1
|
Bodie E, Chen Z, Crotty K, Lin C, Liu C, Sunux S, Ward M. Evolution and screening of Trichoderma reesei mutants for secreted protein production at elevated temperature. J Ind Microbiol Biotechnol 2024; 51:kuae038. [PMID: 39424607 PMCID: PMC11566232 DOI: 10.1093/jimb/kuae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The filamentous fungus Trichoderma reesei is a mesophilic ascomycete commercially used to produce industrial enzymes for a variety of applications. Strain improvement efforts over many years have resulted not only in more productive hosts, but also in undesirable traits such as the need for lower temperatures to achieve maximum protein secretion rates. Lower fermentation temperatures increase the need for cooling resulting in higher manufacturing costs. We used a droplet-based evolution strategy to increase the protein secretion temperature of a highly productive T. reesei whole cellulase strain from 25°C to 28°C by first isolating an improved mutant and subsequently tracing the causative high-temperature mutation to one gene designated gef1. An industrial host with a gef1 deletion was found to be capable of improved productivity at higher temperature under industrially relevant fermentation conditions. ONE-SENTENCE SUMMARY High-temperature droplet-based evolution resulted in the identification of a mutation in Trichoderma reesei gef1 enabling high productivity at elevated temperatures.
Collapse
Affiliation(s)
- Elizabeth Bodie
- Health & Biosciences, International Flavors and Fragrances, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | - Zhongqiang Chen
- Health & Biosciences, International Flavors and Fragrances, Wilmington, DE 19803, USA
| | - Kirstin Crotty
- Health & Biosciences, International Flavors and Fragrances, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | - Cherry Lin
- Health & Biosciences, International Flavors and Fragrances, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | - Chuanbin Liu
- Health & Biosciences, International Flavors and Fragrances, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | - Sergio Sunux
- Health & Biosciences, International Flavors and Fragrances, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | - Michael Ward
- Health & Biosciences, International Flavors and Fragrances, 925 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Kudryavtseva OA, Safina KR, Vakhrusheva OA, Logacheva MD, Penin AA, Neretina TV, Moskalenko VN, Glagoleva ES, Bazykin GA, Kondrashov AS. Genetics of Adaptation of the Ascomycetous Fungus Podospora anserina to Submerged Cultivation. Genome Biol Evol 2019; 11:2807-2817. [PMID: 31529025 PMCID: PMC6786475 DOI: 10.1093/gbe/evz194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/02/2022] Open
Abstract
Podospora anserina is a model ascomycetous fungus which shows pronounced phenotypic senescence when grown on solid medium but possesses unlimited lifespan under submerged cultivation. In order to study the genetic aspects of adaptation of P. anserina to submerged cultivation, we initiated a long-term evolution experiment. In the course of the first 4 years of the experiment, 125 single-nucleotide substitutions and 23 short indels were fixed in eight independently evolving populations. Six proteins that affect fungal growth and development evolved in more than one population; in particular, in the G-protein alpha subunit FadA, new alleles fixed in seven out of eight experimental populations, and these fixations affected just four amino acid sites, which is an unprecedented level of parallelism in experimental evolution. Parallel evolution at the level of genes and pathways, an excess of nonsense and missense substitutions, and an elevated conservation of proteins and their sites where the changes occurred suggest that many of the observed fixations were adaptive and driven by positive selection.
Collapse
Affiliation(s)
- Olga A Kudryavtseva
- Department of Mycology and Phycology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ksenia R Safina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Olga A Vakhrusheva
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V Neretina
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- White Sea Biological Station, Lomonosov Moscow State University, Republic of Karelia, Russia
| | | | - Elena S Glagoleva
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kondrashov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor
| |
Collapse
|
3
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
4
|
Rebolleda-Gómez M, Travisano M. Adaptation, chance, and history in experimental evolution reversals to unicellularity. Evolution 2018; 73:73-83. [PMID: 30520011 PMCID: PMC6590667 DOI: 10.1111/evo.13654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
Evolution is often deemed irreversible. The evolution of complex traits that require many mutations makes their reversal unlikely. Even in simpler traits, reversals might become less likely as neutral or beneficial mutations, with deleterious effects in the ancestral context, become fixed in the novel background. This is especially true in changes that involve large reorganizations of the organism and its interactions with the environment. The evolution of multicellularity involves the reorganization of previously autonomous cells into a more complex organism; despite the complexity of this change, single cells have repeatedly evolved from multicellular ancestors. These repeated reversals to unicellularity undermine the generality of Dollo's law. In this article, we evaluated the dynamics of reversals to unicellularity from recently evolved multicellular phenotypes of the brewers yeast Saccharomyces cerevisae. Even though multicellularity in this system evolved recently, it involves the evolution of new levels of selection. Strong selective pressures against multicellularity lead to rapid reversibility to single cells in all of our replicate lines, whereas counterselection favoring multicellularity led to minimal reductions to the rates of reversal. History and chance played an important role in the tempo and mode of reversibility, highlighting the interplay of deterministic and stochastic events in evolutionary reversals.
Collapse
Affiliation(s)
- María Rebolleda-Gómez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, 55108.,Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, Minnesota, 55455.,Current Address: Biology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, 55108.,Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, Minnesota, 55455.,The BioTechnology Institute, University of Minnesota, St Paul, Minnesota, 55108
| |
Collapse
|