1
|
Wang Z, Dai Y, Zhou Y, Wang Y, Chen P, Li Y, Zhang Y, Wang X, Hu Y, Li H, Li G, Jing Y. Research progress of T cells in cholangiocarcinoma. Front Immunol 2025; 16:1453344. [PMID: 40070825 PMCID: PMC11893616 DOI: 10.3389/fimmu.2025.1453344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cholangiocarcinoma (CCA), a malignant tumor, is typically challenging to detect early and often results in a poor prognosis. In recent years, research interest has grown in the potential application of immunotherapy for CCA treatment. T cells, as a crucial component of the immune system, play a significant role in immune surveillance and therapy for cholangiocarcinoma. This article provides a review of the research advancements concerning T cells in cholangiocarcinoma patients, including their distribution, functional status, and correlation with patient prognosis within the tumor microenvironment. It further discusses the potential applications and challenges of immunotherapy strategies targeting T cells in CCA treatment and anticipates future research directions. A more profound understanding of T cells' role in cholangiocarcinoma can guide the development of clinical treatment strategies, thereby enhancing patient survival rates and quality of life. Finally, we explored the potential risks and side effects of immunotherapy for T-cell cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yaoxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunfei Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocui Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ying Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haonan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaopeng Li
- Department of Hepatobiliary Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Laface C, Fina E, Ricci AD, Guven DC, Ambrogio F, De Summa S, Vitale E, Massafra R, Brunetti O, Rizzo A. Immunobiology of biliary tract cancer and recent clinical findings in approved and upcoming immune checkpoint inhibitors. Expert Opin Biol Ther 2024; 24:1363-1374. [PMID: 39545466 DOI: 10.1080/14712598.2024.2431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Recently, immunotherapy has offered new hope for treating biliary tract cancer (BTC). However, several issues are to be considered, including the lack of validated predictive biomarkers that could help to identify patient groups which are most likely to benefit from such therapeutic approaches. AREAS COVERED In the current article, we will provide an overview of recent results and ongoing and future research directions of immunotherapy in BTC, with a special focus on recently published, practice-changing data, and ongoing active and recruiting clinical trials. EXPERT OPINION At this moment, dozens of clinical trials in phases I to III are evaluating the role of cancer immunotherapy in this setting, with the hope of adding more therapeutic options for BTC patients. Future research must focus on the development of novel agents and combinations, but the validation of biomarkers remains an urgent need. As more research results emerge, novel combinatorial strategies are destined to further transform the treatment paradigm for this heterogeneous and aggressive tumor type.
Collapse
Affiliation(s)
- Carmelo Laface
- Azienda Sanitaria Provinciale, Reggio Calabria (RC), Italy
| | - Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Castellana Grotte, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Medical Oncology Clinic, Elazig City Hospital, Health Sciences University, Elazig, Turkey
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", Bari, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
3
|
Shen P, Shi Y, Xu P, Rao L, Wang Z, Jiang J, Weng M. The construction of a prognostic model by apoptosis-related genes to predict survival, immune landscape, and medication in cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2024; 48:102430. [PMID: 39069260 DOI: 10.1016/j.clinre.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly aggressive and invasive malignant tumor of the bile duct, with a poor prognosis and a high mortality rate. Currently, there is a lack of effective targeted treatment methods and reliable biomarkers for prognosis. METHODS We downloaded RNA-seq and clinical data of CCA from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as training and test sets. The apoptosis-related genes were obtained from the Molecular Signatures Database (MsigDB) database. We used univariate/multivariate Cox regression and Lasso regression analyses to construct a riskscore prognostic model. Based on the median riskscore, we clustered the patients into high-risk (HR) and low-risk (LR) groups. We carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes (DEGs) in HR and LR groups. The single sample gene set enrichment analysis (ssGSEA) was employed to analyze the immune infiltration of the HR and LR groups. The CellMiner database was utilized to predict drugs and perform molecular docking on drugs and target proteins. RESULTS We identified 8 genes with prognostic significance to construct a prognostic model. Results of GO and KEGG demonstrated that DEGs were mainly enriched in biological functions such as fatty acid metabolic processes and pathways such as the cAMP signaling pathway. Results of ssGSEA uncovered that immune cells such as DCs and Macrophages in the HR group, as well as immune functions such as Check-point and Parainflammation, were considerably higher than those in the LR group. Drug sensitivity prediction and results of molecular docking revealed that Rigosertib targeted the prognostic genes MAP3K1. HYPOTHEMYCIN and AMG900 effectively targeted JUN. CONCLUSION Our project suggested that the prognostic model with apoptotic features can effectively predict prognosis in CCA patients, proffering prognostic biomarkers and potential therapeutic targets for CCA patients.
Collapse
Affiliation(s)
- Peng Shen
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Yinsheng Shi
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Pengcheng Xu
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Linbin Rao
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Zhengfei Wang
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Junjie Jiang
- Department of Hepatological surgery, People's Hospital of Qu Zhou, Quzhou City, Zhejiang Province 324000, China
| | - Meiling Weng
- Department of Medical Oncology, People's Hospital of Qu Zhou, No. 100 Minjiang Avenue, Quzhou City, Zhejiang Province 324000, China.
| |
Collapse
|
4
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024; 19:101407. [PMID: 39326581 PMCID: PMC11609388 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
5
|
Dadgar N, Arunachalam AK, Hong H, Phoon YP, Arpi-Palacios JE, Uysal M, Wehrle CJ, Aucejo F, Ma WW, Melenhorst JJ. Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy. Cancers (Basel) 2024; 16:3232. [PMID: 39335203 PMCID: PMC11429565 DOI: 10.3390/cancers16183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive malignancy originating from the bile ducts, with poor prognosis and limited treatment options. Traditional therapies, such as surgery, chemotherapy, and radiation, have shown limited efficacy, especially in advanced cases. Recent advancements in immunotherapy, particularly T cell-based therapies like chimeric antigen receptor T (CAR T) cells, tumor-infiltrating lymphocytes (TILs), and T cell receptor (TCR)-based therapies, have opened new avenues for improving outcomes in CCA. This review provides a comprehensive overview of the current state of T cell therapies for CCA, focusing on CAR T cell therapy. It highlights key challenges, including the complex tumor microenvironment and immune evasion mechanisms, and the progress made in preclinical and clinical trials. The review also discusses ongoing clinical trials targeting specific CCA antigens, such as MUC1, EGFR, and CD133, and the evolving role of precision immunotherapy in enhancing treatment outcomes. Despite significant progress, further research is needed to optimize these therapies for solid tumors like CCA. By summarizing the most recent clinical results and future directions, this review underscores the promising potential of T cell therapies in revolutionizing CCA treatment.
