DOI: 10.3389/fphys.2020.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Healthy persons hold a very complex system for controlling energy homeostasis. The system functions on the interconnected way between the nutritional, endocrine, neural, and epigenetic regulation, which includes the microRNAs (miRNAs). Currently, it is well accepted that experiences of early life stress (ELS) carry modification of the central control of feeding behavior, one of the factors controlling energy homeostasis. Recently, studies give us a clue on the modulation of eating behavior, which is one of the main factors associated with the development of obesity. This clue connected the neural control through the serotonin (5HT) and dopamine (DA) systems with the fine regulation of miRNAs. The first pieces of evidence highlight the presence of the miR-16 in the regulation of the serotonin transporter (SERT) as well as the receptors 1a (5HT1A) and 2a (5HT2A). On the other hand, miR-504 is related to the dopamine receptor D2 (DRD2). As our knowledge advance, we expected to discover other important pathways for the regulation of the energy homeostasis. As both neurotransmission systems and miRNAs seem to be sensible to ELS, the aim of this review is to bring new insight about the involvement of miRNAs with a central role in the control of eating behavior focusing on the influences of ELS and regulation of neurotransmission systems.
Collapse
Affiliation(s)
- Gabriel Araujo Tavares
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Laboratory of Neuroplasticity and Behavior, Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Amada Torres
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Developmental Genetics and Molecular Physiology, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico - Campus Morelos, Cuernavaca, Mexico
| | - Julliet Araujo de Souza
- Laboratory of Neuroplasticity and Behavior, Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
28
|
Paez-Colasante X, Figueroa-Romero C, Rumora AE, Hur J, Mendelson FE, Hayes JM, Backus C, Taubman GF, Heinicke L, Walter NG, Barmada SJ, Sakowski SA, Feldman EL. Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:117. [PMID: 32477070 PMCID: PMC7235295 DOI: 10.3389/fncel.2020.00117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS.
Collapse
Affiliation(s)
| | | | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Carey Backus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | - Laurie Heinicke
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Xiao QY, Fang XC, Li XQ, Fei GJ. Ethnic differences in genetic polymorphism associated with irritable bowel syndrome. World J Gastroenterol 2020; 26:2049-2063. [PMID: 32536774 PMCID: PMC7267697 DOI: 10.3748/wjg.v26.i17.2049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic polymorphism is associated with irritable bowel syndrome (IBS) in terms of susceptibility and clinical manifestations. Previous studies have shown that genetic polymorphism might play a key role in the onset and progression of IBS by modulating components of its pathogenesis such as the gut-brain axis, gastrointestinal motility, inflammatory activity, and immune status. Although underlying pathophysiological mechanisms have not been fully clarified, the potential ethnic differences that are present in worldwide genetic studies of IBS deserve attention. This review surveyed numerous studies focusing on IBS-associated single nucleotide polymorphisms, and investigated the ethnic disparities revealed by them. The results demonstrate the need for more attention on ethnic factors in IBS-related genetic studies. Taking ethnic backgrounds into accounts and placing emphasis on disparities potentially ascribed to ethnicity could help lay a solid and generalized foundation for transcultural, multi-ethnic, or secondary analyses in IBS, for example, a meta-analysis. Broader genetic studies considering ethnic factors are greatly needed to obtain a better understanding of the pathophysiological mechanisms of IBS and to improve the prevention, intervention, and treatment of this disease.
Collapse
Affiliation(s)
- Qi-Yun Xiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiu-Cai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Qing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Gui-Jun Fei
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
30
|
Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun 2020; 11:931. [PMID: 32071302 PMCID: PMC7028933 DOI: 10.1038/s41467-020-14642-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and Treg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB. Modeling patient-individual resistance to immunotherapy is challenging. Here, the authors use a syngeneic experimental hypermutated orthotopic glioma model to define radiological and biological features that can predict or explain the mechanistic differences between responders and non-responders to immunotherapy.