Collapse
Affiliation(s)
- Neda Dadgar
- Cleveland Clinic Foundation, Enterprise Cancer Institute, Translational Hematology & Oncology Research, Cleveland, OH 44114, USA;
| | - Arun K. Arunachalam
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Hanna Hong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Yee Peng Phoon
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Jorge E. Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Melis Uysal
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Chase J. Wehrle
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA;
| | - Jan Joseph Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| |
Collapse
|
6
|
Lou Y, Chen Y, Guo K, Li B, Zheng S. Emerging biomarkers for immunotherapy response in biliary tract cancers: a comprehensive review of immune checkpoint inhibitor strategies. Biomark Med 2024; 18:703-715. [PMID: 39143949 PMCID: PMC11441040 DOI: 10.1080/17520363.2024.2385297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
Biliary tract cancers (BTCs) have rising incidence and mortality rates. Chemotherapy's limited efficacy has led to exploring new treatments like immunotherapy. which offers modest benefits. Moreover, the identification of reliable predictive biomarkers for immune checkpoint therapy in BTCs remains elusive, hindering personalized treatment strategies. This review provides an overview of the current landscape of emerging biomarkers for immunotherapy response in BTCs. We discuss the incremental benefits of combination therapy and the evolving role of immunotherapy in managing advanced BTC. Additionally, we highlight the need for robust predictive biomarkers to optimize treatment outcomes and foster a more individualized approach to patient care. We aim to identify promising research avenues and strategies to enhance therapeutic efficacy and patient survival in BTCs.
Collapse
Affiliation(s)
- Yidan Lou
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Yijing Chen
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
| | - Binbin Li
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Song Zheng
- Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology & Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| |
Collapse
|
7
|
Hua S, Gu X, Jin H, Zhang X, Liu Q, Yang J. Tumor-infiltrating T lymphocytes: A promising immunotherapeutic target for preventing immune escape in cholangiocarcinoma. Biomed Pharmacother 2024; 177:117080. [PMID: 38972151 DOI: 10.1016/j.biopha.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Cholangiocarcinoma (CCA) is becoming more common and deadly worldwide. Tumor-infiltrating T cell subtypes make distinct contributions to the immune system; collectively, they constitute a significant portion of the tumor microenvironment (TME) in CCA. By secreting cytokines and other chemicals, regulatory T cells (Tregs) decrease activated T cell responses, acting as immunosuppressors. Reduced CD8+ T cell activation results in stimulating programmed death-1 (PD-1), which undermines the immunological homeostasis of T lymphocytes. On the other hand, cancer cells are eliminated by activated cytotoxic T lymphocyte (CTL) through the perforin-granzyme or Fas-FasL pathways. Th1 and CTL immune cell infiltration into the malignant tumor is also facilitated by γδ T cells. A higher prognosis is typically implied by CD8+ T cell infiltration, and survival is inversely associated with Treg cell density. Immune checkpoint inhibitors, either singly or in combination, provide novel therapeutic strategies for CCA immunotherapy. Furthermore, it is anticipated that immunotherapeutic strategies-such as the identification of new immune targets, combination treatments involving several immune checkpoint inhibitors, and chimeric antigen receptor-T therapies (CAR-T)-will optimize the effectiveness of anti-CCA treatments while reducing adverse effects.
Collapse
Affiliation(s)
- Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
8
|
Lippert T, Ross S, Pattilachan T, Christodoulou M, Gratsianskiy D, Rosemurgy A, Sucandy I. Initial clinical outcomes of robotic resection for perihilar cholangiocarcinoma: Is it safe and effective? J Surg Oncol 2024; 130:102-108. [PMID: 38739865 DOI: 10.1002/jso.27676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND OBJECTIVES We aimed to describe our outcomes of robotic resection for perihilar cholangiocarcinoma, the largest single institutional series in the Western hemisphere to date. METHODS Between 2016 and 2022, we prospectively followed all patients who underwent robotic resection for perihilar cholangiocarcinoma. RESULTS In total, 23 patients underwent robotic resection for perihilar cholangiocarcinoma, 18 receiving concomitant hepatectomy. The median age was 73 years. Operative time was 470 min with an estimated blood loss of 150 mL. No intraoperative conversions to open or other intraoperative complications occurred. Median length of stay was 5 days. Four postoperative complications occurred. Three readmissions occurred within 30 days with one 90-day mortality. R0 resection was achieved in 87% of patients and R1 in 13% of patients. At a median follow-up of 27 months, 15 patients were alive without evidence of disease, two patients with local recurrence at 1 year, and six were deceased. CONCLUSIONS Utilization of the robotic platform for perihilar cholangiocarcinoma is safe and feasible with excellent perioperative outcomes. Further studies are needed to determine the long-term oncological outcomes.
Collapse
Affiliation(s)
- Trenton Lippert
- College of Medicine, University of South Florida Morsani, Tampa, Florida, USA
| | - Sharona Ross
- AdventHealth Digestive Health Institute, Tampa, Florida, USA
| | | | | | | | | | - Iswanto Sucandy
- AdventHealth Digestive Health Institute, Tampa, Florida, USA
| |
Collapse
|
9
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Petrungaro S, de Franchis V, Filippini A, Facchiano A, Gaudio E, Giampietri C. Autophagy impairment in human bile duct carcinoma cells. Front Physiol 2023; 14:1249264. [PMID: 37841311 PMCID: PMC10570450 DOI: 10.3389/fphys.2023.1249264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Bile duct epithelial cells, named cholangiocytes, may undergo a neoplastic transformation leading to cholangiocarcinoma. The role autophagy plays in cancer is still debated and few information are available in cholangiocarcinoma. We report in vitro data, at least in part validated in vivo,i ndicating that autophagy is impaired in intrahepatic cholangiocarcinoma cells, as compared to healthy cholangiocytes, evaluated through LC3II and p62 Western blot analyses. Autophagy impairment was found to be associated with low expression of TFEB protein and high expression of three proteins i.e., c-FLIP, caspase-10 and cleaved BCLAF-1, as compared to healthy cholangiocytes. We highlight biological effects of autophagy impairment in cholangiocarcinoma showing that autophagy induction, via rapamycin, as well as caspase inhibition, via Q-VD-OPh, are able to reduce proliferation marker PCNA level, colony size and protein content of cultured cholangiocarcinoma cells. The increased protein expression of p62, c-FLIP, caspase-10 observed in vitro in cholangiocarcinoma cells was paralleled by significant increase at gene expression levels in vivo; in fact, significant increase of transcript levels of p62, c-FLIP and caspase-10 was observed in 34 biopsies from human cholangiocarcinoma patients compared to 9 biopsies from 9 healthy controls, as reported in the GEPIA2 public database. The significant increase of p62 level in cholangiocarcinoma was found as a relatively uncommon finding in solid cancers, since it was also found in only 7 cancer types out of 31 cancer types investigated, including melanoma and hepatocarcinoma. In conclusion, we present data suggesting a molecular machinery controlling autophagy in cholangiocytes and autophagy impairment in cholangiocarcinoma.
Collapse
Affiliation(s)
- Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Valerio de Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Tomlinson JL, Valle JW, Ilyas SI. Immunobiology of cholangiocarcinoma. J Hepatol 2023; 79:867-875. [PMID: 37201670 PMCID: PMC10524996 DOI: 10.1016/j.jhep.2023.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Recent literature has significantly advanced our knowledge and understanding of the tumour immune microenvironment of cholangiocarcinoma. Detailed characterisation of the immune landscape has defined new patient subtypes. While not utilised in clinical practice yet, these novel classifications will help inform decisions regarding immunotherapeutic approaches. Suppressive immune cells, such as tumour-associated macrophages and myeloid-derived suppressor cells, form a barrier that shields tumour cells from immune surveillance. The presence of this immunosuppressive barrier in combination with a variety of immune escape mechanisms employed by tumour cells leads to poor tumour immunogenicity. Broad strategies to re-equip the immune system include blockade of suppressive immune cell recruitment to priming cytotoxic effector cells against tumour antigens. While immunotherapeutic strategies are gaining traction for the treatment of cholangiocarcinoma, there is a long road of discovery ahead in order to make meaningful contributions to patient therapy and survival.
Collapse
Affiliation(s)
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester & Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
13
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
14
|
Laffusa A, Ciaccio A, Elvevi A, Gallo C, Ratti L, Invernizzi P, Massironi S. Impact of metformin on the incidence of human cholangiocarcinoma in diabetic patients: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2023; 35:241-247. [PMID: 36708293 DOI: 10.1097/meg.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common liver cancer. Diabetes is a well-known risk factor; however, treatment with metformin has been reported to be protective for several cancers, but data on CCA are still sparse and heterogeneous. We performed this meta-analysis to investigate the role of metformin as a potential protective factor for CCA. In this systematic review and meta-analysis, we searched PubMed/MEDLINE and EMBASE databases, from the date of inception to November 2022, for studies analyzing CCA rate in patients taking metformin. Twenty-nine articles were initially identified, of which four were eligible and included in our systematic review and meta-analysis, from which we estimated the relative risk (RR). The rate of CCA was lower for diabetic patients taking metformin than diabetic patients without metformin intake when comparing two highest quality studies [RR, 0.38; 95% confidence interval (CI), 0.290-0.508; P < 0.001], and three studies with similar inclusion criteria (RR, 0.34; 95% CI, 0.51-0.35; P < 0.001) without significant statistical heterogeneity among them (I2 = 29.83%, P = 0,2326 and I2 = 35.08%; P = 0.2143, respectively). Our study demonstrated a significant impact of metformin in reducing the risk of CCA by nearly 62-66% in diabetic patients taking metformin.