Collapse
|
31
|
Agrawal L, Korkutata M, Vimal SK, Yadav MK, Bhattacharyya S, Shiga T. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut. Neuropharmacology 2020; 166:107969. [PMID: 31982703 DOI: 10.1016/j.neuropharm.2020.107969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The latest estimates from world health organization suggest that more than 450 million people are suffering from depression and other psychiatric conditions. Of these, 50-60% have been reported to have progression of gut diseases. In the last two decades, researchers introduced incipient physiological roles for serotonin (5-HT) receptors (5-HTRs), suggesting their importance as a potential pharmacological target in various psychiatric and gut diseases. A growing body of evidence suggests that 5-HT systems affect the brain-gut axis in depressive patients, which leads to gut comorbidity. Recently, preclinical trials of 5-HT4R agonists and antagonists were promising as antipsychotic and prokinetic agents. In the current review, we address the possible pharmacological role and contribution of 5-HT4R in the pathophysiology of chronic depression and associated gut abnormalities. Physiologically, during depression episodes, centers of the sympathetic and parasympathetic nervous system couple together with neuroendocrine systems to alter the function of hypothalamic-pituitary-adrenal (HPA) axis and enteric nervous system (ENS), which in turn leads to onset of gastrointestinal tract (GIT) disorders. Consecutively, the ENS governs a broad spectrum of physiological activities of gut, such as visceral pain and motility. During the stages of emotional stress, hyperactivity of the HPA axis alters the ENS response to physiological and noxious stimuli. Consecutively, stress-induced flare, swelling, hyperalgesia and altered reflexes in gut eventually lead to GIT disorders. In summary, the current review provides prospective information about the role and mechanism of 5-HT4R-based therapeutics for the treatment of depressive disorder and possible consequences for the gut via brain-gut axis interactions. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan.
| | - Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Manoj Kumar Yadav
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, 305-8577, Tennodai, Tsukuba, Ibaraki, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba,1-1-1, Tennodai, Tsukuba, 305-8577, Ibaraki, Japan.
| |
Collapse
|
32
|
Mahurkar-Joshi S, Chang L. Epigenetic Mechanisms in Irritable Bowel Syndrome. Front Psychiatry 2020; 11:805. [PMID: 32922317 PMCID: PMC7456856 DOI: 10.3389/fpsyt.2020.00805] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a brain-gut axis disorder characterized by abdominal pain and altered bowel habits. IBS is a multifactorial, stress-sensitive disorder with evidence for familial clustering attributed to genetic or shared environmental factors. However, there are weak genetic associations reported with IBS and a lack of evidence to suggest that major genetic factor(s) contribute to IBS pathophysiology. Studies on animal models of stress, including early life stress, suggest a role for environmental factors, specifically, stress associated with dysregulation of corticotropin releasing factor and hypothalamus-pituitary-adrenal (HPA) axis pathways in the pathophysiology of IBS. Recent evidence suggests that epigenetic mechanisms, which constitute molecular changes not driven by a change in gene sequence, can mediate environmental effects on central and peripheral function. Epigenetic alterations including DNA methylation changes, histone modifications, and differential expression of non-coding RNAs (microRNA [miRNA] and long non-coding RNA) have been associated with several diseases. The objective of this review is to elucidate the molecular factors in the pathophysiology of IBS with an emphasis on epigenetic mechanisms. Emerging evidence for epigenetic changes in IBS includes changes in DNA methylation in animal models of IBS and patients with IBS, and various miRNAs that have been associated with IBS and endophenotypes, such as increased visceral sensitivity and intestinal permeability. DNA methylation, in particular, is an emerging field in the realm of complex diseases and a promising mechanism which can provide important insights into IBS pathogenesis and identify potential targets for treatment.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine at UCLA, Los Angeles, CA, United States
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
33
|
Yasi EA, Allen AA, Sugianto W, Peralta-Yahya P. Identification of Three Antimicrobials Activating Serotonin Receptor 4 in Colon Cells. ACS Synth Biol 2019; 8:2710-2717. [PMID: 31714751 PMCID: PMC6929040 DOI: 10.1021/acssynbio.9b00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The serotonin receptor 4b (5-HTR4b) is expressed throughout the gastrointestinal tract, and its agonists are used in the treatment of irritable bowel syndrome with constipation (IBS-C). Today, there are no rapid assays for the identification of 5-HTR4b agonists. Here, we developed a luciferase-based 5-HTR4b assay capable of assessing one compound per second with a 38-fold dynamic range and nM limit of detection for serotonin. We used the assay to screen more than 1000 natural products and anti-infection agents and identified five new 5-HTR4b ligands: hordenine, halofuginone, proflavine, ethacridine, and revaprazan. We demonstrate that hordenine (antibiofilm), halofuginone (antiparasitic), and revaprazan (gastric acid reducer) activate 5-HTR4b in human colon epithelial cells, leading to increased cell motility or wound healing. The 5-HTR4b assay can be used to screen larger pharmaceutical libraries to identify novel treatments for IBS-C. This work shows that antimicrobials interact not only with the gut microbiota, but also with the human host.
Collapse
Affiliation(s)
- Emily A. Yasi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia A. Allen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Ji LJ, Li F, Zhao P, Weng LP, Wei J, Yan J, Liu LN. Silencing interleukin 1α underlies a novel inhibitory role of miR-181c-5p in alleviating low-grade inflammation of rats with irritable bowel syndrome. J Cell Biochem 2019; 120:15268-15279. [PMID: 31172560 DOI: 10.1002/jcb.28794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/13/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of unknown etiology. Studies have found a close relation between IBS and microRNAs (miRNAs), but the study concerning the relationship between IBS and miR-181c-5p in IBS is still blank. Thus, this study aims to explore the role of miR-181c-5p in IBS via interleukin 1α (IL1A). Initially, microarray analysis was used to retrieve the genes related to IBS and to predict miRNAs regulating IL1A gene. IBS model was then established with abdominal withdraw reflection (AWR) and Bristol stool grading in mice measured. Afterwards, the functional role of miR-181c-5p in IBS was determined using the ectopic expression, depletion and reporter assay experiments, as well as miR-181c-5p and IL1A expression detected. Subsequently, expression of tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and IL-6 were detected to further determine the effects of miR-181c-5p and IL1A on inflammation in IBS. miR-181c-5p and IL1A might be involved in IBS. miR-181c-5p was found to be decreased while IL1A was increased in IBS rats. In addition, miR-181c-5p could target and inhibit expression of IL1A, and IBS mice exhibited elevated AWR and Bristol stool grading, namely 6 to 7 points (70.4 [38 of 54]). Moreover, with the overexpression of miR-181c-5p or silencing of IL1A, the expression of TNF-α, IL-2, and IL-6 was decreased. Collectively, this study suggested that overexpressed miR-181c-5p could silence IL1A, thus inhibiting low-grade inflammation in IBS rats. miR-181c-5p/IL1A is expected to serve as a novel target for the treatment of IBS.
Collapse
Affiliation(s)
- Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Fang Li
- Department of Gastroenterology, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Ping Zhao
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Li-Ping Weng
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Jun Wei
- Department of Anorectal Surgery, Changshu Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Jing Yan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Li-Na Liu
- Department of Hepatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
35
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
36
|
Wu X, Ding M, Liu Y, Xia X, Xu FL, Yao J, Wang BJ. hsa-miR-3177-5p and hsa-miR-3178 Inhibit 5-HT1A Expression by Binding the 3'-UTR Region in vitro. Front Mol Neurosci 2019; 12:13. [PMID: 30766477 PMCID: PMC6365703 DOI: 10.3389/fnmol.2019.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal expression of the 5-HT1A receptor, which is encoded by the HTR1A gene, leads to susceptibilities to neuropsychiatric disorders such as depression, anxiety, and schizophrenia. miRNAs regulate gene expression by recognizing the 3'-UTR region of mRNA. This study evaluated the miRNAs that might identify and subsequently determine the regulatory mechanism of HTR1A gene. Using the HEK-293, U87, SK-N-SH and SH-SY5Y cell lines, we determined the functional sequence of the 3'-UTR region of the HTR1A gene and predicted miRNA binding. Dual luciferase reporter assay and Western Blot were used to confirm the effect of miRNA mimics and inhibitors on endogenous 5-HT1A receptors. In all cell lines, gene expression of the -17 bp to +443 bp fragment containing the complete sequence of the 3'-UTR region was significantly decreased, although mRNA quantification was not different. The +375 bp to +443 bp sequence, which exhibited the most significant change in relative chemiluminescence intensity, was recognized by hsa-miR-3177-5p and hsa-miR-3178. In HEK-293 and U87 cells, hsa-miR-3177-5p significantly inhibited the 5-HT1A receptor expression, while a hsa-miR-3178 inhibitor up-regulated HTR1A gene expression in SK-N-SH and SH-SY5Y cells. By constructing the pmirGLO-vector with the mutated HTR1A gene, we further confirmed that hsa-miR-3177-5p recognized the HTR1A gene tgtacaca at +377 