Collapse
Affiliation(s)
- Alice Laffusa
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Yu X, Zhu L, Wang T, Chen J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front Immunol 2023; 14:1037945. [PMID: 37138880 PMCID: PMC10150070 DOI: 10.3389/fimmu.2023.1037945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cholangiocarcinoma is characterized by a poor prognosis with limited treatment and management options. Chemotherapy using gemcitabine with cisplatin is the only available first-line therapy for patients with advanced cholangiocarcinoma, although it offers only palliation and yields a median survival of < 1 year. Recently there has been a resurgence of immunotherapy studies focusing on the ability of immunotherapy to inhibit cancer growth by impacting the tumor microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug Administration has approved the combination of durvalumab and gemcitabine with cisplatin as the first-line treatment of cholangiocarcinoma. However, immunotherapy, like immune checkpoint blockade, is less effective in cholangiocarcinoma than in other types of cancer. Although several factors such as the exuberant desmoplastic reaction are responsible for cholangiocarcinoma treatment resistance, existing literature on cholangiocarcinoma cites the inflammatory and immunosuppressive environment as the most common factor. However, mechanisms activating the immunosuppressive tumor microenvironment contributing to cholangiocarcinoma drug resistance are complicated. Therefore, gaining insight into the interplay between immune cells and cholangiocarcinoma cells, as well as the natural development and evolution of the immune tumor microenvironment, would provide targets for therapeutic intervention and improve therapeutic efficacy by developing multimodal and multiagent immunotherapeutic approaches of cholangiocarcinoma to overcome the immunosuppressive tumor microenvironment. In this review, we discuss the role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and reinforce the importance of inflammatory cells in the tumor microenvironment, thereby highlighting the explanatory and therapeutic shortcomings of immunotherapy monotherapy and proposing potentially promising combinational immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jiang Chen,
| |
Collapse
|
16
|
Elvevi A, Laffusa A, Scaravaglio M, Rossi RE, Longarini R, Stagno AM, Cristoferi L, Ciaccio A, Cortinovis DL, Invernizzi P, Massironi S. Clinical treatment of cholangiocarcinoma: an updated comprehensive review. Ann Hepatol 2022; 27:100737. [PMID: 35809836 DOI: 10.1016/j.aohep.2022.100737] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of neoplasms of the bile ducts and represents the second most common hepatic cancer after hepatocellular carcinoma; it is sub-classified as intrahepatic cholangiocarcinoma (iCCA) and extrahepatic cholangiocarcinoma (eCCA), the latter comprising both perihilar cholangiocarcinoma (pCCA or Klatskin tumor), and distal cholangiocarcinoma (dCCA). The global incidence of CCA has increased worldwide in recent decades. Chronic inflammation of biliary epithelium and bile stasis represent the main risk factors shared by all CCA sub-types. When feasible, liver resection is the treatment of choice for CCA, followed by systemic chemotherapy with capecitabine. Liver transplants represent a treatment option in patients with very early iCCA, in referral centers only. CCA diagnosis is often performed at an advanced stage when CCA is unresectable. In this setting, systemic chemotherapy with gemcitabine and cisplatin represents the first treatment option, but the prognosis remains poor. In order to ameliorate patients' survival, new drugs have been studied in the last few years. Target therapies are directed against different molecules, which are altered in CCA cells. These therapies have been studied as second-line therapy, alone or in combination with chemotherapy. In the same setting, the immune checkpoints inhibitors targeting programmed death 1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), have been proposed, as well as cancer vaccines and adoptive cell therapy (ACT). These experimental treatments showed promising results and have been proposed as second- or third-line treatment, alone or in combination with chemotherapy or target therapies.
Collapse
Affiliation(s)
- Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alice Laffusa
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Miki Scaravaglio
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Raffaella Longarini
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Anna Maria Stagno
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Ciaccio
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diego Luigi Cortinovis
- Division of Oncology, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
17
|
Chiawpanit C, Panwong S, Sawasdee N, Yenchitsomanus PT, Panya A. Genistein Sensitizes Human Cholangiocarcinoma Cell Lines to Be Susceptible to Natural Killer Cells. BIOLOGY 2022; 11:biology11081098. [PMID: 35892954 PMCID: PMC9330512 DOI: 10.3390/biology11081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a lethal bile duct cancer, which has poor treatment outcomes due to its high resistance to chemotherapy and cancer recurrence. Activation of aberrant anti-apoptotic signaling pathway has been reported to be a mechanism of chemoresistance and immune escape of CCA. Therefore, reversal of anti-apoptotic signaling pathway represents a feasible approach to potentiate effective treatments, especially for CCA with high chemoresistance. In this study, we demonstrated the effects of genistein on reactivation of apoptosis cascade and increase the susceptibility of CCA cells to natural killer (NK-92) cells. Genistein at 50 and 100 µM significantly activated extrinsic apoptotic pathway in CCA cells (KKU055, KKU100, and KKU213A), which was evident by reduction of procaspase-8 and -3 expression. Pretreatment of CCA cells with genistein at 50 µM, but not NK-92 cells, significantly increased NK-92 cell killing ability over the untreated control, suggesting the ability of genistein to sensitize CCA cells. Interestingly, genistein treatment could greatly lower the expression of cFLIP, an anti-apoptotic protein involved in the immune escape pathway, in addition to upregulation of death receptors, Fas- and TRAIL-receptors, in CCA cells, which might be the underlying molecular mechanism of genistein to sensitize CCA to be susceptible to NK-92 cells. Taken together, this finding revealed the benefit of genistein as a sensitizer to enhance the efficiency of NK cell immunotherapy for CCA.
Collapse
Affiliation(s)
- Chutipa Chiawpanit
- Doctoral Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suthida Panwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Doctoral Program in Applied Microbiology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-943346
| |
Collapse
|
18
|
Marconi GD, Della Rocca Y, Fonticoli L, Melfi F, Rajan TS, Carradori S, Pizzicannella J, Trubiani O, Diomede F. C-Myc Expression in Oral Squamous Cell Carcinoma: Molecular Mechanisms in Cell Survival and Cancer Progression. Pharmaceuticals (Basel) 2022; 15:ph15070890. [PMID: 35890188 PMCID: PMC9316231 DOI: 10.3390/ph15070890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of malignant epithelial cancer that occurs in the oral cavity. The c-Myc factor is expressed in multiple types of cancer, comprising head and neck squamous cell carcinoma (HNSCC), where it plays a fundamental role in tumor prognosis and in the self-renewal of tumor stem cells. However, the role of c-Myc in controlling OSCC cells is not well-known. The aim of the present study is the evaluation of the biological roles and regulatory mechanism of c-Myc in the pathogenesis of OSCC. Results indicated that c-Myc, c-Jun, Bcl-2, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), ERK 1/2 and pERK1/2 were overexpressed in a cellular model of squamous cell carcinoma, Cal-27. Doxorubicin (Doxo), a common chemotherapeutic agent, inhibited cell invasion, hypoxia, angiogenesis and inflammation in a cellular model of Cal-27 cells as indicated by downregulation of MMP-9, VEGF, ERK 1/2 and pERK 1/2 as well as promoted apoptosis as evidenced by the downregulation of Bcl-2 protein. This work aimed at underlying the functional relevance of c-Myc in OSCC and the HIF-Myc collaboration by integrating the knowledge on this molecular link in an OSCC tumor microenvironment. The results obtained showed for the first time the vital role of c-Myc in Cal-27 in cell survival/proliferation and tumor growth as well as the negative regulatory effect of Doxo against c-Myc signaling pathway.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Francesco Melfi
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (S.C.)