bp to +384 bp, and the +392 bp to +399 bp fragment cgcgccca was identified by hsa-miR-3178. hsa-miR-3177-5p and hsa-miR-3178 had significant inhibitory effects on expression of the HTR1A gene and 5-HT1A receptor and may directly participate in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yi Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Shariati A, Fallah F, Pormohammad A, Taghipour A, Safari H, Chirani AS, Sabour S, Alizadeh-Sani M, Azimi T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J Cell Physiol 2018; 234:8550-8569. [PMID: 30480810 DOI: 10.1002/jcp.27828] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a prolonged and disabling functional gastrointestinal disorder with the incidence rate of 18% in the world. IBS could seriously affect lifetime of patients and cause high economic burden on the community. The pathophysiology of the IBS is hardly understood, whereas several possible mechanisms, such as visceral hypersensitivity, irregular gut motility, abnormal brain-gut relations, and the role of infectious agents, are implicated in initiation and development of this syndrome. Different studies demonstrated an alteration in B-lymphocytes, mast cells (MC), T-lymphocytes, and cytokine concentrations in intestinal mucosa or systemic circulation that are likely to contribute to the formation of the IBS. Therefore, IBS could be developed in those with genetic predisposition. Infections' role in initiation and exacerbation of IBS has been investigated by quite several clinical studies; moreover, the possible role of some pathogens in development and exacerbation of this disease has been described. It appears that the main obligatory pathogens correspond with the IBS disease, Clostridium difficile, Escherichia coli, Mycobacterium avium subspecies paratuberculosis, Campylobacter concisus, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Pseudomonas aeruginosa, Salmonella spp, Shigella spp, and viruses, particularly noroviruses. A number of pathogenic parasites (Blastocystis, Dientamoeba fragilis, and Giardia lamblia) may also be involved in the progression and exacerbation of the disease. Based on the current knowledge, the current study concludes that the most common bacterial, viral, and parasitic pathogens may be involved in the development and progression of IBS.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Salami Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardebil University of Medical Science, Ardebil, Iran
| | - Mahmood Alizadeh-Sani
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Rebholz H, Friedman E, Castello J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. Int J Mol Sci 2018; 19:ijms19113581. [PMID: 30428567 PMCID: PMC6274737 DOI: 10.3390/ijms19113581] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
The serotonin 4 receptor, 5-HT₄R, represents one of seven different serotonin receptor families and is implicated in a variety of physiological functions and their pathophysiological variants, such as mood and depression or anxiety, food intake and obesity or anorexia, or memory and memory loss in Alzheimer's disease. Its central nervous system expression pattern in the forebrain, in particular in caudate putamen, the hippocampus and to lesser extent in the cortex, predispose it for a role in executive function and reward-related actions. In rodents, regional overexpression or knockdown in the prefrontal cortex or the nucleus accumbens of 5-HT₄R was shown to impact mood and depression-like phenotypes, food intake and hypophagia; however, whether expression changes are causally involved in the etiology of such disorders is not clear. In this context, more data are emerging, especially based on PET technology and the use of ligand tracers that demonstrate altered 5-HT₄R expression in brain disorders in humans, confirming data stemming from post-mortem tissue and preclinical animal models. In this review, we would like to present the current knowledge of 5-HT₄R expression in brain regions relevant to mood/depression, reward and executive function with a focus on 5-HT₄R expression changes in brain disorders or caused by drug treatment, at both the transcript and protein levels.
Collapse
Affiliation(s)
- Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| | - Julia Castello
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| |
Collapse
|