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India;
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (S.C.)
| | - Jacopo Pizzicannella
- Ss. Annunziata Hospital, ASL 02 Lanciano-Vasto-Chieti, 66100 Chieti, Italy
- Correspondence:
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| |
Collapse
|
19
|
Liu D, Heij LR, Czigany Z, Dahl E, Lang SA, Ulmer TF, Luedde T, Neumann UP, Bednarsch J. The role of tumor-infiltrating lymphocytes in cholangiocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:127. [PMID: 35392957 PMCID: PMC8988317 DOI: 10.1186/s13046-022-02340-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and associated with a dismal prognosis due to the lack of an efficient systemic therapy. In contrast to other cancers, new immunotherapies have demonstrated unsatisfactory results in clinical trials, underlining the importance of a deeper understanding of the special tumor microenvironment of CCA and the role of immune cells interacting with the tumor. Tumor-infiltrating lymphocytes (TILs) are an important component of the adaptive immune system and the foundation of current immunotherapy. Therefore, the aim of this systemic review is to summarize the current literature focusing on the proportions and distribution, molecular pathogenesis, prognostic significance of TILs and their role in immunotherapy for CCA patients. In CCA, CD8+ and CD4+ T lymphocytes represent the majority of TILs and are mostly sequestered around the cancer cells. CD20+ B lymphocytes and Natural Killer (NK) cells are less frequent. In contrast, Foxp3+ cells (regulatory T cells, Tregs) are observed to infiltrate into the tumor. In the immune microenvironment of CCA, cancer cells and stromal cells such as TAMs, TANs, MSDCs and CAFs inhibit the immune protection function of TILs by secreting factors like IL-10 and TGF-β. With respect to molecular pathogenesis, the Wnt/-catenin, TGF-signaling routes, aPKC-i/P-Sp1/Snail Signaling, B7-H1/PD-1Pathway and Fas/FasL signaling pathways are connected to the malignant potential and contributed to tumor immune evasion by increasing TIL apoptosis. Distinct subtypes of TILs show different prognostic implications for the long-term outcome in CCA. Although there are occasionally conflicting results, CD8+ and CD4+ T cells, and CD20+ B cells are positively correlated with the oncological prognosis of CCA, while a high number of Tregs is very likely associated with worse overall survival. TILs also play a major role in immunotherapy for CCA. In summary, the presence of TILs may represent an important marker for the prognosis and a potential target for novel therapy, but more clinical and translational data is needed to fully unravel the importance of TILs in the treatment of CCA.
Collapse
Affiliation(s)
- Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Arke Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Florian Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Department of Surgery, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
20
|
de Jong IEM, Overi D, Carpino G, Gouw ASH, van den Heuvel MC, van Kempen LC, Mancone C, Onori P, Cardinale V, Casadei L, Alvaro D, Porte RJ, Gaudio E. Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology 2022; 75:814-830. [PMID: 34543480 PMCID: PMC9300015 DOI: 10.1002/hep.32166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.
Collapse
Affiliation(s)
- Iris E M de Jong
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands.,Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Guido Carpino
- Division of Health SciencesDepartment of Movement, Human and Health SciencesUniversity of Rome "Foro Italico"RomeItaly
| | - Annette S H Gouw
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Marius C van den Heuvel
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Léon C van Kempen
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carmine Mancone
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and BiotechnologiesPolo Pontino, Sapienza University of RomeRomeItaly
| | - Luca Casadei
- Department of ChemistrySapienza University of RomeRomeItaly
| | - Domenico Alvaro
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| |
Collapse
|
21
|
Cadamuro M, Fabris L, Zhang X, Strazzabosco M. Tumor microenvironment and immunology of cholangiocarcinoma. HEPATOMA RESEARCH 2022; 8:11. [PMID: 39301518 PMCID: PMC11412615 DOI: 10.20517/2394-5079.2021.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor originating from both intra- and extra-hepatic biliary cells, represents an unmet need in liver oncology, as treatment remains largely unsatisfactory. A typical feature of CCA is the presence of a complex tumor microenvironment (TME) composed of neoplastic cells, a rich inflammatory infiltrate, and cancer-associated fibroblasts and desmoplastic matrix that makes it extremely chemoresistant to traditional chemotherapeutic drugs. In this review, we describe the cell populations within the TME, in particular those involved in the innate and adaptive immune response and how they interact with tumor cells and with matrix proteins. The TME is crucial for CCA to mount an immune escape response and is the battlefield where molecularly targeted therapies and immune therapy, particularly in combination, may actually prove their therapeutic value.
Collapse
Affiliation(s)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua 35131, Italy
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Di Tinco R, Bertani G, Pisciotta A, Bertoni L, Pignatti E, Maccaferri M, Bertacchini J, Sena P, Vallarola A, Tupler R, Croci S, Bonacini M, Salvarani C, Carnevale G. Role of PD-L1 in licensing immunoregulatory function of dental pulp mesenchymal stem cells. Stem Cell Res Ther 2021; 12:598. [PMID: 34863286 PMCID: PMC8643194 DOI: 10.1186/s13287-021-02664-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are low immunogenic and hold immunomodulatory properties that, along with their well-established multi-potency, might enhance their potential application in autoimmune and inflammatory diseases. The present study focused on the ability of DPSCs to modulate the inflammatory microenvironment through PD1/PD-L1 pathway. Methods Inflammatory microenvironment was created in vitro by the activation of T cells isolated from healthy donors and rheumatoid arthritis (RA) patients with anti-CD3 and anti-CD28 antibodies. Direct and indirect co-cultures between DPSCs and PBMCs were carried out to evaluate the activation of immunomodulatory checkpoints in DPSCs and the inflammatory pattern in PBMCs. Results Our data suggest that the inflammatory stimuli trigger DPSCs immunoregulatory functions that can be exerted by both direct and indirect contact. As demonstrated by using a selective PD-L1 inhibitor, DPSCs were able to activate compensatory pathways targeting to orchestrate the inflammatory process by modulating pro-inflammatory cytokines in pre-activated T lymphocytes. The involvement of PD-L1 mechanism was also observed in autologous inflammatory status (pulpitis) and after direct exposure to pre-activated T cells from RA patients suggesting that immunomodulatory/anti-inflammatory properties are strictly related to their stemness status. Conclusions Our findings point out that the communication with the inflammatory microenvironment is essential in licensing their immunomodulatory properties. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02664-4.
Collapse
Affiliation(s)
- Rosanna Di Tinco
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Vallarola
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy.,Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
23
|
Natural Killer-Dendritic Cell Interactions in Liver Cancer: Implications for Immunotherapy. Cancers (Basel) 2021; 13:cancers13092184. [PMID: 34062821 PMCID: PMC8124166 DOI: 10.3390/cancers13092184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The reciprocal crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The Th-cell polarizing ability, cytokine-producing capacity, chemokine expression, and migration of DCs are regulated by activated NK cells. Conversely, the effector functions including lysis and cytokine production, proliferation, and migration of NK cells are influenced by close interactions with activated DCs. In this review, we explore the impact of DC–NK cell crosstalk and its therapeutic potential in immune control of liver malignances. Abstract Natural killer (NK) and dendritic cells (DCs) are innate immune cells that play a crucial role in anti-tumor immunity. NK cells kill tumor cells through direct cytotoxicity and cytokine secretion. DCs are needed for the activation of adaptive immune responses against tumor cells. Both NK cells and DCs are subdivided in several subsets endowed with specialized effector functions. Crosstalk between NK cells and DCs leads to the reciprocal control of their activation and polarization of immune responses. In this review, we describe the role of NK cells and DCs in liver cancer, focusing on the mechanisms involved in their reciprocal control and activation. In this context, intrahepatic NK cells and DCs present unique immunological features, due to the constant exposure to non-self-circulating antigens. These interactions might play a fundamental role in the pathology of primary liver cancer, namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Additionally, the implications of these immune changes are relevant from the perspective of improving the cancer immunotherapy strategies in HCC and ICC patients.
Collapse
|
24
|
Lorenzo N, Sabina DM, Guido C, Ilaria Grazia Z, Samira S, Valeria A, Daniele C, Diletta O, Antonella G, Marco M, Daniela B, Valerio DP, Andrea O, Agostino Maria DR, Fabio M, Maria Consiglia B, Jessica F, Sara M, Gian Luca G, Pierluigi Benedetti P, Paquale Bartomeo B, Felice G, Vincenzo C, Pietro I, Giuseppina C, Eugenio G, Domenico A. DCLK1, a Putative Stem Cell Marker in Human Cholangiocarcinoma. Hepatology 2021; 73:144-159. [PMID: 32978808 PMCID: PMC8243252 DOI: 10.1002/hep.31571] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a very aggressive cancer showing the presence of high cancer stem cells (CSCs). Doublecortin-like kinase1 (DCLK1) has been demonstrated as a CSC marker in different gastroenterological solid tumors. Our aim was to evaluate in vitro the expression and the biological function of DCLK1 in intrahepatic CCA (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS Specimens surgically resected of human CCA were enzymatically digested, submitted to immunosorting for specific CSC markers (LGR5 [leucine-rich repeat-containing G protein-coupled receptor], CD [clusters of differentiation] 90, EpCAM [epithelial cell adhesion molecule], CD133, and CD13), and primary cell cultures were prepared. DCLK1 expression was analyzed in CCA cell cultures by real-time quantitative PCR, western blot, and immunofluorescence. Functional studies have been performed by evaluating the effects of selective DCLK1 inhibitor (LRRK2-IN-1) on cell proliferation (MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, cell population doubling time), apoptosis, and colony formation capacity. DCLK1 was investigated in situ by immunohistochemistry and real-time quantitative PCR. DCLK1 serum concentration was analyzed by enzyme-linked immunosorbent assay. We describe DCLK1 in CCA with an increased gene and protein DCLK1 expression in pCCALGR5+ and in iCCACD133+ cells compared with unsorted cells. LRRK2-IN-1 showed an anti-proliferative effect in a dose-dependent manner. LRRK2-IN-1 markedly impaired cell proliferation, induced apoptosis, and decreased colony formation capacity and colony size in both iCCA and pCCA compared with the untreated cells. In situ analysis confirmed that DCLK1 is present only in tumors, and not in healthy tissue. Interestingly, DCLK1 was detected in the human serum samples of patients with iCCA (high), pCCA (high), HCC (low), and cirrhosis (low), but it was almost undetectable in healthy controls. CONCLUSIONS DCLK1 characterizes a specific CSC subpopulation of iCCACD133+ and pCCALGR5+ , and its inhibition exerts anti-neoplastic effects in primary CCA cell cultures. Human DCLK1 serum might represent a serum biomarker for the early CCA diagnosis.
Collapse
Affiliation(s)
- Nevi Lorenzo
- Department of BiosciencesUniversity of MilanMilanItaly
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Di Matteo Sabina
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
- Department of ImmunologyBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Carpino Guido
- Department of MovementHuman and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | | | - Safarikia Samira
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Ambrosino Valeria
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Costantini Daniele
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Overi Diletta
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Giancotti Antonella
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Monti Marco
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Bosco Daniela
- Department of Pathological Anatomy and CytodiagnosticSapienza University of RomeRomeItaly
| | - De Peppo Valerio
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Oddi Andrea
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - De Rose Agostino Maria
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Melandro Fabio
- Department of General Surgery and Organ TransplantationSapienza University of RomeRomeItaly
| | | | - Faccioli Jessica
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Massironi Sara
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly
- European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | - Grazi Gian Luca
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Panici Pierluigi Benedetti
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | | | - Giuliante Felice
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Cardinale Vincenzo
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Invernizzi Pietro
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly
- European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | | | - Gaudio Eugenio
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Alvaro Domenico
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
25
|
Di Tinco R, Sergi R, Bertani G, Pisciotta A, Bellucci D, Carnevale G, Cannillo V, Bertoni L. Effects of a Novel Bioactive Glass Composition on Biological Properties of Human Dental Pulp Stem Cells. MATERIALS 2020; 13:ma13184049. [PMID: 32932607 PMCID: PMC7560350 DOI: 10.3390/ma13184049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
Functional reconstruction of bone defects represents a clinical challenge in the regenerative medicine field, which targets tissue repair following traumatic injuries and disease-related bone deficiencies. In this regard, the optimal biomaterial should be safe, biocompatible and tailored in order to promote the activation of host progenitor cells towards bone repair. Bioactive glasses might be suitable biomaterials due to their composition being able to induce the host healing response and, eventually, anti-bacterial properties. In this study we investigated whether and how an innovative bioactive glass composition, called BGMS10, may affect cell adhesion, morphology, proliferation, immunomodulation and osteogenic differentiation of human dental pulp stem cells (hDPSCs). When cultured on BGMS10, hDPSCs maintained their proliferation rate and typical fibroblast-like morphology, showing the expression of stemness markers STRO-1 and c-Kit. Moreover, the expression of FasL, a key molecule in mediating immunomodulation effects of hDPSCs, was maintained. BGMS10 also proved to trigger osteogenic commitment of hDPSCs, as confirmed by the activation of bone-related transcription factors RUNX2 and Osx and the ongoing deposition of extracellular matrix supported by the expression of OPN and OCN. Our findings suggest that BGMS10 not only maintains the typical biological and immunomodulatory properties of hDPSCs but also favors the osteogenic commitment.
Collapse
Affiliation(s)
- Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Rachele Sergi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.); (V.C.)
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Devis Bellucci
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.); (V.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Valeria Cannillo
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.); (V.C.)
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
- Correspondence:
| |
Collapse
|
26
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
27
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Pisciotta A, Bertani G, Bertoni L, Di Tinco R, De Biasi S, Vallarola A, Pignatti E, Tupler R, Salvarani C, de Pol A, Carnevale G. Modulation of Cell Death and Promotion of Chondrogenic Differentiation by Fas/FasL in Human Dental Pulp Stem Cells (hDPSCs). Front Cell Dev Biol 2020; 8:279. [PMID: 32500073 PMCID: PMC7242757 DOI: 10.3389/fcell.2020.00279] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are characterized by high proliferation rate, the multi-differentiation ability and, notably, low immunogenicity and immunomodulatory properties exerted through different mechanisms including Fas/FasL pathway. Despite their multipotency, hDPSCs require particular conditions to achieve chondrogenic differentiation. This might be due to the perivascular localization and the expression of angiogenic marker under standard culture conditions. FasL stimulation was able to promote the early induction of chondrogenic commitment and to lead the differentiation at later times. Interestingly, the expression of angiogenic marker was reduced by FasL stimulation without activating the extrinsic apoptotic pathway in standard culture conditions. In conclusion, these findings highlight the peculiar embryological origin of hDPSCs and provide further insights on their biological properties. Therefore, Fas/FasL pathway not only is involved in determining the immunomodulatory properties, but also is implicated in supporting the chondrogenic commitment of hDPSCs.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Vallarola
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unitá Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anto de Pol
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
29
|
Ravi D, Sarkar S, Purvey S, Passero F, Beheshti A, Chen Y, Mokhtar M, David K, Konry T, Evens AM. Interaction kinetics with transcriptomic and secretory responses of CD19-CAR natural killer-cell therapy in CD20 resistant non-hodgkin lymphoma. Leukemia 2019; 34:1291-1304. [PMID: 31772298 PMCID: PMC7196029 DOI: 10.1038/s41375-019-0663-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 01/20/2023]
Abstract
We investigated the cytolytic and mechanistic activity of anti-CD19 chimeric antigen receptor natural killer (CD19.CAR.NK92) therapy in lymphoma cell lines (diffuse large B-cell, follicular, and Burkitt lymphoma), including rituximab- and obinutuzumab-resistant cells, patient-derived cells, and a human xenograft model. Altogether, CD19.CAR.NK92 therapy significantly increased cytolytic activity at E:T ratios (1:1–10:1) via LDH release and prominent induction of apoptosis in all cell lines, including in anti-CD20 resistant lymphoma cells. The kinetics of CD19.CAR.NK92 cell death measured via droplet-based single cell microfluidics analysis showed that most lymphoma cells were killed by single contact, with anti-CD20 resistant cell lines requiring significantly longer contact duration with NK cells. Additionally, systems biology transcriptomic analyses of flow-sorted lymphoma cells co-cultured with CD19.CAR.NK92 revealed conserved activation of IFNγ signaling, execution of apoptosis, ligand binding, and immunoregulatory and chemokine signaling pathways. Furthermore, a 92-plex cytokine panel analysis showed increased secretion of granzymes, increased secretion of FASL, CCL3 and IL10 in anti-CD20 resistant SUDHL-4 cells with induction of genes relevant to mTOR and G2/M checkpoint activation were noted in all anti-CD20 resistant cells co-cultured with CD19.CAR.NK92 cells. Collectively, CD19.CAR.NK92 was associated with potent anti-lymphoma activity across a host of sensitive and resistant lymphoma cells that involved distinct immuno-biologic mechanisms.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Sneha Purvey
- Division of Hematology Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frank Passero
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ying Chen
- Medical Informatics, Pathology and Laboratory medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Maisarah Mokhtar
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kevin David
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
30
|
Nevi L, Costantini D, Safarikia S, Di Matteo S, Melandro F, Berloco PB, Cardinale V. Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells 2019; 8:cells8111443. [PMID: 31731674 PMCID: PMC6912632 DOI: 10.3390/cells8111443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| | - Daniele Costantini
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Samira Safarikia
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Sabina Di Matteo
- Department of Translation and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy; (D.C.); (S.S.); (S.D.M.)
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Pasquale Bartolomeo Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, 0016 Rome, Italy; (F.M.); (P.B.B.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, “Sapienza” University of Rome, 04100 Latina, Italy
- Correspondence: (L.N.); (V.C.); Tel.: +39-3392335294 (L.N.); +39-3495601492 (V.C.)
| |
Collapse
|
31
|
Vicent S, Lieshout R, Saborowski A, Verstegen MMA, Raggi C, Recalcati S, Invernizzi P, van der Laan LJW, Alvaro D, Calvisi DF, Cardinale V. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:79-97. [PMID: 30851232 DOI: 10.1111/liv.14094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.
Collapse
Affiliation(s)
- Silvestre Vicent
- Program in Solid Tumors, Center for Applied Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospita, l, University of Milano, Bicocca, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Titanium Surface Properties Influence the Biological Activity and FasL Expression of Craniofacial Stromal Cells. Stem Cells Int 2019; 2019:4670560. [PMID: 30733806 PMCID: PMC6348805 DOI: 10.1155/2019/4670560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can be easily isolated form craniofacial bones during routine dentistry procedures. Due to their embryological origin from neural crest, they represent a suitable cell population to study cell-biomaterial interaction in the craniofacial field, including osteoinductive/osteointegrative processes. The biological and immunomodulatory properties of MSCs may be influenced by chemistry and topography of implant surfaces. We investigated if and how three different titanium surfaces, machined (MCH), sandblasted with resorbable blasting medium (RBM), and Ca++-nanostructured (NCA), may affect biological activity, osseointegration, and immunomodulatory properties of craniofacial MSCs. Cell proliferation, morphology, osteogenic markers, and FasL were evaluated on MSCs isolated from the mandibular bone after seeding on these three different surfaces. No statistically significant differences in cell proliferation were observed whereas different morphologies and growth patterns were detected for each type of surface. No difference in the expression of osteogenic markers was revealed. Interestingly, FasL expression, involved in the immunomodulatory activity of stem cells, was influenced by surface properties. Particularly, immunofluorescence analysis indicated that FasL expression increased on MCH surface compared to the others confirming the suggested role of FasL in promoting osteogenic differentiation. Titanium surface treatments and topography might reflect different biological behaviours of craniofacial MSCs and influence their osseointegration/immunomodulation properties.
Collapse
|
33
|
Pisciotta A, Bertoni L, Riccio M, Mapelli J, Bigiani A, La Noce M, Orciani M, de Pol A, Carnevale G. Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells. Front Physiol 2018; 9:547. [PMID: 29892229 PMCID: PMC5985438 DOI: 10.3389/fphys.2018.00547] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Human dental pulp is considered an interesting source of adult stem cells, due to the low-invasive isolation procedures, high content of stem cells and its peculiar embryological origin from neural crest. Based on our previous findings, a dental pulp stem cells sub-population, enriched for the expression of STRO-1, c-Kit, and CD34, showed a higher neural commitment. However, their biological properties were compromised when cells were cultured in adherent standard conditions. The aim of this study was to evaluate the ability of three dimensional floating spheres to preserve embryological and biological properties of this sub-population. In addition, the expression of the inwardly rectifying potassium channel Kir4.1, Fas and FasL was investigated in 3D-sphere derived hDPSCs. Our data showed that 3D sphere-derived hDPSCs maintained their fibroblast-like morphology, preserved stemness markers expression and proliferative capability. The expression of neural crest markers and Kir4.1 was observed in undifferentiated hDPSCs, furthermore this culture system also preserved hDPSCs differentiation potential. The expression of Fas and FasL was observed in undifferentiated hDPSCs derived from sphere culture and, noteworthy, FasL was maintained even after the neurogenic commitment was reached, with a significantly higher expression compared to osteogenic and myogenic commitments. These data demonstrate that 3D sphere culture provides a favorable micro-environment for neural crest-derived hDPSCs to preserve their biological properties.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Riccio
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcella La Noce
- Department of Experimental Medicine, Unit of Biotechnologies, Medical Histology and Molecular Biology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Anto de Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
34
|
Anterior Capsule of the Lens: Comparison of Morphological Properties and Apoptosis Induction following FLACS and Standard Phacoemulsification Surgery. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7242837. [PMID: 29568763 PMCID: PMC5820660 DOI: 10.1155/2018/7242837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/17/2017] [Indexed: 11/28/2022]
Abstract
Purpose Comparative evaluation of morphological features of anterior capsules and apoptosis induction in epithelial cells after femtosecond laser-assisted cataract surgery (FLACS) and standard phacoemulsification surgery. Methods Group 1: 30 FLACS anterior capsulotomies and Group 2: 30 manual anterior continuous curvilinear capsulorhexes. All patients were operated on by the same experienced surgeon. Morphological features of the anterior capsules and apoptosis induction in epithelial cells were evaluated. Results All patients revealed a significant mean best-corrected visual acuity (BCVA) improvement 3 months after surgery, and no major intraoperative nor postoperative complications occurred. The capsular epithelium appeared to be preserved in both groups. Scanning electron microscopy analysis revealed irregular saw-tooth shaped edges in capsules from Group 1 whereas capsules from Group 2 showed regular and smooth edges. A statistically significant higher expression of the downstream apoptotic effector cleaved caspase 3 was observed in Group 1. Conclusions The saw-tooth appearance was likely due to the progressive sequence of laser pulses on the capsule. The low energy/high frequency properties of the laser pulse, combined with an overlapped pulse pattern, resulted in highly continuous morphology of capsule edges. The higher apoptosis induction in FLACS group might be due to photodisruption-dependent plasma generation and formation of cavitation bubbles.
Collapse
|